Articles | Volume 38, issue 3
https://doi.org/10.5194/angeo-38-703-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-38-703-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm
Mirko Piersanti
CORRESPONDING AUTHOR
Physics Department, Istituto Nazionale di Fisica Nucleare (INFI), University of Rome Tor Vergata, Rome, Italy
Paola De Michelis
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Dario Del Moro
University of Rome Tor Vergata, Rome, Italy
Roberta Tozzi
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Michael Pezzopane
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Giuseppe Consolini
Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF-IAPS), Rome, Italy
Maria Federica Marcucci
Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF-IAPS), Rome, Italy
Monica Laurenza
Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF-IAPS), Rome, Italy
Simone Di Matteo
Catholic University of America, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Alessio Pignalberi
Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy
Virgilio Quattrociocchi
Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF-IAPS), Rome, Italy
Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy
Piero Diego
Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF-IAPS), Rome, Italy
Related authors
Igor Bertello, Mirko Piersanti, Maurizio Candidi, Piero Diego, and Pietro Ubertini
Ann. Geophys., 36, 1483–1493, https://doi.org/10.5194/angeo-36-1483-2018, https://doi.org/10.5194/angeo-36-1483-2018, 2018
Short summary
Short summary
This paper presents a completely new method based on a new data analysis technique (ALIF) to determine both the environmental and instrumental backgrounds applied to all the DEMETER satellite electric and magnetic field data over L'Aquila's seismic region. Interestingly, on 4 April 2009, when DEMETER flew exactly over L'Aquila at 20:29 UT, an anomalous signal was observed at 333 Hz on both the electric and magnetic field data, whose characteristics seem to be related to pre-seismic activity.
Tommaso Alberti, Mirko Piersanti, Antonio Vecchio, Paola De Michelis, Fabio Lepreti, Vincenzo Carbone, and Leonardo Primavera
Ann. Geophys., 34, 1069–1084, https://doi.org/10.5194/angeo-34-1069-2016, https://doi.org/10.5194/angeo-34-1069-2016, 2016
Short summary
Short summary
We investigate the time variation of the magnetospheric and Earth's magnetic field during both quiet and disturbed periods. We identify the timescale variations associated with different magnetospheric current systems, solar-wind–magnetosphere high-frequency interactions, ionospheric processes, and internal dynamics of the magnetosphere. In addition, we propose a new local index for the identification of the intensity of a geomagnetic storm on the ground.
Piero Diego, Igino Coco, Igor Bertello, Maurizio Candidi, and Pietro Ubertini
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-136, https://doi.org/10.5194/angeo-2019-136, 2019
Manuscript not accepted for further review
Short summary
Short summary
In-situ measurements validation is always a delicate matter of study until data are collected by a single mission. In case of different missions operating almost in the same environment (i.e. latitude, altitude, local time) it is of fundamental importance the detection of instrumental setting and algorithms to provide the best accordance among measurements. The present work aims to validate both Swarm and CSES plasma density measures for the improvements of the ionospheric models development.
Igor Bertello, Mirko Piersanti, Maurizio Candidi, Piero Diego, and Pietro Ubertini
Ann. Geophys., 36, 1483–1493, https://doi.org/10.5194/angeo-36-1483-2018, https://doi.org/10.5194/angeo-36-1483-2018, 2018
Short summary
Short summary
This paper presents a completely new method based on a new data analysis technique (ALIF) to determine both the environmental and instrumental backgrounds applied to all the DEMETER satellite electric and magnetic field data over L'Aquila's seismic region. Interestingly, on 4 April 2009, when DEMETER flew exactly over L'Aquila at 20:29 UT, an anomalous signal was observed at 333 Hz on both the electric and magnetic field data, whose characteristics seem to be related to pre-seismic activity.
Tommaso Alberti, Mirko Piersanti, Antonio Vecchio, Paola De Michelis, Fabio Lepreti, Vincenzo Carbone, and Leonardo Primavera
Ann. Geophys., 34, 1069–1084, https://doi.org/10.5194/angeo-34-1069-2016, https://doi.org/10.5194/angeo-34-1069-2016, 2016
Short summary
Short summary
We investigate the time variation of the magnetospheric and Earth's magnetic field during both quiet and disturbed periods. We identify the timescale variations associated with different magnetospheric current systems, solar-wind–magnetosphere high-frequency interactions, ionospheric processes, and internal dynamics of the magnetosphere. In addition, we propose a new local index for the identification of the intensity of a geomagnetic storm on the ground.
Carl-Fredrik Enell, Alexander Kozlovsky, Tauno Turunen, Thomas Ulich, Sirkku Välitalo, Carlo Scotto, and Michael Pezzopane
Geosci. Instrum. Method. Data Syst., 5, 53–64, https://doi.org/10.5194/gi-5-53-2016, https://doi.org/10.5194/gi-5-53-2016, 2016
Short summary
Short summary
Ionograms from the Sodankylä Geophysical Observatory ionosonde (station SO166) were scaled automatically with the Autoscala software during a test period. The results were compared with manually scaled ionospheric parameters. In general, the F-layer parameters were found to agree well, whereas high-latitude phenomena like auroral E layers were often misidentified.
A. Pignalberi, M. Pezzopane, and E. Zuccheretti
Ann. Geophys., 32, 1427–1440, https://doi.org/10.5194/angeo-32-1427-2014, https://doi.org/10.5194/angeo-32-1427-2014, 2014
P. De Michelis, R. Tozzi, and G. Consolini
Nonlin. Processes Geophys., 20, 1127–1135, https://doi.org/10.5194/npg-20-1127-2013, https://doi.org/10.5194/npg-20-1127-2013, 2013
G. Consolini, R. De Marco, and P. De Michelis
Nonlin. Processes Geophys., 20, 455–466, https://doi.org/10.5194/npg-20-455-2013, https://doi.org/10.5194/npg-20-455-2013, 2013
M. Pezzopane, E. Zuccheretti, P. Abadi, A. J. de Abreu, R. de Jesus, P. R. Fagundes, P. Supnithi, S. Rungraengwajiake, T. Nagatsuma, T. Tsugawa, M. A. Cabrera, and R. G. Ezquer
Ann. Geophys., 31, 153–162, https://doi.org/10.5194/angeo-31-153-2013, https://doi.org/10.5194/angeo-31-153-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Solar wind–magnetosphere interactions
The Cluster spacecraft's view of the motion of the high-latitude magnetopause
Velocity of magnetic holes in the solar wind from Cluster multipoint measurements
Storm time polar cap expansion: interplanetary magnetic field clock angle dependence
Solar wind magnetic holes can cross the bow shock and enter the magnetosheath
Comment on
GUMICS-4 analysis of interplanetary coronal mass ejection impact on Earth during low and typical Mach number solar winds
Local time extent of magnetopause reconnection using space–ground coordination
The asymmetric geospace as displayed during the geomagnetic storm on 17 August 2001
Transfer entropy and cumulant-based cost as measures of nonlinear causal relationships in space plasmas: applications to Dst
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1087, https://doi.org/10.5194/egusphere-2024-1087, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and in the polar regions.
Henriette Trollvik, Tomas Karlsson, and Savvas Raptis
Ann. Geophys., 41, 327–337, https://doi.org/10.5194/angeo-41-327-2023, https://doi.org/10.5194/angeo-41-327-2023, 2023
Short summary
Short summary
The solar wind is in a plasma state and can exhibit a range of phenomena like waves and instabilities. One observed phenomenon in the solar wind is magnetic holes (MHs). They are localized depressions in the magnetic field. We studied the motion of MHs using the multispacecraft ESA Cluster mission. We derived their velocities in the solar wind frame and found that both linear and rotational MHs are convected with the solar wind.
Beket Tulegenov, Joachim Raeder, William D. Cramer, Banafsheh Ferdousi, Timothy J. Fuller-Rowell, Naomi Maruyama, and Robert J. Strangeway
Ann. Geophys., 41, 39–54, https://doi.org/10.5194/angeo-41-39-2023, https://doi.org/10.5194/angeo-41-39-2023, 2023
Short summary
Short summary
We study how the polar regions of the Earth connect to space along magnetic field lines. While the Earth's magnetic field is mostly the shape of a dipole, at high latitudes the field lines tend to be open and connect to interplanetary space. This area of open field line is called the polar cap, and it is highly dynamic. Through data analysis and computer simulations, we find that the shape of the polar cap is closely controlled by the magnetic field embedded in the solar wind.
Tomas Karlsson, Henriette Trollvik, Savvas Raptis, Hans Nilsson, and Hadi Madanian
Ann. Geophys., 40, 687–699, https://doi.org/10.5194/angeo-40-687-2022, https://doi.org/10.5194/angeo-40-687-2022, 2022
Short summary
Short summary
Magnetic holes are curious localized dropouts of magnetic field strength in the solar wind (the flow of ionized gas continuously streaming out from the sun). In this paper we show that these magnetic holes can cross the bow shock (where the solar wind brake down to subsonic velocity) and enter the region close to Earth’s magnetosphere. These structures may therefore represent a new type of non-uniform solar wind–magnetosphere interaction.
