Articles | Volume 36, issue 4
https://doi.org/10.5194/angeo-36-1027-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1027-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A possible source mechanism for magnetotail current sheet flapping
University of Helsinki, Department of Physics, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Yann Pfau-Kempf
University of Helsinki, Department of Physics, Helsinki, Finland
Urs Ganse
University of Helsinki, Department of Physics, Helsinki, Finland
Markus Battarbee
University of Helsinki, Department of Physics, Helsinki, Finland
Thiago Brito
University of Helsinki, Department of Physics, Helsinki, Finland
Maxime Grandin
University of Helsinki, Department of Physics, Helsinki, Finland
Lucile Turc
University of Helsinki, Department of Physics, Helsinki, Finland
Minna Palmroth
University of Helsinki, Department of Physics, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2831, https://doi.org/10.5194/egusphere-2024-2831, 2024
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Kirsti Kauristie, Minna Myllys, Noora Partamies, Ari Viljanen, Pyry Peitso, Liisa Juusola, Shabana Ahmadzai, Vikramjit Singh, Ralf Keil, Unai Martinez, Alexej Luginin, Alexi Glover, Vicente Navarro, and Tero Raita
Geosci. Instrum. Method. Data Syst., 5, 253–262, https://doi.org/10.5194/gi-5-253-2016, https://doi.org/10.5194/gi-5-253-2016, 2016
Short summary
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
M. Myllys, N. Partamies, and L. Juusola
Ann. Geophys., 33, 573–581, https://doi.org/10.5194/angeo-33-573-2015, https://doi.org/10.5194/angeo-33-573-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Preprint under review for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669, https://doi.org/10.5194/egusphere-2024-3669, 2024
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to STEVE with white, pale pink or mauve coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2831, https://doi.org/10.5194/egusphere-2024-2831, 2024
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020, https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Noora Partamies, James M. Weygand, and Liisa Juusola
Ann. Geophys., 35, 1069–1083, https://doi.org/10.5194/angeo-35-1069-2017, https://doi.org/10.5194/angeo-35-1069-2017, 2017
Short summary
Short summary
Large-scale undulations of the diffuse aurora boundary, auroral omega bands, have been studied based on 438 omega-like structures identified over Fennoscandian Lapland from 1996 to 2007. The omegas mainly occurred in the post-magnetic midnight sector, in the region between oppositely directed ionospheric field-aligned currents, and during substorm recovery phases. The omega bands were observed during substorms, which were more intense than the average substorm in the same region.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
Johannes Norberg, Lassi Roininen, Antti Kero, Tero Raita, Thomas Ulich, Markku Markkanen, Liisa Juusola, and Kirsti Kauristie
Geosci. Instrum. Method. Data Syst., 5, 263–270, https://doi.org/10.5194/gi-5-263-2016, https://doi.org/10.5194/gi-5-263-2016, 2016
Short summary
Short summary
The Sodankylä Geophysical Observatory has been producing ionospheric tomography data since 2003. Based on these data, one solar cycle of ionospheric vertical total electron content (VTEC) estimates is constructed. The measurements are compared against the IRI-2012 model, F10.7 solar flux index and sunspot number data. Qualitatively the tomographic VTEC estimate corresponds to reference data very well, but the IRI-2012 model are on average 40 % higher of that of the tomographic results.
Kirsti Kauristie, Minna Myllys, Noora Partamies, Ari Viljanen, Pyry Peitso, Liisa Juusola, Shabana Ahmadzai, Vikramjit Singh, Ralf Keil, Unai Martinez, Alexej Luginin, Alexi Glover, Vicente Navarro, and Tero Raita
Geosci. Instrum. Method. Data Syst., 5, 253–262, https://doi.org/10.5194/gi-5-253-2016, https://doi.org/10.5194/gi-5-253-2016, 2016
Short summary
Short summary
We use the connection between auroras and geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. RAF is based on statistical relationships between alerts by the NOAA Space Weather Prediction Center and magnetic time derivatives measured by five MIRACLE magnetometer stations located in the surroundings of the Sodankylä research station. As an improvement to previous similar services RAF yields knowledge on typical auroral storm durations at different latitudes.
