Articles | Volume 41, issue 2
https://doi.org/10.5194/angeo-41-409-2023
https://doi.org/10.5194/angeo-41-409-2023
Regular paper
 | 
18 Oct 2023
Regular paper |  | 18 Oct 2023

Inferring neutral winds in the ionospheric transition region from atmospheric-gravity-wave traveling-ionospheric-disturbance (AGW-TID) observations with the EISCAT VHF radar and the Nordic Meteor Radar Cluster

Florian Günzkofer, Dimitry Pokhotelov, Gunter Stober, Ingrid Mann, Sharon L. Vadas, Erich Becker, Anders Tjulin, Alexander Kozlovsky, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Nicholas J. Mitchell, and Claudia Borries

Related authors

Difference spectrum fitting of the ion–neutral collision frequency from dual-frequency EISCAT measurements
Florian Günzkofer, Gunter Stober, Dimitry Pokhotelov, Yasunobu Miyoshi, and Claudia Borries
Atmos. Meas. Tech., 16, 5897–5907, https://doi.org/10.5194/amt-16-5897-2023,https://doi.org/10.5194/amt-16-5897-2023, 2023
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Thermospheric dynamics
Influence of the semidiurnal lunar tide in the equatorial plasma bubble zonal drifts over Brazil
Igo Paulino, Ana Roberta Paulino, Amauri F. Medeiros, Cristiano M. Wrasse, Ricardo Arlen Buriti, and Hisao Takahashi
Ann. Geophys., 39, 1005–1012, https://doi.org/10.5194/angeo-39-1005-2021,https://doi.org/10.5194/angeo-39-1005-2021, 2021
Short summary
Variability of the lunar semidiurnal tidal amplitudes in the ionosphere over Brazil
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021,https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary

Cited articles

Andrews, D. G.: An introduction to atmospheric physics, Cambridge University Press, ISBN 978-0-511-72966-9, 2010. a
Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., and Crowley, G.: Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere, Geophys. Res. Lett., 42, 7874–7880, https://doi.org/10.1002/2015GL065903, 2015. a
Azeem, I., Vadas, S. L., Crowley, G., and Makela, J. J.: Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory, J. Geophys. Res.-Space, 122, 3430–3447, https://doi.org/10.1002/2016JA023659, 2017. a
Bauer, S. J.: An Apparent Ionospheric Response to the Passage of Hurricanes, J. Geophys. Res., 63, 265–269, https://doi.org/10.1029/JZ063i001p00265, 1958. a
Baumjohann, W. and Treumann, R. A.: Basic space plasma physics, Imperial College Press, https://doi.org/10.1142/p015, 1996. a
Download
Short summary
Gravity waves (GWs) are waves in Earth's atmosphere and can be observed as cloud ripples. Under certain conditions, these waves can propagate up into the ionosphere. Here, they can cause ripples in the ionosphere plasma, observable as oscillations of the plasma density. Therefore, GWs contribute to the ionospheric variability, making them relevant for space weather prediction. Additionally, the behavior of these waves allows us to draw conclusions about the atmosphere at these altitudes.