Articles | Volume 37, issue 1
https://doi.org/10.5194/angeo-37-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes
Sven Wilhelm
CORRESPONDING AUTHOR
Leibniz Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany
Gunter Stober
Leibniz Institute of Atmospheric Physics, University of Rostock, Kühlungsborn, Germany
Vivien Matthias
Earth System Analysis – Research Domain 1, Potsdam Institute for Climate Impact Research, Potsdam, Germany
Christoph Jacobi
Institute for Meteorology, Universität Leipzig, Leipzig, Germany
Damian J. Murphy
Australian Antarctic Division, Kingston, Tasmania, Australia
Related authors
Sven Wilhelm, Gunter Stober, and Peter Brown
Ann. Geophys., 37, 851–875, https://doi.org/10.5194/angeo-37-851-2019, https://doi.org/10.5194/angeo-37-851-2019, 2019
Short summary
Short summary
We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere made over the last 2 decades for the northern-latitude locations of Andenes, Juliusruh, and Tavistock. The observations are based on meteor wind measurements and further include the long-term variability of winds, tides, and the kinetic energy of gravity waves and planetary waves. Furthermore, the influence on an 11-year oscillation on the winds and tides is presented.
Gunter Stober, Jorge L. Chau, Juha Vierinen, Christoph Jacobi, and Sven Wilhelm
Atmos. Meas. Tech., 11, 4891–4907, https://doi.org/10.5194/amt-11-4891-2018, https://doi.org/10.5194/amt-11-4891-2018, 2018
Sven Wilhelm, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, https://doi.org/10.5194/angeo-35-893-2017, 2017
Short summary
Short summary
A comparison between winds and tides in the mesosphere and lower thermosphere based on measurements from a meteor radar (MR) and a medium-frequency radar in northern Norway was done to estimate potential biases between the two systems. Our results indicate reasonable agreement for the zonal and meridional wind components between 78 and 92 km. Based on these findings, we have taken the MR data as a reference and thus construct a consistent and homogenous wind from approximately 60 to 110 km.
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, https://doi.org/10.5194/angeo-35-711-2017, 2017
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-126, https://doi.org/10.5194/amt-2024-126, 2024
Revised manuscript under review for AMT
Short summary
Short summary
This paper describes the installation of the Chilean Observation Network De MeteOr Radars (CONDOR) and its initial results. The routine winds are point-to-point comparable to the co-located lidar winds. The retrievals of spatially resolved horizontal wind fields, vertical winds, and temperatures are also facilitated benefiting from the extensive meteor detections. The successful deployment and maintenance of CONDOR provide 24/7 and state-of-the-art wind measurements to the research community.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 24, 10187–10207, https://doi.org/10.5194/acp-24-10187-2024, https://doi.org/10.5194/acp-24-10187-2024, 2024
Short summary
Short summary
Here we investigated ozone anomalies over polar regions during sudden stratospheric and final stratospheric warming with ground-based microwave radiometers at polar latitudes compared with reanalysis and satellite data. The underlying dynamical and chemical mechanisms are responsible for the observed ozone anomalies in both events. Our research sheds light on these processes, emphasizing the need for a deeper understanding of these processes for more accurate climate modeling and forecasting.
Florian Günzkofer, Gunter Stober, Johan Kero, David R. Themens, Njål Gulbrandsen, Masaki Tsutsumi, and Claudia Borries
EGUsphere, https://doi.org/10.5194/egusphere-2024-2708, https://doi.org/10.5194/egusphere-2024-2708, 2024
Short summary
Short summary
The Earth’s magnetic field is not closed at high latitudes. Electrically charged particles can penetrate the Earth’s atmosphere, deposit their energy, and heat the local atmosphere-ionosphere. This presumably causes an upwelling of the neutral atmosphere which affects the atmosphere-ionosphere coupling. We apply a new analysis technique to infer the atmospheric density from incoherent scatter radar measurements. We show qualitatively how particle precipitation affects the neutral atmosphere.
Witali Krochin, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 17, 5015–5028, https://doi.org/10.5194/amt-17-5015-2024, https://doi.org/10.5194/amt-17-5015-2024, 2024
Short summary
Short summary
Atmospheric tides are global-scale oscillations with periods of a fraction of a day. Their observation in the middle atmosphere is challenging and rare, as it requires continuous measurements with a high temporal resolution. In this paper, temperature time series of a ground-based microwave radiometer were analyzed with a spectral filter to derive thermal tide amplitudes and phases in an altitude range of 25–50 km at the geographical locations of Payerne and Bern (Switzerland).
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Alistair Bell, Eric Sauvageat, Gunter Stober, Klemens Hocke, and Axel Murk
EGUsphere, https://doi.org/10.5194/egusphere-2024-2474, https://doi.org/10.5194/egusphere-2024-2474, 2024
Short summary
Short summary
Hardware and software developments have been made on a 22 GHz microwave radiometer for the measurement of middle atmosphere water vapour near Bern, Switzerland. Previous measurements dating back to 2010 have been re-calibrated and an improved optimal estimation retrieval performed on these measurements, giving a 13 year long dataset. Measurements made with new and improved instrumental hardware are used to correct previous measurements, which show better agreement than the non-corrected dataset.
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024, https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Short summary
Exploring the polar vortex's impact on climate, the study evaluates model simulations against the ERA5 reanalysis data. Revelations about model discrepancies in simulating disruptive stratospheric warmings and vortex behavior highlight the need for refined model simulations of past climate. By enhancing our understanding of these dynamics, the research contributes to more reliable climate projections of the polar vortex with the impact on surface climate.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Ralph Latteck and Damian J. Murphy
Ann. Geophys., 42, 55–68, https://doi.org/10.5194/angeo-42-55-2024, https://doi.org/10.5194/angeo-42-55-2024, 2024
Short summary
Short summary
This paper gives an overview of continuous measurements of polar mesophere summer echoes (PMSE) by VHF radars at Andøya (69° N) and Davis (69° S). PMSE signal strengths are of the same order of magnitude; significantly fewer PMSE were observed in the Southern than the Northern Hemisphere. Compared to Andøya, the PMSE season over Davis starts ~7 d later and ends 9 d earlier; PMSE occur less frequently but with greater seasonal/diurnal occurrence variability, reaching higher peak altitudes.
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023, https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary
Short summary
Electric currents in the ionosphere can impact both satellite and ground-based infrastructure. These currents depend strongly on the collisions of ions and neutral particles. Measuring ion–neutral collisions is often only possible via certain assumptions. The direct measurement of ion–neutral collision frequencies is possible with multifrequency incoherent scatter radar measurements. This paper presents one analysis method of such measurements and discusses its advantages and disadvantages.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries
Ann. Geophys., 41, 409–428, https://doi.org/10.5194/angeo-41-409-2023, https://doi.org/10.5194/angeo-41-409-2023, 2023
Short summary
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 23, 9137–9159, https://doi.org/10.5194/acp-23-9137-2023, https://doi.org/10.5194/acp-23-9137-2023, 2023
Short summary
Short summary
We present the interannual and climatological behavior of ozone and water vapor from microwave radiometers in the Arctic.