M. Myllys, N. Partamies, and L. Juusola
Ann. Geophys., 33, 573–581, https://doi.org/10.5194/angeo-33-573-2015, https://doi.org/10.5194/angeo-33-573-2015, 2015
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
N. Partamies, L. Juusola, E. Tanskanen, and K. Kauristie
Ann. Geophys., 31, 349–358, https://doi.org/10.5194/angeo-31-349-2013, https://doi.org/10.5194/angeo-31-349-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetotail
Dynamics of variable dusk–dawn flow associated with magnetotail current sheet flapping
Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results
Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations
Acceleration of protons and heavy ions to suprathermal energies during dipolarizations in the near-Earth magnetotail
Quasi-separatrix layers induced by ballooning instability in the near-Earth magnetotail
Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows
Turbulent processes in the Earth's magnetotail: spectral and statistical research
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
James H. Lane, Adrian Grocott, Nathan A. Case, and Maria-Theresia Walach
Ann. Geophys., 39, 1037–1053, https://doi.org/10.5194/angeo-39-1037-2021, https://doi.org/10.5194/angeo-39-1037-2021, 2021
Short summary
Short summary
The Sun's magnetic field is carried across space by the solar wind – a hot plasma
streamof ions and electrons – forming the interplanetary magnetic field (IMF). The IMF can introduce asymmetries in the Earth's magnetic field, giving plasma flowing within it a direction dependent on IMF orientation. Electric currents in near-Earth space can also influence these plasma flows. We investigate these two competing mechanisms and find that the currents can prevent the IMF from controlling the flow.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Ping Zhu, Zechen Wang, Jun Chen, Xingting Yan, and Rui Liu
Ann. Geophys., 37, 325–335, https://doi.org/10.5194/angeo-37-325-2019, https://doi.org/10.5194/angeo-37-325-2019, 2019
Short summary
Short summary
Our research explores a new method for identifying where and when the magnetic field lines in Earth's magnetotail may change its topology through the reconnection process, during which a sudden release of magnetic energy can lead to the brightening of aurora, a process called substorm. Traditionally, the magnetic reconnection was often interpreted using a two-dimensional model, which however does not capture the intrinsically three-dimensional nature of reconnection physics, as we have revealed.
Xiaoying Sun, Weining William Liu, and Suping Duan
Ann. Geophys., 37, 289–297, https://doi.org/10.5194/angeo-37-289-2019, https://doi.org/10.5194/angeo-37-289-2019, 2019
Liudmyla V. Kozak, Bohdan A. Petrenko, Anthony T. Y. Lui, Elena A. Kronberg, Elena E. Grigorenko, and Andrew S. Prokhorenkov
Ann. Geophys., 36, 1303–1318, https://doi.org/10.5194/angeo-36-1303-2018, https://doi.org/10.5194/angeo-36-1303-2018, 2018
Short summary
Short summary
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field dipolarization and compared them with known models. We used spectral and statistical methods for analysis measurements from the Cluster-II mission. We have obtained a significant difference for turbulent processes depending on observed scales. Our results can be interesting for classification of the turbulent processes in both hydrodynamics and magnetohydrodynamics environments.
Daniil B. Korovinskiy, Darya I. Kubyshkina, Vladimir S. Semenov, Marina V. Kubyshkina, Nikolai V. Erkaev, and Stefan A. Kiehas
Ann. Geophys., 36, 641–653, https://doi.org/10.5194/angeo-36-641-2018, https://doi.org/10.5194/angeo-36-641-2018, 2018
Short summary
Short summary
The Harris–Fadeev–Kan–Manankova family of exact two-dimensional equilibria is generalized to reproduce the slow decrease of the normal magnetic component in the tailward direction, and the magnetotail current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The analytical solution is found to fit the empirical T96 model, especially, at distances beyond 10–15 Earth radii at high levels of magnetospheric activity.
Cited articles
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya, J.,
Markidis, S., and Brackbill, J. U.: Two-way coupling of a global Hall
magnetohydrodynamics model with a local implicit particle-in-cell model,
J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Davey, E. A., Lester, M., Milan, S. E., and Fear, R. C.: Storm and substorm
effects on magnetotail current sheet motion, J. Geophys. Res., 117, A02202,
https://doi.org/10.1029/2011JA017112, 2012. a
Erkaev, N. V., Semenov, V. S., Kubyshkin, I. V., Kubyshkina, M. V., and
Biernat, H. K.: MHD model of the flapping motions in the magnetotail
current sheet, J. Geophys. Res., 114, A03206, https://doi.org/10.1029/2008JA013728,
2009. a
Forsyth, C., Lester, M., Fear, R. C., Lucek, E., Dandouras, I., Fazakerley,
A. N., Singer, H., and Yeoman, T. K.: Solar wind and substorm excitation of
the wavy current sheet, Ann. Geophys., 27, 2457–2474,
https://doi.org/10.5194/angeo-27-2457-2009, 2009. a
Gabrielse, C., Angelopoulos, V., Runov, A., Kepko, L., Glassmeier, K. H.,
Auster, H. U., McFadden, J., Carlson, C. W., and Larson, D.: Propagation
characteristics of plasma sheet oscillations during a small storm, Geophys.