Invariability of relationship between the polar cap magnetic activity and geoeffective interplanetary electric fieldby Troshichev et al. (2011)
Peter Stauning
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-52, https://doi.org/10.5194/angeo-2020-52, 2020
Preprint withdrawn
Short summary
Short summary
In Troshichev et al. (2006) an error was made in the calculations of Polar Cap (PC) index scaling parameters. For the publication commented here, Troshichev et al. (2011), the authors state having used scaling parameters of the invalid PC index version but have actually substituted parameters from another version instead. The mingling of PC index versions has resulted in erroneous illustrations in Figs. 1, 2, 3, 6, 7, and 8 and the issuing of non-substantiated statements.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Ying Zou, Brian M. Walsh, Yukitoshi Nishimura, Vassilis Angelopoulos, J. Michael Ruohoniemi, Kathryn A. McWilliams, and Nozomu Nishitani
Ann. Geophys., 37, 215–234, https://doi.org/10.5194/angeo-37-215-2019, https://doi.org/10.5194/angeo-37-215-2019, 2019
Short summary
Short summary
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the Earth. Whether the process is spatially patchy or spatially continuous and extended has been under long debate. We use space–ground coordination to overcome the limitations of previous studies and reliably interpret spatial extent. Our result strongly indicates that both patchy and extended reconnection is possible and, interestingly, that extended reconnection grows from a localized patch via spreading.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
Jay R. Johnson, Simon Wing, and Enrico Camporeale
Ann. Geophys., 36, 945–952, https://doi.org/10.5194/angeo-36-945-2018, https://doi.org/10.5194/angeo-36-945-2018, 2018
Short summary
Short summary
The magnetospheric response to the solar wind is nonlinear. Information theoretical tools are able to characterize the nonlinearities in the system. We show that nonlinear significance of Dst peaks at lags of 3–12 hours which can be attributed to VBs, which also exhibits similar behavior. However, the nonlinear significance that peaks at lags of 25, 50, and 90 hours can be attributed to internal dynamics, which may be related to the relaxation of the ring current.
Cited articles
Alberti, T., Consolini, G., Lepreti, F., Laurenza, M., Vecchio, A., and Carbone, V.: Timescale separation in the solar wind-magnetosphere coupling during St. Patrick's Day storms in 2013 and 2015, J. Geophys. Res., 122, 4266–4283, https://doi.org/10.1002/2016JA023175, 2017. a
Alberti, T., Consolini, G., De Michelis, P., Laurenza, M., and Marcucci, M. F.: On fast and slow Earth's magnetospheric dynamics during geomagnetic storms: a stochastic Langevin approach, J. Space Weather Space Clim., 8, 56, https://doi.org/10.1051/swsc/2018039, 2018. a
Baker D. N.: Satellite Anomalies due to Space Storms, in: Space Storms and Space Weather Hazards, NATO Science Series, Series II: Mathematics, Physics and Chemistry, edited by: Daglis, I. A., Vol. 48, Springer, Dordrecht, https://doi.org/10.1007/978-94-010-0983-6_11, 2001. a
Baker, K. B. and Wing S.: A new magnetic coordinate system for conjugate studies at high latitudes, J. Geophys. Res., 94, 9139–9143, https://doi.org/10.1029/JA094iA07p09139, 1989. a
Bothmer, V. and Schwenn R.: The interplanetary and solar causes of major geomagnetic storms, J. Geomagn. Geoelectr., 47, 1127–1132, https://doi.org/10.5636/jgg.47.1127, 1995. a
Brueckner, G. E., Howard R. A., Koomen M. J., Korendyke C. M., Michels D. J., Moses J. D., Socker D. G., Dere K. P., Lamy P. L., Llebaria A., and Bout M. V.: The large angle spectroscopic coronagraph (LASCO), Sol. Phys., 162, 357–402, https://doi.org/10.1007/BF00733434, 1995. a
