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Abstract. The reconstruction of Mercury’s internal magnetic
field enables us to take a look into the inner heart of Mer-
cury. In view of the BepiColombo mission, Mercury’s mag-
netosphere is simulated using a hybrid plasma code, and the
multipoles of the internal magnetic field are estimated from
the virtual spacecraft data using three distinct reconstruc-
tion methods: the truncated singular value decomposition,
the Tikhonov regularization and Capon’s minimum variance
projection. The study shows that a precise determination of
Mercury’s internal field beyond the octupole up to the do-
triacontapole is possible and that Capon’s method provides
the same high performance as the Tikhonov regularization,
which is superior to the performance of the truncated singu-
lar value decomposition.

1 Introduction

The in-depth analysis of planetary magnetic fields is a key
element to understand the structure and dynamics of plan-
etary interiors (Glassmeier and Heyner, 2021). In particu-
lar, revealing the nature of Mercury’s markedly weak inter-
nal magnetic field is one of the primary goals of the Bepi-
Colombo mission (Benkhoff et al., 2010, 2021). Thereby,
the detailed reconstruction of Mercury’s internal field from
the total measured magnetic field is of major importance for
modeling Mercury’s internal dynamo process. Especially the
determination of higher orders of Mercury’s internal multi-

pole field reduces the degrees of freedom within the dynamo
models (e.g., Heyner et al., 2021). Due to the plasma physi-
cal interaction with the solar wind, the magnetic field around
Mercury is composed not only of the planetary internal field
(such as the dynamo-generated field and the crustal remanent
field), but also of the external component resulting from cur-
rents flowing within the magnetosphere (e.g., Glassmeier and
Heyner, 2021; Wang et al., 2021). For the reconstruction of
Mercury’s internal magnetic field, each part of the field has
to be parametrized properly.

Besides the parametrization of the magnetic field, the ap-
plication of a robust inversion method for separating the
magnetic field contributions is required. Several inversion
methods have successfully been applied to the reconstruc-
tion of planetary magnetic fields. For example, the Tikhonov
regularization (Tikhonov et al., 1995), also known as L2

regularization, has been proposed for the analysis of Mer-
cury’s magnetic field. Katsura et al. (2021) separate the in-
ternal and external magnetic field contributions by making
use of the Tikhonov regularization for estimating Mercury’s
inner core size. Wardinski et al. (2019, 2021) use a weighted
Tikhonov regularization for reconstructing Mercury’s inter-
nal magnetic field from MESSENGER data and also esti-
mate the size of Mercury’s core. On the other hand, Con-
nerney (1981) and Connerney et al. (2018) successfully re-
constructed Jupiter’s magnetic field using a generalized in-
verse based on the singular value decomposition. Wang et al.
(2021) also use the singular value decomposition for recon-
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structing Mercury’s magnetospheric field. Furthermore, the
Capon method (Capon, 1969) is currently being considered
as a robust inversion method for Mercury’s magnetic field
analysis (Toepfer et al., 2020a, b). From the first point of
view, it is unknown which inversion method provides more
reliable results for the wanted model coefficients, and thus,
the existing inversion methods have to be compared and cali-
brated. For example, Toepfer et al. (2020a) analyzed the per-
formance of Capon’s estimator in comparison with the least-
squares fit estimator and showed that Capon’s method pro-
vides more accurate results than the least-squares fit method.

As mentioned in Wardinski et al. (2021), former analy-
ses of Mercury’s magnetic field are based on potential field
methods for the internal and external magnetic field contribu-
tions (Oliveira et al., 2015; Thébault et al., 2018; Wardinski
et al., 2019) or on the analysis of magnetic equator cross-
ings of the spacecraft (Anderson et al., 2012). For a de-
tailed review of internal field models of Mercury, the reader
is referred to the paper of Heyner et al. (2021). The anal-
ysis of the MESSENGER data provided an axisymmetric
internal dipole field with a dipole moment of −190nTR3

M,
which is shifted northward by 0.2RM, where RM = 2440km
denotes the planetary radius of Mercury (Anderson et al.,
2012). This field can equivalently be described as a super-
position of multipole fields with the internal Gauss coeffi-
cients g0

1 ≈−190nT for the dipole field, g0
2 ≈−78nT for

the quadrupole field, g0
3 ≈−20nT for the octupole field,

g0
4 ≈−6nT for the hexadecapole field and g0

5 ≈−2nT for
the dotriacontapole field (Anderson et al., 2012; Thébault et
al., 2018; Wardinski et al., 2019). The resulting coefficients
are slightly varying for different analyzed data sets of the
whole MESSENGER mission (e.g., data from different al-
titude ranges). Plattner and Johnson (2021) and Wardinski
et al. (2021) detected magnetic anomalies and nonaxisym-
metric internal magnetic field contributions in the Northern
Hemisphere. However, due to the geometry of the orbits, the
MESSENGER mission only provided detailed information
about the field in the Northern Hemisphere so that the recon-
structed coefficients are correlated and covarying. The sym-
metrical distribution of the planned Mercury Planetary Or-
biter (MPO) trajectories enables a more objective analysis of
the internal magnetic field (e.g. Heyner et al., 2021).

In preparation for the analysis of the BepiColombo mag-
netic field data, the goal of the present study is the compari-
son of Capon’s method with the truncated singular value de-
composition and the Tikhonov regularization in application
to simulated Mercury magnetic field data. Although the sim-
ulated data have to be regarded as a proxy for the MPO data
that are not yet available, the great advantage of the applica-
tion to simulated data lies in the fact that the exact solution
of the inversion problem is known from the input of the sim-
ulation, which enables the comparison of the estimators with
the ideal solution. The plasma interaction of Mercury with
the solar wind is simulated using a hybrid plasma code. The
resulting magnetic field data are parametrized by making use

of a combination of the Gauss representation (Gauss, 1839;
Glassmeier and Tsurutani, 2014) with the Mie representa-
tion (Backus, 1986; Backus et al., 1996; Olsen, 1997), called
the Gauss–Mie representation, that has successfully been ap-
plied to reconstruct Mercury’s internal magnetic field up to
the octupole term (third degree in the multipole expansion)
(Toepfer et al., 2021a). In the current study, the parametriza-
tion is extended up to Mercury’s internal hexadecapole and
dotriacontapole contributions, i.e., degrees 4 and 5. After-
wards, the truncated singular value decomposition and the
Tikhonov regularization as well as Capon’s method are com-
pared, and the inversion methods are applied to the simu-
lated magnetic field data for reconstructing Mercury’s inter-
nal field up to the fifth degree.