Res. Lett., 35, L17S13, https://doi.org/10.1029/2008GL033664, 2008. a
Golovchanskaya, I. V. and Maltsev, Y. P.: On the identification of plasma sheet
flapping waves observed by Cluster, Geophys. Res. Lett., 32, L02102,
https://doi.org/10.1029/2004GL021552, 2005. a
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala,
H., von Alfthan, S., and Palmroth, M.: Reconnection rates and X line motion
at the magnetopause: Global 2D-3V hybrid-Vlasov simulation results, J.
Geophys. Res.-Space, 122, 2877–2888, https://doi.org/10.1002/2016JA023709, 2017. a
Jarvinen, R., Vainio, R., Palmroth, M., Juusola, L., Hoilijoki, S., Pfau-Kempf,
Y., Ganse, U., Turc, L., and von Alfthan, S.: Ion acceleration by flux
transfer events in the terrestrial magnetosheath, Geophys. Res. Lett., 45,
1723–1731,
https://doi.org/10.1002/2017GL076192, 2018. a
Laitinen, T. V., Nakamura, R., Runov, A., Rème, H., and Lucek, E. A.:
Global and local disturbances in the magnetotail during reconnection, Ann.
Geophys., 25, 1025–1035, https://doi.org/10.5194/angeo-25-1025-2007, 2007. a, b
McPherron, R. L.: Magnetic Pulsations: Their Sources and Relationto Solar Wind
and Geomagnetic Activity, Surv. Geophys., 26, 545–592,
https://doi.org/10.1007/s10712-005-1758-7, 2005. a
Palmroth, M. and the Vlasiator team: Vlasiator: hybrid-Vlasov simulation
code, Github repository, available at:
https://github.com/fmihpc/vlasiator/ (last access: 25 July 2018), 2018. a
Palmroth, M., Honkonen, I., Sandroos, A., Kempf, Y., von Alfthan, S., and
Pokhotelov, D.: Preliminary testing of global hybrid-Vlasov simulation:
Magnetosheath and cusps under northward interplanetary magnetic field,
J. Atmos. Sol.-Terr. Phy., 99, 41–46,
https://doi.org/10.1016/j.jastp.2012.09.013, 2013. a
Palmroth, M., Archer, M., Vainio, R., Hietala, H., Pfau-Kempf, Y., Hoilijoki,
S., Hannuksela, O., Ganse, U., Sandroos, A., von Alfthan, S., and Eastwood,
J. P.: ULF foreshock under radial IMF: THEMIS observations and global
kinetic simulation Vlasiator results compared, J. Geophys. Res.-Space, 120, 8782–8798, https://doi.org/10.1002/2015JA021526, 2015. a
Palmroth, M., Hoilijoki, S., Juusola, L., Pulkkinen, T. I., Hietala, H.,
Pfau-Kempf, Y., Ganse, U., von Alfthan, S., Vainio, R., and Hesse, M.: Tail
reconnection in the global magnetospheric context: Vlasiator first results,
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017,
2017. a, b, c
Petrukovich, A. A., Baumjohann, W., Nakamura, R., and Runov, A.: Formation of
current density profile in tilted current sheets, Ann. Geophys., 26,
3669–3676, https://doi.org/10.5194/angeo-26-3669-2008, 2008. a
Rong, Z. J., Shen, C., Petrukovich, A. A., Wan, W. X., and Liu, Z. X.: The
analytic properties of the flapping current sheets in the earth magnetotail,
Planet. Space Sci., 58, 1215–1229,
https://doi.org/10.1016/j.pss.2010.04.016, 2010. a
Rong, Z. J., Barabash, S., Stenberg, G., Futaana, Y., Zhang, T. L., Wan, W. X.,
Wei, Y., and Wang, X.-D.: Technique for diagnosing the flapping motion of
magnetotail current sheets based on single-point magnetic field analysis, J.