Burlaga, L., Sittler, E., Mariani, F., and Schwenn, A. R.: Magnetic
loop behind an interplanetary shock: Voyager, helios, and imp 8 observations, J. Geophys. Res., 86, 6673–6684, 1981. a
Burt, J. and Smith, B.: Deep Space Climate Observatory: The DSCOVR mission, Aerospace Conference 2012 IEEE, Aerospace Conference, IEEE, 1–13, https://doi.org/10.1109/AERO.2012.6187025, 2012. a
Carter, B. A., Yizengaw, E., Pradipta, E., Weygand, J. M., Piersanti, M., Pulkkinen, A., Moldwin, M. B., Norman, R., and Zhang, K.: Geomagnetically induced currents around the world during the 17 March 2015 storm, J. Geophys. Res., 121, 496–507, https://doi.org/10.1002/2016JA023344, 2016. a
Chisham, G., Lester, M., Milan, S., Freeman, M., Bristow, W., Grocott, W. A., McWilliams, K., Ruohoniemi, J., Yeoman, J., Timothy, T., Dyson, P., Greenwald, R., Kikuchi, T., Pinnock, M., Rash, J., Sato, N., Sofko, G., Villain, J. P., and Walker, A.: A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions,
Surv. Geophys., 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8, 2007. a
Consolini, G., Marcucci, M. F., and Candidi, M.: Multifractal Structure of Auroral Electrojet Index Data, Phys. Rev. Lett., 76, 4082–4085, 1996. a
Consolini, G.: Sandpile Cellular Automata and Magnetospheric Dynamics, Proc. of VIII Conv. GIFCO-97, SIF (Bo), 123–126, 1997. a
Consolini, G. and De Michelis, P.: Non-Gaussian Distribution Function of AE-Index Fluctuations, Evidence for Time Intermittency, Geophys. Res. Lett., 25, 4087–4090, 1998. a
Consolini, G.: Self-organized criticality: a new paradigm for the magnetotail dynamics, Fractals, 10, 275–283, 2002. a
Consolini, G. and De Michelis, P.: Local intermittency measure analysis of AE index: The directly driven and unloading component, Geophys. Res. Lett., 32, L05101, https://doi.org/10.1029/2004GL022063, 2005. a, b, c
Consolini, G., Alberti T., and De Michelis, P.: On the Forecast Horizon of Magnetospheric Dynamics: A Scale-to-Scale Approach, J. Geophys. Res., 123, 9065–9077, https://doi.org/10.1029/2018JA025952, 2018. a
CSES: China National Space Administration and China Earthquake Administration website, available at: http://www.leos.ac.cn, last access: last access: 8 June 2020. a
Del Moro, D., Napoletano, G., Forte, R., Giovannelli, L., Pietropaolo, E., and Berrilli, F.: Forecasting the 2018 February 12th CME propagation with the P-DBM model: a fast warning procedure, Ann. Geophys., 62, 4, https://doi.org/10.4401/ag-7750, 2019. a
De Michelis, P., Daglis, I., and Consolini, G.: Average terrestrial ring current derived from AMPTE/CCE‐CHEM measurements, J. Geophys. Res., 102, 14103–14111, https://doi.org/10.1029/96JA03743, 1997. a
De Michelis, P., Daglis, I., and Consolini, G.: An average image of proton plasma pressure and of current systems in the equatorial plane derived from AMPTE/CCE-CHEM measurements, J. Geophys. Res., 104, 28615–28624, https://doi.org/10.1029/1999JA900310, 1999. a
De Michelis, P, Consolini, G., Tozzi, R., and Marcucci, M. F., Observations of high-latitude geomagnetic field fluctuations during St. Patrick's Day storm: Swarm and SuperDARN measurements, Earth Planets Space, 68, 1–16, https://doi.org/10.1186/s40623-016-0476-3, 2016. a
Domingo, V., Fleck, B., and Poland, A. I.: The SOHO mission: an overview, Sol. Phys., 162, 1–2, https://doi.org/10.1007/BF00733425, 1995. a
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., and Toffer-Clausen, L.: Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model, Earth Planet Space, 68, 112–130, https://doi.org/10.1186/s40623-016-0486-1, 2016. a, b
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K., McComas, D. J., Raouafi, N. E., and Szabo, A.: The Solar Probe Plus mission: Humanity’s first visit to our star, Space Sci. Rev., 204, 1–4, https://doi.org/10.1007/s11214-015-0211-6, 2016. a