2 The Gauss–Mie representation

The fluxgate magnetometer on board the Mercury Planetary
Orbiter (MPO) (Glassmeier et al., 2010; Heyner et al., 2021)
is built to measure the magnetic field B around Mercury
along elliptic orbits. These orbits are conceptually covered
by a spherical shell with inner radius a, outer radius c and
mean radius b = (a+c)/2. Since the shell in general includes
current-carrying regions with ∂x ×B 6= 0, the most com-
monly used Gauss representation (Gauss, 1839; Glassmeier
and Tsurutani, 2014) does not yield a proper characterization
of Mercury’s magnetospheric magnetic field. By virtue of the
superposition principle, the total measured field B can be de-
composed into B i, Be and Bsh. B i is the irrotational field
contribution internally generated by currents flowing beneath
the shell (r < a), and Be is the irrotational field contribu-
tion externally generated by currents flowing above the shell
(r > c). Briefly, we call B i the internal field and Be the ex-
ternal field. Bsh is the rotational field generated by currents
flowing within the shell. Considering the Mie representation
(Backus, 1986; Backus et al., 1996; Olsen, 1997; Toepfer et
al., 2021a), the currents flowing within the shell in the region
a < r < c generate toroidal Bsh

T and poloidal Bsh
p magnetic

field structures that superpose the existing internal and exter-
nal fields, delivering

B = B i
+Be

+Bsh
T +Bsh

p , (1)

which is called the Gauss–Mie representation of the magnetic
field (Toepfer et al., 2021a).

Since both the internal and external fields B i and Be

are purely poloidal and irrotational, these parts can be
parametrized via the Gauss representation. Therefore, there
are scalar potentials 8i and 8e with

B i
=−∂x8

i (2)

and

Be
=−∂x8

e. (3)
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Using the body-fixed, planetary-centered spherical coordi-
nates with radius r ∈ [RM,∞), azimuth angle λ ∈ [0,2π ]
and co-latitude θ ∈ [0,π ], the scalar potentials can be ex-
panded into spherical harmonics, yielding

8i
= RM

∞∑
l=1

l∑
m=0

(
RM
r

)l+1 [
gml cos(mλ)+hml sin(mλ)

]
Pml (cos(θ)) (4)

and

8e
= RM

∞∑
l=1

l∑
m=0

(
r

RM

)l [
qml cos(mλ)+ sml sin(mλ)

]
Pml (cos(θ)) , (5)

where RM is the planetary radius of Mercury, and Pml de-
notes the Schmidt-normalized associated Legendre polyno-
mials of degree l and order m (Abramowitz and Stegun,
1972). Spherical harmonic expansion of the scalar potentials
was introduced by the epoch-making work by Gauss (1839),
also revisited by Glassmeier and Tsurutani (2014) with the
contemporary English translation. The potential 8i is deter-
mined by the internal Gauss coefficients gml and hml , whereas
the external Gauss coefficients qml and sml describe the exter-
nal field contributions.

In general, the shell includes current-carrying regions, and
therefore, the contributions Bsh

T and Bsh
p cannot be described

by the Gauss representation. Making use of the Mie repre-
sentation, one may introduce scalar functions 9sh

T and 9sh
p

in the spirit of potential functions by defining the magnetic
field through the curl of the scalar functions (multiplied by
the position vector) as follows:

Bsh
T = ∂x ×

(
9sh

T r
)

(6)

and

Bsh
p = ∂x ×

[
∂x ×

(
9sh

p r
)]
, (7)

where r = r er , and er is the unit vector in radial direction.
Because of the underlying spherical geometry, it is straight-
forward to expand the scalar functions 9sh

T and 9sh
p into

spherical harmonics. In contrast to the scalar potentials 8i

and 8e, the exact radial dependence of the corresponding
expansion coefficients in the Mie representation is unknown.
Thus, it is useful to perform a special Taylor series expansion
for the coefficients with respect to the radius r in the vicin-
ity of the mean radius b of the spherical shell (Toepfer et al.,
2021a), providing

9sh
T =

RM

r

∞∑
l=1

l∑
m=0

[
αml +α

′m
l ρ+O(ρ2)

]
Pml (cos(θ)) (8)

and

9sh
p =

R2
M
r

∞∑
l=1

l∑
m=0

[
βml +β

′m
l ρ+O(ρ2)

]
Pml (cos(θ)) , (9)

where the variable ρ = (r−b)/RM denotes the signed radial
distance from the mean shell radius b in units of the planetary
radius, and the Big O notation O summarizes the orders of
the Taylor series expansion higher than (or equal to) ρ2. The
expansion coefficients are given by

αml = a
m
l cos(mλ)+ bml sin(mλ),

α′ml = a
′m
l cos(mλ)+ b′ml sin(mλ),

βml = c
m
l cos(mλ)+ dml sin(mλ),

β ′ml = c
′m
l cos(mλ)+ d ′ml sin(mλ).

Due to the geometry of the MPO orbits, the application of
the thin shell approximation (Backus, 1986; Backus et al.,
1996; Olsen, 1997; Toepfer et al., 2021a) is a valid assump-
tion. Whereas the locally generated poloidal field Bsh

p cannot
be distinguished from the internal and external contributions
B i and Be within the reconstruction procedure (Toepfer et
al., 2021a), the thin shell approximation enables us to sep-
arate the poloidal field into its internal and external parts.
When the shell thickness is smaller than the length scale on
which the currents change in radial direction, the poloidal
field Bsh

p generated by toroidal currents flowing within the
shell can be neglected compared to the internal B i and exter-
nal Be poloidal fields. Combining the Gauss representation
with the Mie representation by making use of the thin shell
approximation, the magnetic field can be rewritten in the lin-
ear algebraic form

B =−∂x8
i
− ∂x8

e
+ ∂x ×

(
9sh

T r
)
=Hg, (10)

where the terms of the series expansions are arranged into
the shape matrix H, which solely contains known informa-
tion about the measurement positions. The corresponding ex-
pansion coefficients describing the amplitude of the field are
summarized into the vector g.

It should be noted that the internal field is canonically
described in a Mercury body-fixed (MBF) corotating coor-
dinate system, whereas the external field is canonically de-
scribed in a Mercury solar-orbital system (MSO), with the
x axis oriented towards the sun, the z axis oriented paral-
lel to the rotation axis, i.e., antiparallel to the internal dipole
moment, and the y axis completing the right-handed system
(Toepfer et al., 2021a; Heyner et al., 2021). In the present
study, simulated Mercury magnetic field data are evaluated.
Therefore, the internal and external fields are expressed in
a Mercury anti-solar-orbital (MASO) coordinate system ,
where the x axis is oriented towards the nightside of Mer-
cury (away from the sun), the z axis is oriented parallel to
the rotation axis and the y axis completes the right-handed
system (Toepfer et al., 2021a).

In general, the number of data points from an orbital mis-
sion is much larger than the number of wanted model coeffi-
cients. Thus, the resulting shape matrix H is rectangular, and
its inverse H−1 does not exist (Toepfer et al., 2020b). There-
fore, Eq. (10) describes an overdetermined system of linear
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equations. A unique solution for the desired model coeffi-
cients g is not available, so the coefficients have to be esti-
mated from the measurements by making use of a suitable
inversion method.

3 Inversion methods

For the reconstruction of Mercury’s internal magnetic field,
various kinds of data inversion techniques are available, such
as the least-squares fit method, the singular value decompo-
sition, the Tikhonov regularization and Capon’s minimum
variance method (e.g., Haykin, 2014). The construction of
these inversion techniques is reviewed along with merits and
demerits in this section.

3.1 Least-squares fit

The most prominent inversion method for linear inversion
problems is the least-squares fit method (LSF) (e.g., Haykin,
2014). The method minimizes the quadratic deviation

minimize
∣∣Hg−B

∣∣2 (11)

between the model Hg and the measurements B with re-
spect to the set of model parameters g with unknown values,
resulting in the least-squares fit estimator

gL =
[
H†H

]−1
H†B, (12)

where the dagger † denotes the Hermitian conjugate. Thus,
the LSF method solely weights the data by the shape matrix
H. When the measurements are completely described by the
underlying model, the LSF estimator provides the most ac-
curate estimation for the wanted model coefficients (Toepfer
et al., 2020a).

3.2 Singular value decomposition

The singular value decomposition (SVD) generalizes the
LSF method (e.g., Haykin, 2014). The method is based on
the decomposition of the shape matrix H ∈ Rm×n with rank
n into the form

H= U6 V†, (13)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal transfor-
mations, so that U†

= U−1 as well as V†
= V−1 is valid (e.g.,

Connerney, 1981; Haykin, 2014; Connerney et al., 2018).
The matrix

6 =



61 . . . 0
...

. . .
...

0 . . . 6n
0 . . . 0
...

. . .
...

0 . . . 0


∈ Rm×n, (14)

where 61 ≥ . . .≥6n ≥ 0 (sorted in descending order), con-
tains the so-called singular values 6i of the shape matrix H,
which are defined as the square roots of the eigenvalues of
the matrix H†H. Inserting the singular value decomposition
of the matrix H (Eq. 13) into Eq. (10) delivers the singular
value estimator

gS =H+B = V6+U†B =

n∑
i=1

1
6i

viu
†
iB (15)

for the wanted model coefficients g, where the vectors ui
and vi are the corresponding column vectors of the matrices
U and V, respectively (e.g., Haykin, 2014). The matrix

H+ = V6+U†
=

n∑
i=1

1
6i

viu
†
i (16)

is called the “pseudo-inverse” or generalized inverse of the
matrix H, where the matrix 6+ is given by

(
6+

)
ij
=

{
1
6i
, i = j

0, else.
(17)

In the case of a full rank, the matrix H†H is invertible, and
thus, the estimator resulting from the singular value decom-
position restores the least-squares fit estimator

gS =H+B =
[
H†H

]−1
H†B = gL. (18)

Conferring to Eq. (15), the solution gS (as well as the so-
lution gL) is determined by the inverse of singular values.
In the case of small or even vanishing singular values, i.e.,
rank(H) < n, the solution diverges. Furthermore, the condi-
tion number

κ (H)=
max
i
6i

min
i
6i
=
61

6n
(19)

of the shape matrix increases κ (H)� 1 for small singular
values, and thus, the inversion problem (Eq. 10) is said to be
ill-posed. A large condition number impairs the solvability
of the inversion problem and furthermore increases the error
propagation (Toepfer et al., 2021b).

One of the most commonly used techniques for reduc-
ing the condition number is the low-rank approximation or
truncated singular value decomposition (TSVD) (Eckart and
Young, 1936). Within this approximation, only k singular
values, where k < n, are considered within the solution, and
therefore, the shape matrix H is approximated by a shape
matrix

Hk = Uk6k V†
k, (20)

where the matrices Uk and Vk are composed of the first k
column vectors of the matrices U and V, respectively. The
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diagonal elements of the matrix 6k are given by the largest k
singular values of the shape matrix H. Therefore, the matrix
Hk has a lower rank, i.e., rank(Hk)= k, and a lower condi-
tion number

κ (Hk)=
61

6k
<
61

6n
= κ (H) (21)

is achieved. Due to the modification of the shape matrix, the
solution gS transfers onto

gTSVD =H+k B =

k∑
i=1

1
6i

viu
†
iB, (22)

which will be called the TSVD estimator.
On the one hand, the decreased condition number im-

proves the solvability of the inversion problem. On the other
hand, it should be noted that the elimination of singular val-
ues causes a lack of information, which can decrease the per-
formance of the data analysis. This lack of information can
be quantitatively estimated via the model resolution matrix
(Menke, 2012; Heyner et al., 2021)

R=H+k H. (23)

Because of gTSVD = Rg, where g denotes the ideal (imag-
inary) solution for the model coefficients, the model reso-
lution matrix identifies the resolution of each model coef-
ficient. In the case of R 6= I, the estimated coefficients are
determined by a linear combination of the ideal solution, and
thus, there are model covariances. If R= I, each coefficient
is resolved for 100 % (Menke, 2012). To achieve the highest
performance of the estimator, the condition number and the
lack of information have to come to a compromise (Conner-
ney, 1981; Toepfer et al., 2021a).

3.3 Tikhonov regularization

Within the application of the LSF method and the singular
value decomposition, the wanted model coefficients are re-
quired to satisfy the highly overdetermined system of linear
equations B =Hg. From a physical point of view, an addi-
tional constraint for the solution (for example, minimum en-
ergy) can be incorporated to reduce the degrees of freedom
within the estimation.

Considering the analysis of Mercury’s internal magnetic
field, the wanted model coefficients describe the amplitude
of the magnetic field. Thus, it is obvious that the currents
flowing within the magnetosphere as well as inside of Mer-
cury generate magnetic fields with a minimal energy. The en-
ergy spectrum Wl of each spherical harmonic degree l of the
internal magnetic field at Mercury’s surface is represented
by the Mauersberger–Lowes spectrum (Mauersberger, 1956;
Lowes, 1966)

Wl = (l+ 1)
l∑

m=0

[
(gml )

2
+ (hml )

2
]
. (24)

Therefore, minimizing the energy spectrum Wl is equiva-
lent to the minimization of the norm of the wanted model
coefficients

∣∣g∣∣2, and thus it is useful to search for solu-
tions having the minimal norm. This constraint is known as
the Tikhonov regularization, L2 regularization or minimum
norm solution (e.g., Tikhonov et al., 1995; Haykin, 2014).
Using this additional constraint, the original least-squares fit
problem (see Eq. 11) can be extended as

minimize
∣∣Hg−B

∣∣2+α ∣∣g∣∣2, (25)

where α is the so-called regularization parameter, which de-
scribes the corresponding Lagrange multiplier of the addi-
tional constraint. The Tikhonov estimator for the wanted
model coefficients results in

gT =
[
H†H+α I

]−1
H†B, (26)

where I denotes the identity matrix. Thus, the additional con-
straint modifies the shape matrix and, therefore, modifies the
location dependence of the measurement points with respect
to the underlying model.