By defining a virtual conjugate latitude station in the Southern Hemisphere, we investigate altitude-dependent interhemispheric differences and estimate the ascent and descent rates of water vapor in both hemispheres. Ozone and water vapor measurements will create a deeper understanding of the evolution of middle atmospheric ozone and water vapor.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Witali Krochin, Guochun Shi, Johan Kero, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Evgenia Belova, and Nicholas Mitchell
Ann. Geophys., 41, 197–208, https://doi.org/10.5194/angeo-41-197-2023, https://doi.org/10.5194/angeo-41-197-2023, 2023
Short summary
Short summary
The Hunga Tonga–Hunga Ha‘apai volcanic eruption was one of the most vigorous volcanic explosions in the last centuries. The eruption launched many atmospheric waves traveling around the Earth. In this study, we identify these volcanic waves at the edge of space in the mesosphere/lower-thermosphere, leveraging wind observations conducted with multi-static meteor radars in northern Europe and with the Chilean Observation Network De Meteor Radars (CONDOR).
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Christoph Jacobi, Kanykei Kandieva, and Christina Arras
Adv. Radio Sci., 20, 85–92, https://doi.org/10.5194/ars-20-85-2023, https://doi.org/10.5194/ars-20-85-2023, 2023
Short summary
Short summary
Sporadic E (Es) layers are thin regions of accumulated ions in the lower ionosphere. They can be observed by disturbances of GNSS links between low-Earth orbiting satellites and GNSS satellites. Es layers are influenced by neutral atmospheric tides and show the coupling between the neutral atmosphere and the ionosphere. Here we analyse migrating (sun-synchronous) and non-migrating tidal components in Es. The main signatures are migrating Es, but nonmigrating components are found as well.
Gerhard Georg Bruno Schmidtke, Raimund Brunner, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2023-139, https://doi.org/10.5194/egusphere-2023-139, 2023
Short summary
Short summary
The instrument records annual changes in Spectral Outgoing Radiation from 200–1100 nm, with 60 photomultiplier tubes simultaneously providing spectrometer and photometer data. Using Total Solar Irradiance data with a stability of 0.01 Wm-2 per year to recalibrate the established instruments, stable data of ~0.1 Wm-2 over a solar cycle period is expected. Determination of the changes in the global green Earth coverage and mapping will also assess the impact of climate engineering actions.
Gabriele Messori, Marlene Kretschmer, Simon H. Lee, and Vivien Wendt
Weather Clim. Dynam., 3, 1215–1236, https://doi.org/10.5194/wcd-3-1215-2022, https://doi.org/10.5194/wcd-3-1215-2022, 2022
Short summary
Short summary
Over 10 km above the ground, there is a region of the atmosphere called the stratosphere. While there is very little air in the stratosphere itself, its interactions with the lower parts of the atmosphere – where we live – can affect the weather. Here we study a specific example of such an interaction, whereby processes occurring at the boundary of the stratosphere can lead to a continent-wide drop in temperatures in North America during winter.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2022-474, https://doi.org/10.5194/egusphere-2022-474, 2022
Preprint archived
Short summary
Short summary
We focus on the impact of small-scale orographic gravity waves (OGWs) above the Himalayas. The interaction of GWs with the large-scale circulation in the stratosphere is not still well understood and can have implications on climate projections. We use a chemistry-climate model to show that these strong OGW events are associated with anomalously increased upward planetary-scale waves and in turn affect the circumpolar circulation and have the potential to alter ozone variability as well.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Witali Krochin, Francisco Navas-Guzmán, David Kuhl, Axel Murk, and Gunter Stober
Atmos. Meas. Tech., 15, 2231–2249, https://doi.org/10.5194/amt-15-2231-2022, https://doi.org/10.5194/amt-15-2231-2022, 2022
Short summary
Short summary
This study leverages atmospheric temperature measurements performed with a ground-based radiometer making use of data that was collected during a 4-year observational campaign applying a new retrieval algorithm that improves the maximal altitude range from 45 to 55 km. The measurements are validated against two independent data sets, MERRA2 reanalysis data and the meteorological analysis of NAVGEM-HA.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021, https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Short summary
Wind observations at the edge to space, 70–110 km altitude, are challenging. Meteor radars have become a widely used instrument to obtain mean wind profiles above an instrument for these heights. We describe an advanced mathematical concept and present a tomographic analysis using several meteor radars located in Finland, Sweden and Norway, as well as Chile, to derive the three-dimensional flow field. We show an example of a gravity wave decelerating the mean flow.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021, https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary
Short summary
We investigate the role of eddy diffusion in the delayed ionospheric response against solar flux changes in the solar rotation period using the CTIPe model. The study confirms that eddy diffusion is an important factor affecting the delay of the total electron content. An increase in eddy diffusion leads to faster transport processes and an increased loss rate, resulting in a decrease in the ionospheric delay.
Rajesh Vaishnav, Erik Schmölter, Christoph Jacobi, Jens Berdermann, and Mihail Codrescu
Ann. Geophys., 39, 341–355, https://doi.org/10.5194/angeo-39-341-2021, https://doi.org/10.5194/angeo-39-341-2021, 2021
Short summary
Short summary
We investigate the delayed ionospheric response using the observed and CTIPe-model-simulated TEC against the solar EUV flux. The ionospheric delay estimated using model-simulated TEC is in good agreement with the delay estimated for observed TEC. The study confirms the model's capabilities to reproduce the delayed ionospheric response against the solar EUV flux. Results also indicate that the average delay is higher in the Northern Hemisphere as compared to the Southern Hemisphere.
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021, https://doi.org/10.5194/angeo-39-1-2021, 2021
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Gunter Stober, Kathrin Baumgarten, John P. McCormack, Peter Brown, and Jerry Czarnecki
Atmos. Chem. Phys., 20, 11979–12010, https://doi.org/10.5194/acp-20-11979-2020, https://doi.org/10.5194/acp-20-11979-2020, 2020
Short summary
Short summary
This paper presents a first cross-comparison of meteor ground-based observations and a meteorological analysis (NAVGEM-HA) to compare a seasonal climatology of winds and temperatures at the mesosphere/lower thermosphere. The validation is insofar unique as we not only compare the mean state but also provide a detailed comparison of the short time variability of atmospheric tidal waves. Our analysis questions previous results claiming the importance of lunar tides.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020, https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Short summary
This is an extensive model study to analyze the migrating quarterdiurnal solar tide (QDT) and its forcing mechanisms in the middle atmosphere. We first show a climatology of the QDT amplitudes and examine the contribution of the different forcing mechanisms, including direct solar, nonlinear and gravity wave forcing, on the QDT amplitude. We then investigate the destructive interference between the individual forcing mechanisms.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339, https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Short summary
Gravity waves are a small-scale but prominent dynamical feature in the Earth's atmosphere. Here, we use a mechanistic nonlinear general circulation model and implement a modern whole atmosphere gravity wave parameterization. We study the response of the atmosphere on several phase speed spectra. We find a large influence of fast travelling waves on the background dynamics in the thermosphere and also a strong dependence of the amplitude of the terdiurnal solar tide, indicating wave interactions.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, and Christoph Jacobi
Ann. Geophys., 38, 149–162, https://doi.org/10.5194/angeo-38-149-2020, https://doi.org/10.5194/angeo-38-149-2020, 2020
Short summary
Short summary
This study correlates ionospheric parameters with the integrated solar radiation for an analysis of the delayed ionospheric response in order to confirm previous studies on the delay and to further specify variations of the delay (seasonal and spatial). Results also indicate the dependence on the geomagnetic activity as well as on the 11-year solar cycle. The results are important for the understanding of ionospheric processes and could be used for the validation of ionospheric models.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Rajesh Vaishnav, Christoph Jacobi, and Jens Berdermann
Ann. Geophys., 37, 1141–1159, https://doi.org/10.5194/angeo-37-1141-2019, https://doi.org/10.5194/angeo-37-1141-2019, 2019
Short summary
Short summary
We investigate the ionospheric response to the temporal and spatial dynamics of the solar activity using total electron content (TEC) maps and multiple solar proxies. The maximum correlation at a 16–32-d timescale is observed between the He-II, Mg-II, and F30 with respect to global mean TEC, with an effective time delay of about 1 d. The most suitable proxy to represent the solar activity at the timescales of 16–32 d and 32–64 d is He-II.
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019, https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Short summary
We analyzed the forcing mechanisms of the migrating terdiurnal solar tide in the middle atmosphere, focusing the impact on the zonal mean circulation. We show that the primary solar forcing is the most dominant one but secondary wave–wave interactions also contribute in the lower thermosphere region. We further demonstrate that small-scale gravity waves can strongly and irregularly influence the amplitude of the terdiurnal tide as well as the background circulation in the thermosphere.
Sven Wilhelm, Gunter Stober, and Peter Brown
Ann. Geophys., 37, 851–875, https://doi.org/10.5194/angeo-37-851-2019, https://doi.org/10.5194/angeo-37-851-2019, 2019
Short summary
Short summary
We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere made over the last 2 decades for the northern-latitude locations of Andenes, Juliusruh, and Tavistock. The observations are based on meteor wind measurements and further include the long-term variability of winds, tides, and the kinetic energy of gravity waves and planetary waves. Furthermore, the influence on an 11-year oscillation on the winds and tides is presented.
Christoph Jacobi and Christina Arras
Adv. Radio Sci., 17, 213–224, https://doi.org/10.5194/ars-17-213-2019, https://doi.org/10.5194/ars-17-213-2019, 2019
Short summary
Short summary
We analyze tidal phases and related wind shear in the mesosphere and
lower thermosphere as observed by a meteor radar. The wind shear phases are compared with those of sporadic E occurrence rates, which were derived from GPS radio occultation observations. We find good correspondence between radar derived wind shear and sporadic E phases for the semidiurnal, terdiurnal, and quarterdiurnal tidal components, but not for the diurnal tide.
Kathrin Baumgarten and Gunter Stober
Ann. Geophys., 37, 581–602, https://doi.org/10.5194/angeo-37-581-2019, https://doi.org/10.5194/angeo-37-581-2019, 2019
Short summary
Short summary
The paper presents the variability in thermal tides in the middle atmosphere from temperature observations as well as from horizontal wind data using a new diagnostic approach which takes into account a possible intermittency of tides. The data are analyzed from a local as well as from a global perspective to distinguish between different tidal modes. Surprisingly, there are dominating tidal modes, which are seen in the local data, and a phase relation between temperature and winds is evaluated.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Wen Yi, Xianghui Xue, Iain M. Reid, Damian J. Murphy, Chris M. Hall, Masaki Tsutsumi, Baiqi Ning, Guozhu Li, Robert A. Vincent, Jinsong Chen, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Chem. Phys., 19, 7567–7581, https://doi.org/10.5194/acp-19-7567-2019, https://doi.org/10.5194/acp-19-7567-2019, 2019
Short summary
Short summary
The seasonal variations in the mesopause densities, especially with regard to its global structure, are still unclear. In this study, we report the climatology of the mesopause density estimated using multiyear observations from nine meteor radars from Arctic to Antarctic latitudes. The results reveal a significant AO and SAO in mesopause density, an asymmetry between the two polar regions and evidence of intraseasonal oscillations (ISOs), perhaps associated with the ISOs of the troposphere.
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019, https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
Short summary
Twelve years of radar observations from a mid-latitude location in Kühlungsborn, Germany have been analysed to study characteristics of mesospheric summer echoes (MSEs). The statistical analysis shows that MSEs have a strong daytime preference and early summer seasonal preference. It is demonstrated that the meridional wind transport from polar regions is the important controlling factor for MSEs, while no clear connection to geomagnetic and solar activity is found.
Fazlul I. Laskar, Gunter Stober, Jens Fiedler, Meers M. Oppenheim, Jorge L. Chau, Duggirala Pallamraju, Nicholas M. Pedatella, Masaki Tsutsumi, and Toralf Renkwitz
Atmos. Chem. Phys., 19, 5259–5267, https://doi.org/10.5194/acp-19-5259-2019, https://doi.org/10.5194/acp-19-5259-2019, 2019
Short summary
Short summary
Meteor radars are used to track and estimate the fading time of meteor trails. In this investigation, it is observed that the diffusion time estimated from such trail fading time is anomalously higher during noctilucent clouds (NLC) than that in its absence. We propose that NLC particles absorb background electrons and thus modify the background electrodynamics, leading to such an anomaly.
Nikoloz Gudadze, Gunter Stober, and Jorge L. Chau
Atmos. Chem. Phys., 19, 4485–4497, https://doi.org/10.5194/acp-19-4485-2019, https://doi.org/10.5194/acp-19-4485-2019, 2019
Short summary
Short summary
We show a possibility of measuring mean vertical winds during the summer months using polar mesosphere summer echo (PMSE) observations. Middle Atmosphere Alomar Radar System observations of PMSE five-beam radial velocities are analysed to obtain the results. We found that sampling issues are the reason for bias in vertical wind measurements at the edges of PMSE altitudes. However, the PMSE is a good tracer for the mean vertical wind estimation at the central altitudes with its peak occurrence.
Daniel Mewes and Christoph Jacobi
Atmos. Chem. Phys., 19, 3927–3937, https://doi.org/10.5194/acp-19-3927-2019, https://doi.org/10.5194/acp-19-3927-2019, 2019
Short summary
Short summary
Horizontal moist static energy (MSE) transport patterns were extracted from reanalysis data using an artificial neuronal network for the winter months. The results show that during the last 30 years transport pathways that favour MSE transport through the North Atlantic are getting more frequent. This North Atlantic pathway is connected to positive temperature anomalies over the central Arctic, which implies a connection between Arctic amplification and the change in horizontal heat transport.
Friederike Lilienthal, Christoph Jacobi, and Christoph Geißler
Atmos. Chem. Phys., 18, 15725–15742, https://doi.org/10.5194/acp-18-15725-2018, https://doi.org/10.5194/acp-18-15725-2018, 2018
Short summary
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Michael Gerding, Jochen Zöllner, Marius Zecha, Kathrin Baumgarten, Josef Höffner, Gunter Stober, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 15569–15580, https://doi.org/10.5194/acp-18-15569-2018, https://doi.org/10.5194/acp-18-15569-2018, 2018
Short summary
Short summary
We describe the first comparative study of noctilucent clouds (NLCs) and mesospheric summer echoes at midlatitudes. Therefore, this study compares fresh clouds (small particles) with fully evolved clouds in the mesosphere, hinting at their evolution. It is shown that, in contrast to higher latitudes, here only a thin layer of fresh particles exist above the NLCs. This gives evidence that NLCs are not formed locally but are typically advected. This needs to be acknowledged in trend studies.
Christoph Jacobi, Christoph Geißler, Friederike Lilienthal, and Amelie Krug
Adv. Radio Sci., 16, 141–147, https://doi.org/10.5194/ars-16-141-2018, https://doi.org/10.5194/ars-16-141-2018, 2018
Short summary
Short summary
The possible sources of the quarterdiurnal tide (QDT) in the middle atmosphere are still under discussion. Therefore, meteor radar winds were analyzed with respect to non-linear interaction, which probably plays a role in winter, but to a lesser degree in summer. Numerical model experiments lead to the conclusion that, although non-linear tidal interaction is indeed one source of the QDT, the major source is direct solar forcing of the 6-hr tidal components.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, Christoph Jacobi, and Rajesh Vaishnav
Adv. Radio Sci., 16, 149–155, https://doi.org/10.5194/ars-16-149-2018, https://doi.org/10.5194/ars-16-149-2018, 2018
Short summary
Short summary
Physical and chemical processes in the ionosphere are driven by complex interactions with the solar radiation. The ionospheric plasma is in particular sensitive to solar variations with a time delay between one and two days.
Here we present preliminary results of the ionospheric delay based on a comprehensive and reliable database consisting of GNSS TEC Maps and EUV spectral flux data.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Erik Schmölter, and Mihail Codrescu
Adv. Radio Sci., 16, 157–165, https://doi.org/10.5194/ars-16-157-2018, https://doi.org/10.5194/ars-16-157-2018, 2018
Short summary
Short summary
We investigate the ionospheric response to solar Extreme Ultraviolet (EUV) variations using different solar proxies and IGS TEC maps. An ionospheric delay in GTEC is observed at the 27 days solar rotation period with the time scale of about ~ 1–2 days. Here we present preliminary results from the CTIPe model simulations which qualitatively reproduce the observed ~1-2 days delay in GTEC, which is might be due to vertical transport processes.
Gunter Stober, Jorge L. Chau, Juha Vierinen, Christoph Jacobi, and Sven Wilhelm
Atmos. Meas. Tech., 11, 4891–4907, https://doi.org/10.5194/amt-11-4891-2018, https://doi.org/10.5194/amt-11-4891-2018, 2018
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Dimitry Pokhotelov, Erich Becker, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 36, 825–830, https://doi.org/10.5194/angeo-36-825-2018, https://doi.org/10.5194/angeo-36-825-2018, 2018
Short summary
Short summary
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to the upper atmosphere and ionosphere playing an important role in the vertical coupling. Ground radar measurements of the seasonal variability of tides are compared with global numerical simulations. The agreement with radar data and limitations of the numerical model are discussed. The work represents a first step in modelling the impact of tidal dynamics on the upper atmosphere and ionosphere.
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary
Short summary
OH*-spectrometer measurements allow the analysis of gravity wave ground-based periods, but spatial information cannot necessarily be deduced. We combine the approach of Wachter at al. (2015) in order to derive horizontal wavelengths (but based on only one OH* spectrometer) with additional information about wind and temperature and compute vertical wavelengths. Knowledge of these parameters is a precondition for the calculation of further information such as the wave group velocity.
Gunter Stober, Svenja Sommer, Carsten Schult, Ralph Latteck, and Jorge L. Chau
Atmos. Chem. Phys., 18, 6721–6732, https://doi.org/10.5194/acp-18-6721-2018, https://doi.org/10.5194/acp-18-6721-2018, 2018
Vivien Matthias and Manfred Ern
Atmos. Chem. Phys., 18, 4803–4815, https://doi.org/10.5194/acp-18-4803-2018, https://doi.org/10.5194/acp-18-4803-2018, 2018
Short summary
Short summary
The aim of this study is to find the origin of mesospheric stationary planetary wave (SPW) in the subtropics and in mid and polar latitudes in mid winter 2015/2016. Our results based on observations show that upward propagating SPW and in situ generated SPWs by longitudinally variable gravity wave drag and by instabilities can be responsible for the occurrence of mesospheric SPWs and that they can act at the same time, which confirms earlier model studies.
Rolf Rüfenacht, Gerd Baumgarten, Jens Hildebrand, Franziska Schranz, Vivien Matthias, Gunter Stober, Franz-Josef Lübken, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 1971–1987, https://doi.org/10.5194/amt-11-1971-2018, https://doi.org/10.5194/amt-11-1971-2018, 2018
Short summary
Short summary
Wind information throughout the middle-atmosphere is crucial for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing and modelling approaches. We present the first thorough assessment of the quality of the wind estimates by comparing co-located observations from lidar and microwave radiometry and opposing them to the major atmospheric models. Moreover we evaluated a new approach for measuring mesopause region wind by radiometry.
Qiang Li, Markus Rapp, Gunter Stober, and Ralph Latteck
Ann. Geophys., 36, 577–586, https://doi.org/10.5194/angeo-36-577-2018, https://doi.org/10.5194/angeo-36-577-2018, 2018
Short summary
Short summary
With the powerful MAARSY radar, we detected 3D wind fields and the vertical winds show a non-Gaussian distribution. We further obtained the frequency spectrum of vertical wind. The distribution of the spectral slopes under different wind conditions is derived and their comparisons with the background horizontal winds show that the spectra become steeper with increasing wind velocities under quiet conditions, approach a slope of −5/3 at 10 m/s and then maintain this slope for even stronger winds.
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary
Short summary
There is continuous interest in coupling processes between the lower and middle atmosphere. Here we analyse midlatitude winds measured by radar at 82–97 km and find that especially in February they are positively correlated with El Niño. The signal is strong for the upper altitudes accessible to the radar, but weakens below. The observations can be qualitatively reproduced by numerical experiments using a mechanistic global circulation model.
Sven Wilhelm, Gunter Stober, and Jorge L. Chau
Ann. Geophys., 35, 893–906, https://doi.org/10.5194/angeo-35-893-2017, https://doi.org/10.5194/angeo-35-893-2017, 2017
Short summary
Short summary
A comparison between winds and tides in the mesosphere and lower thermosphere based on measurements from a meteor radar (MR) and a medium-frequency radar in northern Norway was done to estimate potential biases between the two systems. Our results indicate reasonable agreement for the zonal and meridional wind components between 78 and 92 km. Based on these findings, we have taken the MR data as a reference and thus construct a consistent and homogenous wind from approximately 60 to 110 km.
