Articles | Volume 33, issue 6
Regular paper
01 Jun 2015
Regular paper |  | 01 Jun 2015

High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

S. Kirkwood, A. Osepian, E. Belova, and Y.-S. Lee

Abstract. A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55–80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm−3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn–dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE are caused by small-scale structure in the neutral/molecular-ion gas alone but may be explained by the presence of charged meteoric dust.

Short summary
It is well known that occasional eruptions of very high energy protons from the Sun directly impact the middle atmosphere in the polar regions. This paper shows that much more frequent high-speed streams in the plasma wind from the Sun can also modify the same parts of the atmosphere. Their effects are made "visible" by strong enhancement of radar echoes in polar winter and were found to affect half of the days when observations were made at Troll, Antarctica, in 2012 and 2013.