Inserting the singular value decomposition of the matrix H
into Eq. (26) delivers

gT =
[
H†H+α I

]−1
H†B

=

[(
U6 V†

)†
U6 V†

+α I
]−1(

U6 V†
)†

B

=

[
V6†U†U6 V†

+α I
]−1

V6†U†B

=

[
V6†6 V†

+αVV†
]−1

V6†U†B

=

[
V
(
6†6+α I

)
V†
]−1

V6†U†B

= V
[
6†6+α I

]−1
V†V6†U†B

= V
[
6†6+α I

]−1
6†U†B

= V6+T U†B

=H+T B, (27)

where the matrix

H+T = V6+T U† (28)

will be called the Tikhonov inverse and

6+T =
[
6†6+α I

]−1
6†

=



61
62

1+α
0 . . . 0 0 . . . 0

0 62
62

2+α

. . .
.
.
. 0 . . . 0

.

.

.
. . .

. . . 0
.
.
.

. . .
.
.
.

0 . . . 0 6n
62
n+α

0 . . . 0


∈ Rn×m. (29)
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Thus, the original shape matrix H transfers onto the shape
matrix

HT = U6TV†, (30)

where

6T =



62
1+α

61
0 . . . 0

0 62
2+α

62

. . .
...

0 0
. . . 0

0 . . . 0 62
n+α

6n

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0


∈ Rm×n, (31)

which has a lower condition number

κ (HT)= κ
(
H+T

)
=

max
i

62
i +α

6i

min
i

62
i +α

6i

=

max
i

(
6i +

α
6i

)
min
i

(
6i +

α
6i

)
≤

max
i
6i +αmax

i

1
6i

min
i
6i +αmin

i

1
6i

=
61+

α
6n

6n+
α
61

=
616n+α

6n

61

616n+α

=
61

6n
= κ (H) . (32)

Therefore, the modification of the shape matrix improves the
solvability of the inversion problem in analogy to the TSVD.

Comparison of the SVD estimator

gS =

n∑
i=1

1
6i

viu
†
iB (33)

with the Tikhonov estimator

gT =H+T B =

n∑
i=1

6i

62
i +α

viu
†
iB (34)

shows that the original singular values are modified by α. In
the case of small or even vanishing singular values, the solu-
tion gT remains finite. Furthermore, within the Tikhonov so-
lution, n (modified) singular values are considered, whereas
within the TSVD solution (Eq. 22), only k < n singular val-
ues are incorporated. Making use of the TSVD, the informa-
tion that is included within the truncated singular values is

eliminated. Within the application of the Tikhonov regular-
ization, small singular values are not truncated but shifted.
Thus, the information which is contained in the shifted sin-
gular values is still present in a modified form. In the case of
α = 0, the Tikhonov estimator transfers onto the LSF estima-
tor.

In analogy to the TSVD, the modification of the shape ma-
trix results in a nontrivial resolution matrix

RT =H+T H 6= I, (35)

and thus, in general there are model covariances.

3.4 Capon’s method

Capon’s minimum variance projection is broadly established
in the analysis of seismic and plasma waves (Capon, 1969;
Motschmann et al., 1996; Narita, 2012). In view of the Bepi-
Colombo mission, the method is currently being considered
as a robust inversion method for the analysis of Mercury’s
internal magnetic field (Toepfer et al., 2020a, b, 2021a).

Due to the complexity of Mercury’s magnetosphere, the
entire parametrization of the magnetic field contributions,
generated by currents flowing within the magnetosphere, is
unrealizable. Thus, it is useful to decompose the magnetic
field B into parametrized parts Hg (see Eq. 10) and non-
parametrized parts v as well as measurement noise n, so that

B =Hg+ v+n (36)

is valid. The measurement noise is assumed to be Gaussian
with variance σ 2

n and zero mean (〈n〉 = 0). Since the shape
matrix H is not invertible and the non-parametrized parts are
unknown, the exact solution for the wanted model coeffi-
cients g is not available in general. Capon’s method deliv-
ers an estimator gC for the ideal solution g. The method is
based on the construction of a filter matrix w, that minimizes
the output power

P = tr
[
w†Mw

]
(37)

with respect to the distortionless constraint (also referred to
as the unit gain constraint)

w†H= I, (38)

where tr
[
w†Mw

]
is the trace of the matrix w†Mw, and I is

the identity matrix. The matrix M= 〈B ◦B〉 denotes the data
covariance matrix. Capon’s estimator realizing the minimal
output power results in

gC = w†
〈B〉 =

[
H†M−1H

]−1
H†M−1

〈B〉. (39)

The comparison of Capon’s estimator with the LSF estimator
(see Eq. 12) shows that Capon’s method can be interpreted
as a special case of the weighted least-squares fit method
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(Toepfer et al., 2020b). The robustness of the method can be
improved by the diagonal loading technique M→M+ σ 2

d I,
where σd is the diagonal loading parameter (Toepfer et al.,
2020b). Inserting the diagonally loaded data covariance ma-
trix M= 〈B〉◦〈B〉+σ 2 I, where σ 2

= σ 2
n +σ

2
d , into the out-

put power and making use of gC = w†
〈B〉 delivers

P = tr
[
w†Mw

]
= tr

[
w†
〈B〉 ◦ 〈B〉w

]
+ σ 2 tr

[
w†w

]
= tr

[
gC ◦gC

]
+ σ 2 tr

[
w†w

]
=
∣∣gC

∣∣2+ σ 2 tr
[
w†w

]
. (40)

Thus, Capon’s method minimizes the energy spectrum
in analogy to the Tikhonov regularization. In contrast to
the Tikhonov regularization, Capon’s method additionally
weights the data by the inverse data covariance matrix
(see Eq. 39).

In the case of small singular values of the shape matrix H,
the performance of Capon’s method decreases in analogy to
the LSF method. Since Capon’s method already minimizes
the energy spectrum P , the method cannot be improved by
making use of the Tikhonov regularization, and thus, the
TSVD should be applied to reduce the condition number.
Within many applications it is unknown which singular val-
ues have to be considered within the solution and which sin-
gular values can be dropped. On the other hand, the appli-
cation of the Tikhonov regularization modifies the condition
number of the original shape matrix (κ (HT)≤ κ (H)), and
thus, the Tikhonov regularization delivers the “optimal” con-
dition number for solving the problem. Therefore, the num-
ber of singular values that have to be considered within the
solution can be estimated by choosing k, so that

κ (Hk)≈ κ (HT) (41)

is valid. Due to the application of the TSVD, Capon’s filter
matrix is modified to

w†
k =

[
H†
kM
−1Hk

]−1
H†
kM
−1, (42)

on the cost of violating the unit gain condition (Toepfer et al.,
2021a), i.e.,

RC = w†
kH 6= I. (43)

4 Application to simulated Mercury magnetic field
data

In the following, the above-presented inversion methods are
applied to simulated Mercury magnetic field data for recon-
structing Mercury’s internal multipole field up to the dotria-
contapole term. The internal field is modeled as being gen-
erated by the dynamo field (crustal fields are not considered
here), and the multipole spectrum model is taken from the

MESSENGER results (Anderson et al., 2012; Thébault et al.,
2018; Wardinski et al., 2019). The magnetic field is sampled
along the trajectories of virtual spacecraft (representing the
MPO spacecraft), and the multipole spectrum is estimated
using the different inversion techniques for the virtual space-
craft data. The estimators for the spectrum are compared to
the internal Gauss coefficients implemented in the simula-
tion.