Geophys. Res.-Space, 120, 3462–3474, https://doi.org/10.1002/2014JA020973,
2015. a, b
Runov, A., Nakamura, R., Baumjohann, W., Zhang, T. L., Volwerk, M.,
Eichelberger, H.-U., and Balogh, A.: Cluster observation of a bifurcated
current sheet, Geophys. Res. Lett., 30, 1036, https://doi.org/10.1029/2002GL016136,
2003. a
Runov, A., Angelopoulos, V., Sergeev, V. A., Glassmeier, K.-H., Auster, U.,
McFadden, J., Larson, D., and Mann, I.: Global properties of magnetotail
current sheet flapping: THEMIS perspectives, Ann. Geophys., 27, 319–328,
https://doi.org/10.5194/angeo-27-319-2009, 2009.
a, b
Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Volwerk,
M., Balogh, A., Rème, H., Sauvaud, J. A., André, M., and Klecker, B.:
Current sheet flapping motion and structure observed by Cluster, Geophys.
Res. Lett., 30, 1327, https://doi.org/10.1029/2002GL016500, 2003. a
Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Balogh, A.,
Louarn, P., Sauvaud, J.-A., and Réme, H.: Orientation and propagation of
current sheet oscillations, Geophys. Res. Lett., 31, L05807,
https://doi.org/10.1029/2003GL019346, 2004. a, b, c
Sergeev, V. A., Sormakov, D. A., Apatenkov, S. V., Baumjohann, W., Nakamura,
R., Runov, A. V., Mukai, T., and Nagai, T.: Survey of large-amplitude
flapping motions in the midtail current sheet, Ann. Geophys., 24, 2015–2024,
https://doi.org/10.5194/angeo-24-2015-2006, 2006. a
Sergeev, V. A., Tsyganenko, N. A., and Angelopoulos, V.: Dynamical response
of the magnetotail to changes of the solar wind direction: an MHD modeling
perspective, Ann. Geophys., 26, 2395–2402,
https://doi.org/10.5194/angeo-26-2395-2008, 2008. a
Shen, C., Rong, Z. J., Li, X., Dunlop, M., Liu, Z. X., Malova, H. V., Lucek,
E., and Carr, C.: Magnetic configurations of the tilted current sheets in
magnetotail, Ann. Geophys., 26, 3525–3543,
https://doi.org/10.5194/angeo-26-3525-2008, 2008. a
Speiser, T. W. and Ness, N. F.: The neutral sheet in the geomagnetic tail: Its
motion, equivalent currents, and field line connection through it, J.
Geophys. Res., 72, 131–141, https://doi.org/10.1029/JZ072i001p00131, 1967. a, b, c
Sun, W.-J., Fu, S., Shi, Q., Zong, Q.-G., Yao, Z., Xiao, T., and Parks, G.:
THEMIS observation of a magnetotail current sheet flapping wave, Chinese
Sci. Bull., 59, 154–161, 2013. a
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I.,
Sandroos, A., and Palmroth, M.: Vlasiator: First global hybrid-Vlasov
simulations of Earth's foreshock and magnetosheath, J. Atmos.
Sol.-Terr. Phy., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a
Wang, C., Lyons, L. R., Weygand, J. M., Nagai, T., and McEntire, R. W.:
Equatorial distributions of the plasma sheet ions, their electric and
magnetic drifts, and magnetic fields under different interplanetary magnetic
field Bz conditions, J. Geophys. Res., 111, A04215,
https://doi.org/10.1029/2005JA011545, 2006. a
Wei, X. H., Cai, C. L., Cao, J. B., Rème, H., Dandouras, I., and Parks,
G. K.: Flapping motions of the magnetotail current sheet excited by
nonadiabatic ions, Geophys. Res. Lett., 42, 4731–4735,
https://doi.org/10.1002/2015GL064459, 2015. a
Zelenyi, L. M., Artemyev, A. V., Petrukovich, A. A., Nakamura, R., Malova, H.
V., and Popov, V. Y.: Low frequency eigenmodes of thin anisotropic current
sheets and Cluster observations, Ann. Geophys., 27, 861–868,
https://doi.org/10.5194/angeo-27-861-2009, 2009. a
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed...