Articles | Volume 40, issue 1
Regular paper
17 Feb 2022
Regular paper |  | 17 Feb 2022

Reconstruction of Mercury's internal magnetic field beyond the octupole

Simon Toepfer, Ida Oertel, Vanita Schiron, Yasuhito Narita, Karl-Heinz Glassmeier, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann

Related authors

Scalar-potential mapping of the steady-state magnetosheath model
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89,,, 2024
Short summary
The m-dimensional spatial Nyquist limit using the wave telescope for larger numbers of spacecraft
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463,,, 2023
Short summary
Concerning the detection of electromagnetic knot structures in space plasmas using the wave telescope technique
Simon Toepfer, Karl-Heinz Glassmeier, and Uwe Motschmann
Ann. Geophys., 41, 253–267,,, 2023
Short summary
Magnetopause as conformal mapping
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91,,, 2023
Short summary
Mathematical foundation of Capon's method for planetary magnetic field analysis
Simon Toepfer, Yasuhito Narita, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Geosci. Instrum. Method. Data Syst., 9, 471–481,,, 2020
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Planetary magnetospheres
Ionospheric density depletions around crustal fields at Mars and their connection to ion frictional heating
Hadi Madanian, Troy Hesse, Firdevs Duru, Marcin Pilinski, and Rudy Frahm
Ann. Geophys., 42, 69–78,,, 2024
Short summary
Impulse-driven oscillations of the near-Earth's magnetosphere
Hiroatsu Sato, Hans Pécseli, Jan Trulsen, Per Even Sandholt, and Charles Farrugia
Ann. Geophys., 40, 641–663,,, 2022
Short summary
Menura: a code for simulating the interaction between a turbulent solar wind and solar system bodies
Etienne Behar, Shahab Fatemi, Pierre Henri, and Mats Holmström
Ann. Geophys., 40, 281–297,,, 2022
Short summary

Cited articles

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover Publications, ISBN-10 0486612724, 1972. a
Anderson, B. J., Johnson, C. L., Korth, H., Winslow, R. M., Borovsky, J. E., Purucker, M. E., Slavin, J. A., Solomon, S. C., Zuber, M. T., and McNutt Jr. R. L.: Low-degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12,, 2012. a, b, c, d, e, f, g, h
Backus, G.: Poloidal and toroidal fields in geomagnetic field modeling, Rev. Geophys., 24, 75–109,, 1986. a, b, c
Backus, G., Parker, R., and Constable, C.: Foundations of Geomagnetism, Cambridge University Press, Cambridge,, 1996. a, b, c
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., and Ziethe, R.: BepiColombo–Comprehensive exploration of Mercury: Mission overview and science goals, Planet. Space Sci., 85, 2–20,, 2010. a, b
Short summary
Revealing the nature of Mercury’s internal magnetic field is one of the primary goals of the BepiColombo mission. Besides the parametrization of the magnetic field contributions, the application of a robust inversion method is of major importance. The present work provides an overview of the most commonly used inversion methods and shows that Capon’s method as well as the Tikhonov regularization enable a high-precision determination of Mercury’s internal magnetic field up to the fifth degree.