4.1 Hybrid simulation of Mercury’s magnetosphere

The magnetic field resulting from the plasma interaction of
Mercury with the solar wind is simulated with the hybrid
code AIKEF (Müller et al., 2011), that has successfully been
applied to several problems in Mercury’s plasma interaction
(e.g., Müller et al., 2011; Exner et al., 2018, 2020). The in-
ternal Gauss coefficients g0

1 =−190nT (dipole field), g0
2 =

−78nT (quadrupole field), g0
3 =−20nT (octupole field),

g0
4 =−6nT (hexadecapole field) and g0

5 = 8nT (dotriacon-
tapole field) (Anderson et al., 2012; Thébault et al., 2018;
Wardinski et al., 2019) are implemented in the simula-
tion code. For the first validation, the value g0

5 = 8nT was
chosen from a synthetic Mercury magnetic field model of
Thébault et al. (2018). The interplanetary magnetic field
with a magnitude of BIMF = 20nT is oriented along the vec-
tor (x,y,z)T = (0,0,1)T in the Mercury anti-solar-orbital
(MASO) frame. The magnetic field data are simulated under
stationary solar wind conditions, where the solar wind veloc-
ity of vsw = 400 km s−1 points along the x axis (Milillo et
al., 2020). The solar wind proton density number is chosen
to nsw = 30cm−3, and the electron Te and proton tempera-
tures Tp are implemented to Te = Tp = 2.5×105 K (Exner et
al., 2020; Milillo et al., 2020). The resulting magnitude of the
magnetic field in the x− z plane is displayed in Fig. 1.

The geometry of Mercury’s magnetosphere is mainly
dominated by the internal dipole field. Also the internal
quadrupole field in terms of the apparently northward shifted
dipole field is visible. The influence of the octupole, hexade-
capole and dotriacontapole fields is not visually noticeable
within the figure.

4.2 Reconstruction of the multipole coefficients

The internal Gauss coefficients implemented in the simu-
lation code represent the ideal solution g for the data in-
version. For the reconstruction of the coefficients, the mag-
netic field data are evaluated along meridional elliptic or-
bits around Mercury, representing the planned MPO or-
bits. The orbital plane is rotated about the rotation axis (z
axis) from −50◦ (afternoon/post-midnight sector) over 0◦

(noon/midnight, x− z plane) to 50◦ (morning/pre-midnight
sector). Figure 2 displays the distribution of the syntheti-
cally generated measurement positions in the x−z plane. The
internal and external potentials (8i, 8e) are expanded into
spherical harmonics up to the fifth degree, representing the
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Figure 1. Simulated magnitude of the magnetic field B in the x− z
plane, where internal multipoles are implemented from the dipole
to the dotriacontapole field. The white lines represent the magnetic
field lines, and the grey circle of radius 1RM symbolizes Mercury.

internal/external dipole, quadrupole, octupole, hexadecapole
and dotriacontapole field. The terms of the degrees l ≤ 4 are
expanded up to the order m= l. The dotriacontapole (l = 5)
is only expanded up to the zeroth order (m= 0) for simplic-
ity. The scalar function 9sh

T of the toroidal magnetic field
Bsh

T is expanded into spherical harmonics up to the second
degree and order and additionally into a first-order Taylor se-
ries for the radial distance. The scalar function 9sh

p of the
poloidal magnetic field Bsh

p is neglected by making use of
the thin shell approximation. Thus, the magnetic field is de-
scribed by 66 expansion coefficients with 25 internal Gauss
coefficients, 25 external Gauss coefficients and 16 toroidal
coefficients. These coefficients are to be determined from the
data by the inversion techniques. Since the exact solution for
the internal Gauss coefficients is known a priori as the inputs
to the simulation, in the following discussion we will focus
on the reconstructed 25 internal coefficients.

The optimal regularization parameter for the application
of the Tikhonov regularization results in α ≈ 0.9, so that
κ (HT)≈ 86. Incorporating all the 66 singular values of the
shape matrix results in a condition number of κ (H)≈ 540
for the original shape matrix. Considering 60 singular val-
ues within the reconstruction procedure, the condition num-
ber decreases to κ (H60)≈ 90. Thus, for the calculation of
Capon’s estimator and for the TSVD estimator, 60 singu-
lar values are incorporated. The optimal diagonal loading
parameter for the application of Capon’s method results in
σ = 590nT. The optimal regularization parameter α as well
as the optimal diagonal loading parameter σ can be deter-

Figure 2. Synthetically generated measurement positions (red dots)
in the x− z plane (λ= 0◦). The orbital plane is rotated about the
rotation axis (z axis) from −50◦ over 0 to 50◦. The grey circle of
radius 1RM symbolizes Mercury.

mined by minimizing the deviation between the correspond-
ing estimator and the ideal solution, which is known from
the input of the simulation. Within the practical application
of the methods in future satellite experiments, the exact so-
lution is unknown, and thus, the regularization parameter as
well as the diagonal loading parameter can be estimated by
making use of the L-curve technique (Toepfer et al., 2020b).
The estimators resulting from the TSVD method, Capon’s
method and the Tikhonov regularization are displayed in Ta-
ble 1.

The deviations between the reconstructed and the imple-
mented coefficients result in

∣∣gTSVD−g
∣∣/∣∣g∣∣≈ 3.9 %,

∣∣gC−

g
∣∣/∣∣g∣∣≈ 2.6 % and

∣∣gT−g
∣∣/∣∣g∣∣≈ 2.6 %, so that the recon-

structed and the implemented coefficients are in good agree-
ment. Since the TSVD method only weights the data by the
position information, the TSVD estimator yields the largest
deviation. The deviation of Capon’s estimator equals the de-
viation of the Tikhonov estimator, since both methods incor-
porate the constraint of a minimum norm solution. In par-
ticular, Mercury’s internal hexadecapole and dotriacontapole
fields can be reconstructed from the data to a good precision.
Furthermore, the model resolution matrices of Capon’s esti-
mator and the Tikhonov regularization are of the same order
and close to the identity matrix

RT ≈ RC ≈ I, (44)

providing a high model resolution. Thus, the eliminated sin-
gular values do not contain any additional information that
may improve the inversion. Taking into account 66 singu-
lar values within the calculation of Capon’s estimator and
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Table 1. Implemented and reconstructed internal Gauss coefficients for the dipole, quadrupole, octupole, hexadecapole and dotriacontapole
field. The implemented value g0

5 of the dotriacontapole field was chosen from a synthetic Mercury magnetic field model of Thébault et al.
(2018). The errors are derived by synthetically disturbing the simulated data and measurement positions as discussed in the text.