Friederike Lilienthal, Christoph Jacobi, Torsten Schmidt, Alejandro de la Torre, and Peter Alexander
Ann. Geophys., 35, 785–798, https://doi.org/10.5194/angeo-35-785-2017, https://doi.org/10.5194/angeo-35-785-2017, 2017
Short summary
Short summary
Gravity waves (GWs) are one of the most important dynamical features of the middle atmosphere that extends from the tropopause to the lower thermosphere. They originate from the troposphere and propagate upward. Here, we show the impact of the horizontal GW distribution in the lower atmosphere on the dynamics of the middle atmosphere using a global circulation model. As a result, we find that non-zonal GW structures can force additional stationary planetary waves.
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, https://doi.org/10.5194/angeo-35-711-2017, 2017
Petr Šácha, Friederike Lilienthal, Christoph Jacobi, and Petr Pišoft
Atmos. Chem. Phys., 16, 15755–15775, https://doi.org/10.5194/acp-16-15755-2016, https://doi.org/10.5194/acp-16-15755-2016, 2016
Short summary
Short summary
With a mechanistic model for the middle and upper atmosphere we performed sensitivity simulations to study a possible impact of a localized GW breaking hotspot in the eastern Asia–northern Pacific region and also the possible influence of the spatial distribution of gravity wave activity on the middle atmospheric circulation and transport. We show implications for polar vortex stability, in situ PW generation and longitudinal variability and strength of the Brewer–Dobson circulation.
Qiang Li, Markus Rapp, Anne Schrön, Andreas Schneider, and Gunter Stober
Ann. Geophys., 34, 1209–1229, https://doi.org/10.5194/angeo-34-1209-2016, https://doi.org/10.5194/angeo-34-1209-2016, 2016
Short summary
Short summary
Turbulence is an essential process in the atmosphere and ocean. Clear-air turbulence is a well-known threat for the safety of aviation. Using a powerful MST radar, we detected turbulence and compared it with the results from radiosondes. The correlation between turbulence and background conditions, e.g., Richardson number and wind shears, is determined. There is a nearly negative correlation between turbulence and Richardson number independent of the length scale over which it was calculated.
Ch. Jacobi, N. Samtleben, and G. Stober
Adv. Radio Sci., 14, 169–174, https://doi.org/10.5194/ars-14-169-2016, https://doi.org/10.5194/ars-14-169-2016, 2016
Short summary
Short summary
VHF meteor radar observations of mesosphere/lower thermosphere daily temperatures have been performed at Collm, Germany. The data have been analyzed with respect to long-period oscillations at time scales of 2 to 30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The results are comparable with analyses from radar wind measurements.
Christoph Jacobi, Norbert Jakowski, Gerhard Schmidtke, and Thomas N. Woods
Adv. Radio Sci., 14, 175–180, https://doi.org/10.5194/ars-14-175-2016, https://doi.org/10.5194/ars-14-175-2016, 2016
Short summary
Short summary
The ionospheric response to solar extreme ultraviolet variability is shown by simple proxies based on Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment solar spectra. The daily proxies are compared with global mean total electron content. At time scales of the solar rotation up to about 40 days there is a time lag between EUV and TEC variability of about one day, with a tendency to increase for longer time scales.
Juha Vierinen, Jorge L. Chau, Nico Pfeffer, Matthias Clahsen, and Gunter Stober
Atmos. Meas. Tech., 9, 829–839, https://doi.org/10.5194/amt-9-829-2016, https://doi.org/10.5194/amt-9-829-2016, 2016
Short summary
Short summary
This paper describes the use of pseudorandom coded continuous wave radar transmissions for meteor radar. This avoids range-aliased echoes, maximizes pulse compression gain, is less susceptible to RFI, allows time resolution to be changed flexibly, and enables multiple transmitters to operate on the same frequency without interfering each other. These features make the radar well suited for multi-static meteor radar networks. We show results from a measurement campaign to demonstrate the method.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
T. Renkwitz, C. Schult, R. Latteck, and G. Stober
Adv. Radio Sci., 13, 41–48, https://doi.org/10.5194/ars-13-41-2015, https://doi.org/10.5194/ars-13-41-2015, 2015
F. Lilienthal and Ch. Jacobi
Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, https://doi.org/10.5194/acp-15-9917-2015, 2015
Short summary
Short summary
The quasi 2-day wave (QTDW), one of the most striking features in the mesosphere/lower thermosphere, is analyzed using meteor radar measurements at Collm (51°N, 13°E) during 2004-2014. The QTDW has periods lasting between 43 and 52h during strong summer bursts, and weaker enhancements are found during winter. A correlation between QTDW amplitudes and wind shear suggests baroclinic instability to be a likely forcing mechanism.
V. Matthias, T. G. Shepherd, P. Hoffmann, and M. Rapp
Ann. Geophys., 33, 199–206, https://doi.org/10.5194/angeo-33-199-2015, https://doi.org/10.5194/angeo-33-199-2015, 2015
Short summary
Short summary
A vertical coupling process in the northern high-latitude middle atmosphere has been identified during the equinox transitions, which we call the “hiccup” and which acts like a “mini sudden stratospheric warming (SSW)”. We study the average characteristics of the hiccup based on a composite analysis using a nudged model. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.