Friis-Christensen, E., Lühr, H., and Hulot, G.: Swarm: A constellation to study the Earth’s magnetic field, Earth Planets Space, 58, 351–358, https://doi.org/10.1186/BF03351933, 2006. a
Friis-Christensen, E., Lühr, H., Knudsen, D., and Haagmans, R.: Swarm – An Earth Observation Mission investigating Geospace, Adv. Space Res. 41, 210–216, https://doi.org/10.1016/j.asr.2006.10.008, 2008. a
Ganushkina, N. Y., Liemohn, M. W., and Dubyagin, S.: Current systems in the Earth's magnetosphere, Rev. Geophys., 56, 309–332, https://doi.org/10.1002/2017RG000590, 2018. a
Ginet, G. P.: Space Weather: An Air Force Research Laboratory Perspective, Space Storms and Space Weather Hazards, NATO Science Series, Series II: Mathematics, Physics and Chemistry, edited by: Daglis, I. A., Vol. 38, Springer, Dordrecht, 437–457, https://doi.org/10.1007/978-94-010-0983-6_18, 2001. a
Gonzalez, W. D. and Tsurutani, B. T.: Criteria of interplanetary parameters causing intense magnetic storms (Dst nT), Planet. Space Sci., 35, 1101–1109, https://doi.org/10.1016/0032-0633(87)90015-8, 1987. a
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994. a
Gosling, J. T.: The solar flare myth, J. Geophys. Res., 98, 18937–18949, https://doi.org/10.1029/93JA01896, 1993. a
Hapgood, M.: The Great Storm of May 1921: An Exemplar of a Dangerous Space Weather Event, Space Weather, 17, 950–975, https://doi.org/10.1029/2019SW002195, 2019. a
Hargreaves, J.: The Solar-Terrestrial Environment: An Introduction to Geospace – the Science of the Terrestrial Upper Atmosphere, Ionosphere, and Magnetosphere, Cambridge Atmospheric and Space Science Series, Cambridge: Cambridge University Press, https://doi.org/10.1017/CBO9780511628924, 1992. a
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M., and Thompson, W. T.: Sun Earth connection coronal and heliospheric investigation (SECCHI), Space Sci. Rev., 136, 1–4, https://doi.org/10.1016/S0273-1177(02)00147-3, 2008. a
Howard, T. A. and Harrison, R. A.: Stealth coronal mass ejections: A perspective, Sol. Phys., 285, 1–2, https://doi.org/10.1007/s11207-012-0217-0, 2013. a
Iju, T., Tokumaru, M., and Fujiki, K.: Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23, Sol. Phys., 288, 331–353, https://doi.org/10.1007/s11207-013-0297-5, 2013. a
INTERMAGNET: International Real-time Magnetic Observatory Network, available at: https://www.intermagnet.org/, last access: 8 June 2020. a
Isavnin, A., Vourlidas, A., and Kilpua, E. K. J.: Three-Dimensional Evolution of Flux-Rope CMEs and Its Relation to the Local Orientation of the Heliospheric Current Sheet, Sol. Phys., 289, 2141–2156, https://doi.org/10.1007/s11207-013-0468-4, 2013. a
Iyemori, T.: Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations, J. Geomagn. Geoelec., 42, 1249–1265, https://doi.org/10.5636/jgg.42.1249, 1990. a
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., Baker, D., Bartlett, R., Benna, M., Bougher, S., Brain, D., Carson, D., Cauffman, S., Chamberlin, P., Chaufray, J.-Y., Cheatom, O., Clarke, J., Connerney, J., Cravens, T., Curtis, D., Delory, G., Demcak, S., DeWolfe, A., Eparvier, F., Ergun, R., Eriksson, A., Espley, J., Fang, X., Folta, D., Fox, J., Gomez-Rosa, C., Habenicht, S., Halekas, J., Holsclaw, G., Houghton, M., Howard, R., Jarosz, M., Jedrich, N., Johnson, M., Kasprzak, W., Kelley, M., King, T., Lankton, M., Larson, D., Leblanc, F., Lefevre, F., Lillis, R., Mahaffy, P., Mazelle, C., McClintock, W., McFadden, J., Mitchell,D. L., Montmessin, F., Morrissey, J., Peterson, W., Possel, W, Sauvaud, J.-A., Schneider, N., Sidney, W., Sparacino, S., Stewart, A. I. F., Tolson, R., Toublanc, D., Waters, C., Woods, T., Yelle, R., and Zurek, R.: The Mars atmosphere and volatile evolution (MAVEN) mission, Space Sci. Rev., 195, 1–4, https://doi.org/10.1007/s11214-015-0139-x, 2015. a