Coefficient Input (nT) TSVD (nT) Capon (nT) Tikhonov (nT)

g0
1 −190.0 −197.0± 0.3 −191.4± 0.1 −192.2± 0.3
g1

1 0.0 −1.3± 0.2 −1.2± 0.2 −1.9± 0.2
h1

1 0.0 −0.3± 1.0 −0.3± 1.0 −0.2± 0.9

g0
2 −78.0 −76.9± 0.3 −74.7± 0.4 −76.4± 0.3
g1

2 0.0 2.6± 0.2 2.5± 0.2 2.8± 0.1
h1

2 0.0 0.0± 0.3 0.0± 0.2 0.1± 0.2
g2

2 0.0 0.2± 0.2 0.2± 0.2 −0.2± 0.2
h2

2 0.0 0.1± 0.1 0.1± 0.1 0.1± 0.1

g0
3 −20.0 −19.9± 0.2 −19.3± 0.2 −21.0± 0.2
g1

3 0.0 −1.0± 0.0 −1.0± 0.0 −1.3± 0.1
h1

3 0.0 0.4± 0.2 0.4± 0.2 0.3± 0.2
g2

3 0.0 −0.4± 0.2 −0.3± 0.2 −2.5± 0.2
h2

3 0.0 0.1± 0.2 0.1± 0.2 0.1± 0.2
g3

3 0.0 0.5± 0.2 0.4± 0.2 0.3± 0.1
h3

3 0.0 0.0± 1.0 0.0± 1.0 0.0± 1.0

g0
4 −6.0 −4.3± 0.2 −4.2± 0.2 −5.2± 0.2
g1

4 0.0 0.3± 0.1 0.3± 0.1 0.3± 0.0
h1

4 0.0 −0.1± 0.2 0.0± 0.2 0.0± 0.2
g2

4 0.0 0.4± 0.0 0.4± 0.0 0.0± 0.0
h2

4 0.0 0.1± 0.3 0.1± 0.3 0.1± 0.3
g3

4 0.0 1.2± 0.2 1.2± 0.2 −0.2± 0.2
h3

4 0.0 −0.1± 0.5 −0.1± 0.5 −0.1± 0.5
g4

4 0.0 0.0± 0.2 0.0± 0.2 0.0± 0.2
h4

4 0.0 −0.1± 0.7 −0.1± 0.7 −0.1± 0.6

g0
5 8.0 7.2± 0.0 7.0± 0.0 7.1± 0.0

the TSVD estimator, the TSVD estimator transfers onto the
LSF estimator, so that RC = R= I. In this case, the devia-
tion between Capon’s estimator and the ideal solution results
in
∣∣gC−g

∣∣/∣∣g∣∣≈ 3.3 % for σ = 420nT and
∣∣gL−g

∣∣/∣∣g∣∣≈
6.2 % for the LSF estimator. Thus, the errors can be re-
duced by making use of the TSVD for the shape matrix.
Furthermore, it should be noted that the application of the
Gauss–Mie representation improves the inversion results sig-
nificantly in comparison to the sole parametrization of the
field via the Gauss representation (Toepfer et al., 2021a). Ad-
ditionally, the reconstructed Gauss coefficients of the exter-
nal irrotational field are in agreement with the values recon-
structed in former works (Wardinski et al., 2019; Toepfer et
al., 2021a).

In the present study, simulated magnetic field data and
synthetically generated measurement positions are evaluated.
Within the practical application to in situ spacecraft data, it
is expectable that the measurement positions as well as the
measurements will be determined defectively, resulting in es-
timation errors (e.g., Toepfer et al., 2021b). As a proof of

concept, the errors are incorporated by synthetically disturb-
ing the simulated data and the measurement positions. For
example, disturbing the data by a normally distributed error
of the width of 1nT and zero mean results in a relative er-
ror between the disturbed B̃ and the undisturbed data B of
|B̃−B|/|B| ≈ 1%. Disturbing the measurement positions by
a normally distributed error of the width of 10km and zero
mean results in a defective shape matrix H̃ (Toepfer et al.,
2021b). The relative error between the defective and the ideal
shape matrix H is given by ||H̃−H||2/||H||2 ≈ 3%, where
||.||2 denotes the spectral norm. The measurement errors and
measurement position errors transfer onto disturbed estima-
tors g̃TSVD, g̃C and g̃T (Toepfer et al., 2021b). The unsigned
difference between the coefficients resulting from the undis-
turbed data and measurement positions and the coefficients
resulting from the disturbed data and measurement positions
is used as an estimation for the error of the coefficients listed
in Table 1. For all the coefficients together, the deviations
between the undisturbed and the disturbed estimators result

https://doi.org/10.5194/angeo-40-91-2022 Ann. Geophys., 40, 91–105, 2022



100 S. Toepfer et al.: Magnetic field analysis

Table 2. Implemented and reconstructed internal Gauss coefficients for the dipole, quadrupole, octupole, hexadecapole and dotriacontapole
field. The implemented multipole spectrum is taken from the MESSENGER results (Anderson et al., 2012; Thébault et al., 2018; Wardinski
et al., 2019).

Coefficient Input (nT) TSVD (nT) Capon (nT) Tikhonov (nT)

g0
1 −190.0 −195.5 −190.9 −191.5
g1

1 0.0 −1.4 −1.3 −2.1
h1

1 0.0 −0.6 −0.6 −0.5

g0
2 −78.0 −77.6 −75.7 −77.5
g1

2 0.0 2.3 2.3 2.3
h1

2 0.0 0.0 0.0 0.0
g2

2 0.0 0.3 0.2 −0.3
h2

2 0.0 −0.1 −0.1 0.0

g0
3 −20.0 −19.8 −19.3 −20.7
g1

3 0.0 −1.0 −1.0 −1.3
h1

3 0.0 0.5 0.5 0.4
g2

3 0.0 −0.7 −0.7 −2.5
h2

3 0.0 0.1 0.1 0.1
g3

3 0.0 0.6 0.6 0.5
h3

3 0.0 0.3 0.3 0.2

g0
4 −6.0 −4.4 −4.3 −5.1
g1

4 0.0 0.2 0.2 0.3
h1

4 0.0 −0.1 −0.1 −0.1
g2

4 0.0 0.5 0.5 0.1
h2

4 0.0 0.1 0.1 0.1
g3

4 0.0 1.0 1.0 −0.2
h3

4 0.0 0.0 0.0 0.0
g4

4 0.0 0.0 0.0 0.1
h4

4 0.0 0.2 0.2 0.2

g0
5 2.0 1.3 1.2 1.2

in

|g̃TSVD−gTSVD|

|gTSVD|
≈
|g̃C−gC|

|gC|
≈
|g̃T−gT|

|gT|
≈ 1%, (45)

so that the inversion methods may be declared as robust.
However, the influence of specific measurement errors such
as offsets, gains resulting from thermal variations and space-
craft magnetic disturbances (Narita et al., 2021) on the re-
construction procedure should be analyzed in future works.