G. Schmidtke, Ch. Jacobi, B. Nikutowski, and Ch. Erhardt
Adv. Radio Sci., 12, 251–260, https://doi.org/10.5194/ars-12-251-2014, https://doi.org/10.5194/ars-12-251-2014, 2014
S. Sommer, G. Stober, J. L. Chau, and R. Latteck
Adv. Radio Sci., 12, 197–203, https://doi.org/10.5194/ars-12-197-2014, https://doi.org/10.5194/ars-12-197-2014, 2014
F. Lilienthal and Ch. Jacobi
Adv. Radio Sci., 12, 205–210, https://doi.org/10.5194/ars-12-205-2014, https://doi.org/10.5194/ars-12-205-2014, 2014
Ch. Jacobi
Adv. Radio Sci., 12, 161–165, https://doi.org/10.5194/ars-12-161-2014, https://doi.org/10.5194/ars-12-161-2014, 2014
G. Stober, S. Sommer, M. Rapp, and R. Latteck
Atmos. Meas. Tech., 6, 2893–2905, https://doi.org/10.5194/amt-6-2893-2013, https://doi.org/10.5194/amt-6-2893-2013, 2013
C. Schult, G. Stober, J. L. Chau, and R. Latteck
Ann. Geophys., 31, 1843–1851, https://doi.org/10.5194/angeo-31-1843-2013, https://doi.org/10.5194/angeo-31-1843-2013, 2013
V. Matthias, P. Hoffmann, A. Manson, C. Meek, G. Stober, P. Brown, and M. Rapp
Ann. Geophys., 31, 1397–1415, https://doi.org/10.5194/angeo-31-1397-2013, https://doi.org/10.5194/angeo-31-1397-2013, 2013
S. P. Alexander, D. J. Murphy, and A. R. Klekociuk
Atmos. Chem. Phys., 13, 3121–3132, https://doi.org/10.5194/acp-13-3121-2013, https://doi.org/10.5194/acp-13-3121-2013, 2013
G. Stober, C. Schult, C. Baumann, R. Latteck, and M. Rapp
Ann. Geophys., 31, 473–487, https://doi.org/10.5194/angeo-31-473-2013, https://doi.org/10.5194/angeo-31-473-2013, 2013
T. Dunker, U.-P. Hoppe, G. Stober, and M. Rapp
Ann. Geophys., 31, 61–73, https://doi.org/10.5194/angeo-31-61-2013, https://doi.org/10.5194/angeo-31-61-2013, 2013
M. Rapp, J. M. C. Plane, B. Strelnikov, G. Stober, S. Ernst, J. Hedin, M. Friedrich, and U.-P. Hoppe
Ann. Geophys., 30, 1661–1673, https://doi.org/10.5194/angeo-30-1661-2012, https://doi.org/10.5194/angeo-30-1661-2012, 2012
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Middle atmosphere dynamics
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
Propagating characteristics of mesospheric gravity waves observed by an OI 557.7 nm airglow all-sky camera at Mt. Bohyun (36.2° N, 128.9° E)
Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events
Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer
Migrating and non-migrating tides observed in the stratosphere from FORMOSAT-3/COSMIC temperature retrievals
Local stratopause temperature variabilities and their embedding in the global context
Relation between the interannual variability in the stratospheric Rossby wave forcing and zonal mean fields suggesting an interhemispheric link in the stratosphere
Impact of local gravity wave forcing in the lower stratosphere on the polar vortex stability: effect of longitudinal displacement
Stratospheric observations of noctilucent clouds: a new approach in studying middle- and large-scale mesospheric dynamics
High-resolution Beijing mesosphere–stratosphere–troposphere (MST) radar detection of tropopause structure and variability over Xianghe (39.75° N, 116.96° E), China
Effect of latitudinally displaced gravity wave forcing in the lower stratosphere on the polar vortex stability
Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere
Notes on the correlation between sudden stratospheric warmings and solar activity
Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
Chalachew Lingerew and Jaya Prakash Raju
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-34, https://doi.org/10.5194/angeo-2023-34, 2023
Revised manuscript accepted for ANGEO
Short summary
Short summary
The study uses SABER data to analyze the MIL phenomenon and its causative gravity wave potential energy and instability. The upper MLT inversion frequency is below 40 %, while lower inversions are below 20 %. The high potential energy (~100 J/kg) of gravity waves in the upper MLT region (85 and 90 km) is due to instability, causing large inversion phenomena. while the reverse is true in the lower MLT regions.
Jun-Young Hwang, Young-Sook Lee, Yong Ha Kim, Hosik Kam, Seok-Min Song, Young-Sil Kwak, and Tae-Yong Yang
Ann. Geophys., 40, 247–257, https://doi.org/10.5194/angeo-40-247-2022, https://doi.org/10.5194/angeo-40-247-2022, 2022
Short summary
Short summary
We analysed all-sky camera images observed at Mt. Bohyun observatory (36.2° N, 128.9° E) for the period of 2017–2019. We retrieved gravity wave parameters including horizontal wavelength, phase velocity and period from the image data. The horizontally propagating directions of the wave were biased according to their seasons, exerted with filtering effect by prevailing background winds. We also evaluated the nature of vertical propagation of the wave for each season.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Olga S. Zorkaltseva and Roman V. Vasilyev
Ann. Geophys., 39, 267–276, https://doi.org/10.5194/angeo-39-267-2021, https://doi.org/10.5194/angeo-39-267-2021, 2021
Short summary
Short summary
One of the fundamental tasks of atmospheric physics is the study of the processes of vertical interaction of atmospheric layers. We carried out observations with a Fabry–Perot interferometer at an altitude of 90–100 km. We have shown that sudden stratospheric warming and active planetary waves have an impact on the dynamics of the upper atmosphere. That is, the green line airglow decreases and the temperature rises. Major warming causes the reversal of the zonal wind in the upper atmosphere.
Uma Das, William E. Ward, Chen Jeih Pan, and Sanat Kumar Das
Ann. Geophys., 38, 421–435, https://doi.org/10.5194/angeo-38-421-2020, https://doi.org/10.5194/angeo-38-421-2020, 2020
Short summary
Short summary
Temperatures obtained from FORMOSAT-3 and COSMIC observations in the stratosphere are analysed for tidal variations. It is seen that non-migrating tides are not very significant in the high-latitude winter stratosphere. It is shown that the observed amplitudes of these tides in earlier studies are most probably a result of aliasing and are not geophysical in nature. Thus, the process of non-linear interactions through which it was believed that they are produced seems to be unimportant.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Yuki Matsushita, Daiki Kado, Masashi Kohma, and Kaoru Sato
Ann. Geophys., 38, 319–329, https://doi.org/10.5194/angeo-38-319-2020, https://doi.org/10.5194/angeo-38-319-2020, 2020
Short summary
Short summary
Interannual variabilities of the zonal mean wind and temperature related to the Rossby wave forcing in the winter stratosphere of the Southern Hemisphere are studied using 38-year reanalysis data. Correlation of the mean fields to the wave forcing is extended to the subtropics of the Northern Hemisphere. This interhemispheric link is caused by the wave forcing which reduces the meridional gradient of the angular momentum and drives the meridional circulation over the Equator in the stratosphere.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Peter Dalin, Nikolay Pertsev, Vladimir Perminov, Denis Efremov, and Vitaly Romejko
Ann. Geophys., 38, 61–71, https://doi.org/10.5194/angeo-38-61-2020, https://doi.org/10.5194/angeo-38-61-2020, 2020
Short summary
Short summary
A unique stratospheric balloon-borne observation of noctilucent clouds (NLCs) was performed at night on 5–6 July 2018. A sounding balloon, carrying the NLC camera, reached 20.4 km altitude. NLCs were observed from the stratosphere at large scales (100–1500 km) for the first time. Propagations of gravity waves of various scales were registered. This experiment is rather simple and can be reproduced by the broad geoscience community and amateurs, providing a new technique in NLC observations.
Feilong Chen, Gang Chen, Yufang Tian, Shaodong Zhang, Kaiming Huang, Chen Wu, and Weifan Zhang
Ann. Geophys., 37, 631–643, https://doi.org/10.5194/angeo-37-631-2019, https://doi.org/10.5194/angeo-37-631-2019, 2019
Short summary
Short summary
Using the Beijing MST radar echo-power observations collected during the period November 2011–May 2017, the structure and variability of the tropopause over Xianghe, China (39.75° N, 116.96° E), was presented. Our comparison results showed a good agreement between the radar and thermal tropopauses during all seasons. In contrast, the consistency between the radar and dynamical tropopauses is poor during summer. Diurnal oscillation in tropopause height is commonly observed during all seasons.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Dan Chen, Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Ann. Geophys., 37, 487–506, https://doi.org/10.5194/angeo-37-487-2019, https://doi.org/10.5194/angeo-37-487-2019, 2019
Short summary
Short summary
In this paper, for the first time, absolute gravity wave momentum flux (GWMF) on temporal scales from terannual variation up to solar cycle length is investigated. The systematic spectral analysis of SABER absolute GWMF is presented and physically interpreted. The various roles of filtering and oblique propagating are discussed, which is likely an important factor for MLT dynamics, and hence can be used as a stringent test bed of the reproduction of such features in global models.