Jin, Y. and Oksavik, K.: GPS scintillations and losses of signal lock at high latitudes during the 2015 St. Patrick's Day storm, J. Geophys. Res., 123, 7943–7957, https://doi.org/10.1029/2018JA025933, 2018. a, b, c
Kaiser, M. L., Kucera, T. A., Davila, J. M., and Cyr, O. S., Guhathakurta, M., and Christian, E.: The STEREO mission: An introduction, Space Science Reviews, 136, 1–4, https://doi.org/10.1007/s11214-007-9277-0, 2008. a
Kappenman, J. G.: An Introduction to Power Grid Impacts and Vulnerabilities from Space Weather, in: Space Storms and Space Weather Hazards, NATO Science Series, Series II: Mathematics, Physics and Chemistry, edited by: Daglis, I. A., Vol. 38, Springer, Dordrecht, https://doi.org/10.1007/978-94-010-0983-6_13, 2001. a
Koskinen, H. E. J., Baker, D. N., Balogh, A., Gombosi, T., Veronig, A., and von Steiger, R.: Achievements and Challenges in the Science of Space Weather, Space Sci. Rev., 212, 1137–1157, https://doi.org/10.1007/s11214-017-0390-4, 2017. a
Lanzerotti, L. J.: Space Weather Effects on Communications, Space Storms and Space Weather Hazards, NATO Science Series, Series II: Mathematics, Physics and Chemistry, in: Daglis, I. A., Vol. 38, Springer, Dordrecht, https://doi.org/10.1007/978-94-010-0983-6_12, 2001. a
Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., Edwards, C. G., Friedlaender, F. M., Heyman, G. F., Hurlburt, N. E., Katz, N. L., and Kushner, G. D.: The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO), in: The solar dynamics observatory, Springer, New York, NY, Sol. Phys., 275, 17–40, https://doi.org/10.1007/s11207-011-9776-8, 2011. a
Lepping, R. P., Acuña, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer, F. M., Whang, Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V., Scheifele, J., and Worley, E. M.: The WIND magnetic field investigation, Space. Sci. Rev., 71, 207–229 https://doi.org/10.1007/BF00751330, 1995. a
Lui, A. T. Y., Chapman, S. C., Liou, K., Newell, P. T., Meng, C. I., Brittnacher, M., and Parks, G. K.: Is the dynamic magnetosphere an avalanching system?, Geophys. Res. Lett., 27, 911–914, 2000. a
Marshall, R. A., Waters, C. L., and Sciffer, M. D.: Spectral analysis of pipe-to-spoil potentials with variations of the Earth's magnetic field in the Australian region, Space Weather, 8, 05002, https://doi.org/10.1029/2009SW000553, 2010. a, b
McPherron, R. L.: Magnetospheric dynamics, Introduction to Space Physics, edited by: Kivelson, M. G. and Russell, C. T., Cambridge University Press, 400–458, https://doi.org/10.1017/9781139878296.014, 1995. a
Menvielle, M., Iyemori, T., Marchaudon, A., and Nosé, M.: Geomagnetic Indices, in: Geomagnetic Observations and Models, IAGA Special Sopron Book Series 5, edited by: Mandea, M. and Korte, M., Vol. 183, Springer Science + Business Media B. V., https://doi.org/10.1007/978-90-481-9858-0_8, 2011. a
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach, M. T., Laundal, K. M., Ostgaard, N., Tenfjord, P. A. R., Reistad, J. P., Snekvik, K., Korth, H., and Anderson, B. J.: Overview of Solar Wind-Magnetosphere-Ionosphere-Atmosphere Coupling and the Generation of Magnetospheric Currents,
Space Sci. Rev., 206, 547–573, https://doi.org/10.1007/s11214-017-0333-0, 2017. a
Moon, Y. J., Choe, G. S., Wang, H., Park, Y. D., Gopalswamy, N., Yang, G., and Yashiro, S.: A statistical study of two classes of coronal mass ejections, Astrophys. J., 581, 694–702, https://doi.org/10.1086/344088, 2002. a
Napoletano, G., Forte, R., Del Moro, D., Pietropaolo, E., Giovannelli, L., and Berrilli, F.: A probabilistic approach to the drag-based model, J. Space Weather Space Clim., 8, 11, https://doi.org/10.1051/swsc/2018003, 2018. a, b, c