The analysis of MESSENGER magnetic field data pro-
vided a value of g0

5 ≈ 2nT (Thébault et al., 2018). Thus,
the inversion methods are furthermore applied to simulated
magnetic field data with the internal Gauss coefficients g0

1 =

−190nT (dipole field), g0
2 =−78nT (quadrupole field),

g0
3 =−20nT (octupole field), g0

4 =−6nT (hexadecapole
field) and g0

5 = 2nT (dotriacontapole field). The data are
again evaluated along the planned MPO trajectories. The fol-
lowing analyses will be restricted to undisturbed simulated
data.

The optimal regularization parameter results in α ≈ 0.77,
so that κ (HT)≈ 93. Thus, for the calculation of Capon’s es-
timator and for the TSVD estimator, again 60 singular values
are considered. The optimal diagonal loading parameter re-
sults in σ = 670nT. The estimators of the TSVD method,
Capon’s method and the Tikhonov regularization are dis-
played in Table 2.

The relative errors result in
∣∣gTSVD−g

∣∣/∣∣g∣∣≈ 3.3 %,∣∣gC−g
∣∣/∣∣g∣∣≈ 2.2 % and

∣∣gT−g
∣∣/∣∣g∣∣≈ 2.3 %, so that the

results are in agreement with the coefficients presented in
Table 1. The performance of Capon’s estimator again is as
competitive as the performance of the Tikhonov estimator.
Due to the smaller value of the internal coefficient g0

5 imple-
mented in the simulation, the relative deviation between the
reconstructed and the implemented internal dotriacontapole
results in about 50 %. Thus, if the true value of Mercury’s
internal dotriacontapole is of the order of 2nT, uncertainties
within the reconstruction procedure are expectable.

Besides the uncertainty concerning the internal coeffi-
cient g0

5 , the analysis of the MESSENGER data provided
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Table 3. Implemented and reconstructed internal Gauss coefficients for the dipole, quadrupole, octupole, hexadecapole and dotriacontapole
field. For the implemented quadrupole and octupole coefficients, the lower boundary from the MESSENGER results (Wardinski et al., 2019)
is implemented.

Coefficient Input (nT) TSVD (nT) Capon (nT) Tikhonov (nT)

g0
1 −190.0 −201.9 −191.2 −192.3
g1

1 0.0 −1.1 −1.1 −1.1
h1

1 0.0 −0.3 −0.3 −0.4

g0
2 −57.0 −56.1 −53.1 −54.2
g1

2 0.0 2.1 2.0 3.8
h1

2 0.0 −0.4 −0.4 −0.2
g2

2 0.0 0.5 0.5 1.1
h2

2 0.0 0.2 0.2 0.2

g0
3 −16.0 −13.6 −12.9 −16.5
g1

3 0.0 −0.8 −0.7 −0.6
h1

3 0.0 0.1 0.1 0.1
g2

3 0.0 0.8 0.8 −3.2
h2

3 0.0 0.9 0.9 1.0
g3

3 0.0 0.1 0.1 0.1
h3

3 0.0 0.1 0.1 0.2

g0
4 −4.0 −2.8 −2.7 −4.1
g1

4 0.0 0.7 0.7 0.7
h1

4 0.0 −1.0 −1.0 −1.0
g2

4 0.0 −0.1 −0.1 −1.0
h2

4 0.0 0.1 0.1 0.1
g3

4 0.0 3.8 3.6 1.2
h3

4 0.0 0.5 0.5 0.5
g4

4 0.0 −0.4 −0.4 −0.7
h4

4 0.0 −0.3 −0.3 −0.2

g0
5 8.0 7.3 6.9 7.2

a range for the internal Gauss coefficients of the dipole up
to the octupole field (Wardinski et al., 2019). Thus, it is
worthwhile to analyze the performance of the estimators
by evaluating magnetic field data resulting from the lower
boundaries of the internal coefficients along the planned
MPO trajectories. The inversion methods are applied to
(undisturbed) simulated magnetic field data with the inter-
nal Gauss coefficients g0

1 =−190nT (dipole field), g0
2 =

−57nT (quadrupole field), g0
3 =−16nT (octupole field),

g0
4 =−4nT (hexadecapole field) and g0

5 = 8nT (dotriacon-
tapole field). The implemented value of the hexadecapole
field is chosen arbitrarily and the dotriacontapole field is
again taken from the Mercury magnetic field model of
Thébault et al. (2018). The optimal regularization parameter
results in α ≈ 1.57, so that κ (HT)≈ 64, and thus, for the cal-
culation of Capon’s estimator and for the TSVD estimator, 58
singular values are considered. The optimal diagonal loading
parameter results in σ = 515nT. The estimators of the TSVD
method, Capon’s method and the Tikhonov regularization
are displayed in Table 3, where the relative estimation er-

rors result in
∣∣gTSVD−g

∣∣/∣∣g∣∣≈ 6.6%,
∣∣gC−g

∣∣/∣∣g∣∣≈ 3.6%
and

∣∣gT−g
∣∣/∣∣g∣∣≈ 3.4%. In analogy to the examples dis-

cussed above, the performance of Capon’s estimator again
equals the performance of the Tikhonov estimator. Due to
the smaller numerical values of the implemented coefficients,
the errors are slightly larger than the deviation between the
reconstructed and the ideal coefficients presented in Tables 1
and 2, respectively.

Although Mercury’s internal magnetic field is domi-
nated by an axisymmetric geometry (Anderson et al., 2012;
Wardinski et al., 2019), recent studies indicate the existence
of nonaxisymmetric field contributions (Wardinski et al.,
2021). Thus, the inversion techniques should be capable of
reconstructing nonaxisymmetric internal fields to guarantee
an unbiased analysis of the BepiColombo data. Therefore,
the inversion methods are furthermore applied to simulated
data resulting from arbitrary chosen nonaxisymmetric inter-
nal Gauss coefficients with m 6= 0. The optimal regulariza-
tion parameter results in α ≈ 1.39, so that κ (HT)≈ 68. Thus,
for the calculation of Capon’s estimator and for the TSVD
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Table 4. Implemented and reconstructed internal Gauss coefficients for the dipole, quadrupole, octupole, hexadecapole and dotriacontapole
field. The implemented axisymmetric coefficients are taken from the MESSENGER results (Anderson et al., 2012; Thébault et al., 2018;
Wardinski et al., 2019). For the implemented nonaxisymmetric coefficients, arbitrary values are chosen.