Ekaterina Vorobeva
Ann. Geophys., 37, 375–380, https://doi.org/10.5194/angeo-37-375-2019, https://doi.org/10.5194/angeo-37-375-2019, 2019
Short summary
Short summary
We investigated the statistical relationship between solar activity and the occurrence rate of major sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm radio flux (F10.7) has been used as a proxy for solar activity. The calculations have been performed based on two datasets of central day (NCEP–NCAR-I and combined ERA) for the period from 1958 to 2013. The analysis revealed a positive correlation between MSSW events and solar activity.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Cited articles
Abarca del Rio, R., Gambis, D., Salstein, D., Nelson, P., and Dai, A.: Solar
activity and earth rotation variability, J. Geodyn., 36,
423–443, https://doi.org/10.1016/S0264-3707(03)00060-7, 2003. a
Abraca del Rio, R., Gambis, D., and Salstein, D.: Interannual signal in length
of day and atmospheric angular momentum, Ann. Geophys., 18, 347–364,
https://doi.org/10.1007/s00585-000-0347-9, 1999. a
Altamimi, Z., Collilieux, X., Legrand, J., Garayt, B., and Boucher, C.:
ITRF2005: A new release of the International Terrestrial Reference Frame
based on time series of station positions and Earth Orientation Parameters,
J. Geophys. Res., 112, B09401, https://doi.org/10.1029/2007JB004949, 2007. a
Bizouard, C., Lambert, S., Becker, O., and Richard, J.: Combined solution C04
for Earth Rotation Parameter consistent with International Terrestrial
Reference Frame 2014, available at:
https://hpiers.obspm.fr/iers/eop/eopc04/C04.guide.pdf, last access: 26 July 2017. a
Boeckmann, S.: Robust determination of station positions and Earth orientation
parameters by VLBI intra-technique combination, Ph.D. thesis,
Friedrich-Wilhelms-University, available at:
http://hss.ulb.uni-bonn.de/diss_online (last access: 13 July 2017), 2010. a
Brzezinski, A., Bizouard, C., and Petrov, S.: Influence of the atmosphere on
earth rotation: what we can be learned from the recent atmospheric angular
momentum estimates?, Surv. Geophys., 23, 33–69,
https://doi.org/10.1023/A:1014847319391, 2001. a
Buffet, B. A.: Gravitational oscillations in the length of day, Geophys. Res.
Lett., 23, 2279–2282, 1996. a
Chapanov, Y. and Gambis, D.: Correlation between the solar activity cycle and
the Earth rotation, available at:
https://syrte.obspm.fr/jsr/journees2007/pdf/s4_18_Chapanov.pdf (last access: 2 August 2018), 2008. a
de Viron, O. and Dickey, J., O.: The two types of El Nino and their impacts on
the length of day, Geophys. Res. Lett., 41, 3407–3412, https://doi.org/10.1002/2014GL059948,
2014. a
Egger, J., Weickmann, K., and Hoinka, K.-P.: Angular momentum in the global
atmospheric circulation, Rev. Geophys., 45, RG4007,
https://doi.org/10.1029/2006RG000213, 2007. a, b
Emmert, J. T.: Altitude and solar activity dependence of 1967–2005
thermospheric density trends derived from obrital drag, J.
Geophys. Res.-Space, 120, 2940–2950,
https://doi.org/10.1002/2015JA021047, 2015. a
Emmert, J. T., Lean, J. L., and Picone, J. M.: Record-low thermospheric density
during the 2008 solar minimum, Geophys. Res. Lett., 37, L12102,
https://doi.org/10.1029/2010GL043671, 2010. a, b, c
Emmert, J., T., Picone, J., M., Lean, J., L., and Knowles, S., H.: Global
change in the thermosphere: Compelling evidence of a secular decrease in
density, J. Geophys. Res., 109, 1–12,
https://doi.org/10.1029/2003JA010176, 2004. a
Eubanks, T., Steppe, J., and Dickey, J.: The Earth's Rotation and Reference
Frame for Geodesy and Geodynamics, chap.: The atmospheric excitation of rapid
polar motions, Springer, 1988. a
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl,
G. A., Shindell, D., van Geel, B., and White, W.: Solar influence on climate,
Rev. Geophys., 48, 1–53, https://doi.org/10.1029/2009RG000282, 2010. a
Hocking, W. K., Fuller, B., and Vandepeer, B.: Realtime determination of
meteor-related parameters utilizing modern digital technology, J.
Atmos. Sol.-Terr. Phys., 69, 155–169,
https://doi.org/10.1016/S1364-6826(00)00138-3, 2001. a
Hoffmann, P., Becker, E., Singer, W., and Placke, M.: Seasonal variation of
mesospheric waves at northern middle and high latitudes, J.
Atmos. Sol.-Terr. Phys., 72, 1068–1079,
https://doi.org/10.1016/j.jastp.2010.07.002, 2010. a, b
Holdsworth, D. A., Tsutsumi, M., Reid, I. M., Nakamura, T., and Tsuda, T.:
Interferometric meteor radar phase calibration using meteor echoes, Radio
Sci., 39, 1–12, https://doi.org/10.1029/2003RS003026, 2004. a
Holme, R. and de Viron, O.: Charaterization and implications of intradecadal
variations in length of day, Nature, 499, 202–204, https://doi.org/10.1038/nature12282,
2013. a
IERS: Earth orientation data,
https://datacenter.iers.org/data/latestVersion/224_EOP_C04_14.62-NOW.IAU2000A224.txt,
last access: 4 April 2017. a
Jacobi, C.: 6 year mean prevailing winds and tides measured by VHF meteor radar
over Collm (51.3∘ N, 13.0∘ E), J. Atmos. Sol.-Terr.
Phys., 78/79, 8–18, https://doi.org/10.1016/j.jastp.2011.04.010, 2012. a
Jacobi, C., Hoffmann, P., Liu, R., Q., Merzlyakov, E., G., Portnyagin, Yu., I.,
Manson, A., H., and Meek, C., E.: Long-term trends, their changes, and
interannual variability of Northern Hemisphere midlatitude MLT winds, J. Atmos. Sol.-Terr. Phys., 75/76, 81–91,
https://doi.org/10.1016/j.jastp.2011.03.016, 2011. a
Lambeck, K.: Progress in geophysical aspects of the rotation of the Earth, in:
Ninth Geodesy and Solid Earth and Ocean Physics Research Conference,
1–11, 1978. a
Lee, J., N., Wu, D., L. R. A., and Fontenla, J.: Solar cycle variations in
mesopheric carbon monoxide, J. Atmos. Sol.-Terr.