NASA Goddard Space Flight Center: OMNIWeb Plus, available at: https://cdaweb.sci.gsfc.nasa.gov/index.html/, last access: 8 June 2020. a
NASA SDO/AIA and the HMI science teams: SDO, available at: https://sdo.gsfc.nasa.gov/data/aiahmi/, last access: 8 June 2020. a
Nishitani, N., Ruohoniemi, J. M., Lester, M., Baker, J. B. H., Koustov, A. V., Shepherd, S. G., Chisham, G., Hori, T., Thomas, E. G., Makarevich, R. A., Marchaudon, A., Ponomarenko, P., Wild, J., Milan, S., Bristow, W. A., Devlin, J., Miller, E., Greenwald, R. A., Ogawa, T., and Kikuchi, T.: Review of the accomplishments of midlatitude Super Dual Auroral Radar Network (SuperDARN) HF radars, Prog. Earth Planet Sci., 6, 27, https://doi.org/10.1186/s40645-019-0270-5, 2019. a
NOAA Space weather prediction center: GOES, available at: https://www.swpc.noaa.gov/products/goes-magnetometer, last access: 8 June 2020. a
NOAA's National Centers for Environmental Information Data Center: DSCOVR, available at: https://www.ngdc.noaa.gov/dscovr, last access: 8 June 2020. a
Oliveira, D. M. and Samsonov, A. A., Geoeffectiveness of interplanetary shocks controlled by impact angles: A review, Adv. Space Res., 61, 1–44, https://doi.org/10.1016/j.asr.2017.10.006, 2018. a
Pesnell, W. D., Thompson, B. J., and Chamberlin, P. C.: The solar dynamics observatory (SDO), in: The Solar Dynamics Observatory, Springer, New York, NY, 3–15, https://doi.org/10.1007/s11207-011-9841-3, 2011. a
Pezzopane, M., Del Corpo, A., Piersanti, M., Cesaroni, C., Pignalberi, A., Di Matteo, S., Spogli, L., Vellante, V., and Heilig, B.: On some features characterizing the plasmasphere-magnetosphere-ionosphere system during the geomagnetic storm of 27 May 2017, Earth Planets Space, 77, 71–92, https://doi.org/10.1186/s40623-019-1056-0, 2019. a
Piersanti, M., Villante, U., Waters, C. L., and Coco, I.: The 8 June 20:00 ULF wave activity: A case study, J. Geophys. Res., 117, 02204, https://doi.org/10.1029/2011JA016857, 2012. a
Piersanti, M. and Villante, U.: On the discrimination between magnetospheric and ionospheric contributions on the ground manifestation of sudden impulses, J. Geophys. Res., 121, 6674–6691, https://doi.org/10.1002/2015JA021666, 2016. a, b, c, d
Piersanti, M., Alberti, T., Bemporad, A., Berrilli, F., Bruno, R., Capparelli, V., Carbone, V., Cesaroni, C., Consolini, G., Cristaldi, A., Del Corpo, A., Del Moro, D., Di Matteo, S., Ermolli, I., Fineschi, S., Giannattasio, F., Giorgi, F., Giovannelli, L., Guglielmino, S. L., Laurenza, M., Lepreti, F., Marcucci, M. F., Martucci, M., Mergè, M., Pezzopane, M., Pietropaolo, E., Romano, P., Sparvoli, R., Spogli, L., Stangalini, M., Vecchio, A., Vellante, M., Villante, U., Zuccarello, F., Heilig, B., Reda, J., and Lichtenberger, J.: Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems, Sol. Phys., 292, 169, https://doi.org/10.1007/s11207-017-1186-0 2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Piersanti, M., Materassi, M., Cicone, A., Spogli, L., Zhou, H., and Ezquer, R. G.: Adaptive local iterative filtering: A promising technique for the analysis of nonstationary signals, J. Geophys. Res., 123, 1031–1046, https://doi.org/10.1002/2017JA024153, 2018.
Piersanti, M., Di Matteo, S., Carter, B. A., Currie, J., and
D'Angelo, G.: Geoelectric field evaluation during the September
2017 Geomagnetic Storm, Space Weather, 17, 1241–1256,
https://doi.org/10.1029/2019SW002202, 2019. a, b, c
Piersanti, M., Di Matteo, S., Carter, B. A., Currie, J., and D'Angelo, G.: Geoelectric field evaluation during the September 2017 Geomagnetic Storm, Space Weather, 17, 1241–1256, https://doi.org/10.1029/2019SW002202, 2019.
