Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-217-2025
https://doi.org/10.5194/angeo-43-217-2025
Regular paper
 | 
17 Apr 2025
Regular paper |  | 17 Apr 2025

Atmospheric odd nitrogen response to electron forcing from a 6D magnetospheric hybrid-kinetic simulation

Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth

Related authors

Electron-Driven Variability of the Upper Atmospheric Nitric Oxide Column Density Over the Syowa Station in Antarctica
Pekka T. Verronen, Akira Mizuno, Yoshizumi Miyoshi, Sandeep Kumar, Taku Nakajima, Shin-Ichiro Oyama, Tomoo Nagahama, Satonori Nozawa, Monika E. Szelag, Tuomas Häkkilä, Niilo Kalakoski, Antti Kero, Esa Turunen, Satoshi Kasahara, Shoichiro Yokota, Kunihiro Keika, Tomoaki Hori, Takefumi Mitani, Takeshi Takashima, and Iku Shinohara
EGUsphere, https://doi.org/10.5194/egusphere-2025-1691,https://doi.org/10.5194/egusphere-2025-1691, 2025
Short summary
Odd hydrogen response thresholds for indication of solar proton and electron impact in the mesosphere and stratosphere
Tuomas Häkkilä, Pekka T. Verronen, Luis Millán, Monika E. Szeląg, Niilo Kalakoski, and Antti Kero
Ann. Geophys., 38, 1299–1312, https://doi.org/10.5194/angeo-38-1299-2020,https://doi.org/10.5194/angeo-38-1299-2020, 2020
Short summary

Cited articles

Alho, M., Battarbee, M., Pfau-Kempf, Y., Khotyaintsev, Y. V., Nakamura, R., Cozzani, G., Ganse, U., Turc, L., Johlander, A., Horaites, K., Tarvus, V., Zhou, H., Grandin, M., Dubart, M., Papadakis, K., Suni, J., George, H., Bussov, M., and Palmroth, M.: Electron Signatures of Reconnection in a Global eVlasiator Simulation, Geophys. Res. Lett., 49, e98329, https://doi.org/10.1029/2022GL098329, 2022. a, b, c
Andersson, M. E., Verronen, P. T., Marsh, D. R., Päivärinta, S.-M., and Plane, J. M. C.: WACCM-D – Improved modeling of nitric acid and active chlorine during energetic particle precipitation, J. Geophys. Res.-Atmos., 121, 10328–10341, https://doi.org/10.1002/2015JD024173, 2016. a
Barth, C. A., Baker, D. N., and Mankoff, K. D.: The northern auroral region as observed in nitric oxide, Geophys. Res. Lett., 28, 1463–1466, 2001. a
Battarbee, M., Brito, T., Alho, M., Pfau-Kempf, Y., Grandin, M., Ganse, U., Papadakis, K., Johlander, A., Turc, L., Dubart, M., and Palmroth, M.: Vlasov simulation of electrons in the context of hybrid global models: an eVlasiator approach, Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, 2021. a
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining sudden stratospheric warmings, Bull. Am. Meteorol. Soc., 96, 1913–1928, 2015. a
Download
Short summary
We study the atmospheric impact of auroral electron precipitation through the novel combination of both magnetospheric modelling and atmospheric modelling. We first simulate fluxes of auroral electrons and then use these fluxes to model their atmospheric impact. We find an increase of more than 200 % in thermospheric odd nitrogen and a corresponding decrease in stratospheric ozone of around 0.8 %. The produced auroral electron precipitation is realistic and shows potential for future studies.
Share