Phys., 170, 21–34, https://doi.org/10.1016/j.jastp.2018.02.001,
2018. a, b
Livesey, N., J., Read, W., G., Lambert, A., Cofield, R., E., Cuddy, D., T.,
Froidevaux, L., Fuller, R., A., Jarnot, R., F., Jiang, J., H., Jiang, Y., B.,
Knosp, B., W., Kovalenko, L., J., Pickett, H., M., Pumphrey, H., C., Santee,
M., L., Schwartz, M., J., Stek, P., C., Wagner, P., A., Waters, J., W., and
Wu, D., L.: EOS MLS Version 2.2 Level 2 Data Quality and Description
Document., Technical Report Version 2.2 D-33509, Jet Propulsion Lab.,
California Institute of Technology, Pasadena, California 91198-8099, 2007. a
Livesey, N., Santee, M. L., and Manney, G.: A Match-based approach to the
estimation of polar stratospheric ozone loss using Aura Microwave Limb
Sounder observations, Atmos. Chem. Phys., 15, 9945–9963,
https://doi.org/10.5194/acp-15-9945-2015, 2015. a
Lübken, F.-J., Höffner, J., Kaifler, B., and Morris, R., J.: Winter/summer
mesopause temperature transition at Davis (69∘ S) in 2011/2012, Geophys. Res.
Lett., 41, 5233–5238, https://doi.org/10.1002/2014GL060777,
2014. a
Manson, A. H., Meek, C. E., Hall, C. M., Nozawa, S., Mitchell, N. J., Pancheva,
D., Singer, W., and Hoffmann, P.: Mesopause dynamics from the scandinavian
triangle of radars within the PSMOS-DATAR Project, Ann. Geophys., 22,
367–386, https://doi.org/10.5194/angeo-22-367-2004, 2004. a
Marsh, D., R., Garcia, R., R., Kinnison, D., E., Boville, B., A., Sassi, F.,
Solomon, S., C., and Matthes, K.: Modeling the whole atmosphere response to
solar cycle changes in radiative and geomagnetic forcing, J.
Geophys. Res., 112, 1–20, https://doi.org/10.1029/2006JD008306, 2007. a, b, c
Matthias, V., Hoffmann, P., Manson, A., Meek, C., Stober, G., Brown, P., and
Rapp, M.: The impact of planetary waves on the latitudinal displacement of
sudden stratospheric warmings, Ann. Geophys., 31, 1397–1415,
https://doi.org/10.5194/angeo-31-1397-2013, 2013. a
Matthias, V.: MLS/Aura Level 2 Geopotential Height V004, available
at: https://mls.jpl.nasa.gov/, last access: 2 January 2018. a
Merzlyakov, E., G., Jacobi, C., Portnyagin, Yu., I., and Solovjova, T., V.:
Structural changes in trend parameters of the MLT winds based on wind
measurements at Obninsk (55∘ N, 37∘ E) and Collm (52∘ N, 15∘ E),
J.
Atmos. Sol.-Terr. Phys., 71, 1547–1557,
https://doi.org/10.1016/j.jastp.2009.05.013, 2009. a
Munk, W. H. and MacDonald, G. J. F.: The Rotation of the Earth. A Geophysical
Discussion, vol. 98, Cambridge University Press,
https://doi.org/10.1017/S0016756800060726, 1961. a, b
Rosen, R. D. and Salstein, D.: Comment on “A Seasonal budget of the Earth's
axial angular momentum” by Naito and Kikuchi, Geophys. Res. Lett.,
18, 8033–8041,
https://doi.org/10.1029/91GL02312, 1991. a
Rothacher, M.: Proceedings of the IERS Workshop on Combination Research and
Global Geophysical Fluids, Bavarian Academy of Sciences, Munich, Germany,
chap.: Towards a Rigorous Combination of Space Geodetic Techniques,
International Earth Rotation and Reference Systems Service (IERS),
IERS Technical Note, No. 30, Verlag des Bundesamtes für Kartographie und
Geodäsie, ISBN 3-89888-877-0, 18–21, 2002. a
Schnell, D.: Quality aspects of short duration VLBI observations for UT1
determinations, Rheinischen Friedrich-Wilhelms-Universität zu Bonn, available at: http://hss.ulb.uni-bonn.de/2006/0918/0918.htm
(last access: 22 November 2018), 2006. a
She, C., Krueger, D., A., and Yuan, T.: Long-term midlatitude mesopause region
temperature trend deduced froom quarter century (1990–2014) NA lidar
observations, Ann. Geophys., 33, 363–369,
https://doi.org/10.5194/angeocom-33-363-2015, 2015. a
Stober, G., Jacobi, C., Matthias, V., Hoffmann, P., and Gerding, M.: Neutral
air density variations during strong planetary wave activity in the mesopause
region derived from meteor radar observations, J. Atmos.
Sol.-Terr. Phys., 74, 55–63, https://doi.org/10.1016/j.jastp.2011.10.007,
2012.
a, b, c, d, e, f, g
Stober, G., Matthias, V., Brown, P., and Chau, J. L.: Neutral density variation
from specularmeteor echo observations spanning one solar cycle, Geophys.
Res. Lett., 41, 6919–6925, https://doi.org/10.1002/2014GL061273, 2014. a
Stober, G., Matthias, V., Jacobi, C., Wilhelm, S., J., H., and Chau, J. L.:
Exceptionally strong summer-like zonal wind reversal in the upper mesosphere
during winter 2015/16, Ann. Geophys., 35, 711–720,
https://doi.org/10.5194/angeo-35-711-2017, 2017. a, b
Tomé, A., R. and Miranda, P., M. A.: Piecewise linear fitting and trend
changing points of climate parameters, Geophys. Res. Lett., 31, 1–4,
https://doi.org/10.1029/2003GL019100, 2004. a
Trenberth, K., E. and Guillemot, C., J.: The total mass of the atmosphere,
J. Geophys. Res.-Atmos., 99, 23079–23088,
https://doi.org/10.1029/94JD02043,
1994. a, b
Trenberth, K., E. and Smith, L.: The Mass of the Atmosphere: A Constraint on
Global Analyses, J. Clim., 18, 864–875,
https://doi.org/10.1175/JCLI-3299.1, 2004. a, b
Vondrák, J. and Burša, M.: The rotation of the earth between 1955.5
and 1976.5, Stud. Geophys. Geod., 21, 107–117,
https://doi.org/10.1007/BF01634821,
1977. a
Walterscheid, R., L.: Solar Cycle effects on the upper atmosphere: Implications
for Satellite Drag, J. Spacecraft Rockets, 26, 439–444,
https://doi.org/10.2514/3.26089, 1989. a
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M.,
Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A.,
Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C.,
Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S.,
Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra,
K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller,
R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C.,
Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala,
D. M., Quintero, O., Scaff, D. M., Snyder, W. V., Tope, M. C., Wagner, P. A.,
and Walch, M. J.: The Earth observing system microwave limb sounder (EOS MLS)
on the aura Satellite, IEEE T. Geosci. Remote,
44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006. a
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
This study shows that the mesospheric winds are affected by an expansion–shrinking of the...