Coefficient Input (nT) TSVD (nT) Capon (nT) Tikhonov (nT)

g0
1 −190.0 −201.0 192.0 −192.6
g1

1 −5.0 −6.7 −6.4 −6.5
h1

1 5.0 4.2 4.0 4.4

g0
2 −78.0 −77.0 −73.5 −75.0
g1

2 10.0 12.2 11.7 13.7
h1

2 0.0 −0.3 −0.3 −0.1
g2

2 0.0 0.9 0.9 1.5
h2

2 0.0 0.1 0.1 0.3

g0
3 −20.0 −18.4 −17.6 −20.9
g1

3 10.0 8.6 8.2 8.7
h1

3 0.0 0.5 0.5 0.4
g2

3 0.0 0.8 0.8 −2.7
h2

3 0.0 0.9 0.9 1.0
g3

3 0.0 0.3 0.3 0.0
h3

3 0.0 0.5 0.5 0.3

g0
4 −6.0 −4.3 −4.1 −5.8
g1

4 0.0 0.7 0.7 0.7
h1

4 0.0 −0.8 −0.8 −0.8
g2

4 0.0 −0.5 −0.5 −1.6
h2

4 0.0 0.2 0.1 0.1
g3

4 0.0 3.7 3.5 1.4
h3

4 0.0 0.7 0.7 0.6
g4

4 0.0 −0.2 −0.2 −0.8
h4

4 0.0 0.3 0.3 0.0

g0
5 8.0 7.6 7.2 7.4

estimator, again 58 singular values are considered. The opti-
mal diagonal loading parameter results in σ = 560nT. The
estimators of the TSVD method, Capon’s method and the
Tikhonov regularization as well as the implemented values
are displayed in Table 4. The relative estimation errors re-
sult in

∣∣gTSVD−g
∣∣/∣∣g∣∣≈ 6.0 %,

∣∣gC−g
∣∣/∣∣g∣∣≈ 3.7 % and∣∣gT−g

∣∣/∣∣g∣∣≈ 3.5 %. For an objective assessment of the
reconstruction quality, the estimation errors of the axisym-
metric and the nonaxisymmetric internal field contributions
should be discussed separately. The relative deviation of the
axisymmetric coefficients withm= 0 results in 5.4 % for the
TSVD estimator, 2.8 % for Capon’s estimator and 2.0 % for
the Tikhonov estimator, whereas the relative deviation of the
nonaxisymmetric coefficients with m 6= 0 results in 34 % for
the TSVD estimator, 32 % for Capon’s estimator and 38 %
for the Tikhonov estimator, which is much larger due to the
implemented smaller numerical values. Thus, it is worth-
while to analyze the performance of the estimators for dif-
ferent combinations and numerical values of nonaxisymmet-
ric internal Gauss coefficients in future studies. However, in

case mother nature surprises us with nonaxisymmetric inter-
nal field contributions at Mercury as suggested by Wardinski
et al. (2021), the inversion methods presented here enable
the determination of the corresponding internal Gauss coef-
ficients from the MPO data.

As newly established, Capon’s method provides the same
performance as the Tikhonov regularization. For the com-
parison of the two methods, a more general comment is ap-
propriate. Both the methods incorporate the constraint of a
minimum norm solution and, therefore, deliver superior re-
sults than the TSVD method. Within the derivation of the
Tikhonov estimator gT, the constraint is included syntheti-
cally, whereas the nature of Capon’s method is based on the
minimization of the output power (Toepfer et al., 2020a, b),
which corresponds to the norm of the estimator. Furthermore,
Capon’s method weights the measurements by the data co-
variance and the measurement positions. Thus, the weight-
ing of Capon’s method is adaptive, since the data determine
the weighting by themselves, whereas the Tikhonov method
weights all data equally. In view of the practical application
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of the inversion methods, both the methods provide nearly
comparable results. However, Capon’s method incorporates
more information from the experiment (position and data)
than the Tikhonov regularization.

5 Summary and outlook

The detailed characterization of Mercury’s internal magnetic
field is expected to play an important role in understanding
the origin of the field. Due to the interference of the internal
parts with the magnetospheric field contributions, on the one
hand, each part of the field has to be parametrized properly.
On the other hand, a robust inversion method for reconstruct-
ing the wanted model coefficients is required.

In preparation for the analysis of the magnetic field mea-
surements provided by the magnetometer on board the MPO,
the plasma interaction of Mercury with the solar wind is
simulated numerically. The resulting magnetic field data are
parametrized by a combination of the Gauss representation
with the Mie representation, called the Gauss–Mie represen-
tation, and the corresponding expansion coefficients are re-
constructed from the data using the truncated singular value
decomposition and the Tikhonov regularization as well as
Capon’s method. The reconstructed internal Gauss coeffi-
cients of the dipole, quadrupole, octupole, hexadecapole and
dotriacontapole fields are in very good agreement with the
coefficients implemented into the simulation code, and thus,
a high-precision determination of Mercury’s internal mag-
netic field up to the dotriacontapole is expectable. The qual-
ity of the reconstructed internal coefficients depends on the
magnitude of the values. For example, in the case of an in-
ternal dotriacontapole coefficient of g0

5 = 8nT, the recon-
structed and the implemented coefficient are in very good
agreement. For g0

5 = 2nT the deviation is of the order of
about 1nT. However, due to the symmetric distribution of the
planned MPO orbits around Mercury (Heyner et al., 2021),
it is worthwhile to consider the reconstruction of higher de-
grees of the internal field in future studies. Furthermore, the
methods presented here are capable of reconstructing po-
tentially existing nonaxisymmetric magnetic field contribu-
tions at Mercury, which enables an objective analysis of the
prospective MPO data.

The comparison of the inversion methods shows that
Capon’s method and the Tikhonov method provide a com-
parative performance. Since both the methods incorporate
the constraint of a minimum norm solution, which is equiv-
alent to minimum energy, Capon’s estimator as well as the
Tikhonov estimator deliver superior results than the trun-
cated singular value decomposition. It should be noted that
the constraint of a minimum norm solution is included syn-
thetically within the derivation of the Tikhonov estimator.
Since Capon’s method is based on the minimization of the
output power, which corresponds to the norm of the estima-
tor, the constraint of a minimum norm solution is naturally

implemented in the method. Furthermore, Capon’s method
weights the data adaptively, since the weighting is deter-
mined by the measurement positions and the measurements
themselves, whereas the Tikhonov method weights all data
equally. Besides the constraint of a minimum norm solution,
further physically based constraints, for example, at the core–
mantle boundary (Wardinski et al., 2019), can be incorpo-
rated to improve the inversion results (Holme and Bloxham,
1996; Heyner et al., 2021).

Within the analyses presented here, simulated stationary
magnetic field data resulting from the plasma interaction of
Mercury with the solar wind under constant external con-
ditions, i.e., constant solar wind density, velocity and inter-
planetary magnetic field orientation, are evaluated. Due to
the fast temporal variability of the Hermean environment
(e.g., Slavin et al., 2021) and changing solar wind condi-
tions, a suitable filtering procedure should be applied be-
fore analyzing in situ data. Thereby, data from calm solar
wind conditions are preferable. However, in view of the Bepi-
Colombo mission (Benkhoff et al., 2010, 2021), the present
work provides an overview of the most commonly used in-
version methods and shows that Capon’s method as well as
the Tikhonov method enable a high-precision determination
of Mercury’s internal magnetic field. The subsequent com-
parison of the reconstructed internal field resulting from the
analysis of the BepiColombo data with the MESSENGER
results will open the door to discuss the evidence of yet un-
detected secular variations at Mercury (e.g. Philpott et al.,
2014; Oliveira et al., 2019; Heyner et al., 2021).
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