Pignalberi, A., Pezzopane, M., Tozzi, R., De Michelis, P., and Coco, I.: Comparison between IRI and preliminary Swarm Langmuir probe measurements during the St. Patrick storm period, Earth Planets Space, 68, 93, https://doi.org/10.1186/s40623-016-0466-5, 2016. a
Pilipenko, V. A., Bravo, M., Romanova, N. V., Kozyreva, O. V., Samsonov, S. N., and Sakharov, Y. A.: Geomagnetic and Ionospheric Responses to the Interplanetary Shock Wave of March 17, 2015, Phys. Solid Earth, 54, 721–740, https://doi.org/10.1134/S1069351318050129, 2018. a
Pulkkinen, A.: Geomagnetically Induced Currents Modeling and Forecasting, Space Weather, 13, 734–736, https://doi.org/10.1002/2015SW001316, 2015. a, b
Pulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., Eichner, J., Cilliers, P. J., Welling, D., Savani, N. P., Weigel, R. S., Love, J. J., Balch, C., Ngwira, C. M., Crowley, G., Schultz, A., Kataoka, R., Anderson, B., Fugate, D., Simpson, J. J., and MacAlester, C. M.: Geomagnetically induced currents: Science, engineering, and applications readiness, Space Weather, 15, 828–856, https://doi.org/10.1002/2016SW001501, 2017. a, b, c
Richardson, I. G.: Solar wind stream interaction regions throughout the heliosphere, Living Rev. Sol. Phys., 15, 1, https://doi.org/10.1007/s41116-017-0011-z, 2018. a
Rishbeth, J. A. and Garriot, O. K.: Introduction to Ionospheric Physics, New York: Academic Press, 1–355, 1969. a
Szabo, A.: An improved solution to the “rankine-hugoniot” problem, J. Geophys. Res., 99, 737–746, https://doi.org/10.1029/94JA00782, 1994.
Shen, C., Chi, Y., Wang, Y., Xu, M., and Wang, S.: Statistical comparison of the ICME's geoeffectiveness of different types and different solar phases
from 1995 to 2014, J. Geophys. Res., 122, 5931–5948, https://doi.org/10.1002/2016JA023768, 2017.
Shen, X., Zong, Q., and Zhang, X.: Introduction to special section on the China Seismo‐Electromagnetic Satellite and initial results, Earth Planet. Phys., 2, 439–443, https://doi.org/10.26464/epp2018041, 2018. a
Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998. a
Singer, H., Heckman, G., and Hirman, J.: Space Weather Forecasting: A Grand Challenge, in: Space Weather, edited by: Song, P. H., Singer, J., and Siscoe, G. L., https://doi.org/10.1029/GM125p0023, 2013. a
Sitnov, M. I., Sharma, A. S., Papadopoulos, K., and Vassiliadis, D.: Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions, Phys. Rev. E, 65, 16116–16127, 2001. a
Smith, E. J., Tsurutani, B. T., and Rosenberg, R. L.: Observations of the interplanetary sector structure up to heliographic latitudes of 16∘: pioneer 11, J. Geophys. Res., 83, 717–724, https://doi.org/10.1029/JA083iA02p00717, 1978.
Smith, A. R. A., Beggan, C. D., Macmillan, S., and Whaler, K. A.: Climatology of the auroral electrojets derived from the along‐track gradient of magnetic field intensity measured by POGO, Magsat, CHAMP, and Swarm, Space Weather, 15, 1257–1269, https://doi.org/10.1002/2017SW001675, 2017. a
SOHO: SOHO/MDI and SOHO/EIT consortia, available at: https://sohowww.nascom.nasa.gov/data/data.html, last access: 8 June 2020. a
Souza, V. M., Koga, D., Gonzalez, W. D., and Cardoso, F. R.: Observational aspects of magnetic reconnection at the earth's magnetosphere, Braz. J. Phys., 47, 447–459, https://doi.org/10.1007/s13538-017-0514-z, 2017.
Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D., Ormes, J. F., and Snow, F.: The advanced composition explorer, Space Sci. Rev., 86, 1–22, https://doi.org/10.1023/A:1005082526237, 1998. a
SWARM: Earth Online, available at: https://earth.esa.int/, last access: 8 June 2020. a
Thomas, E. G. and Shepherd, S. G.: Statistical patterns of ionospheric convection derived from mid-latitude, high-latitude, and polar SuperDARN HF radar observations, J. Geophys. Res., 123, 3196–3216. https://doi.org/10.1002/2018JA025280, 2018. a, b, c, d
Tozzi, R., Coco, I., De Michelis, P., and Giannattasio, F.: Latitudinal dependence of geomagnetically induced currents during geomagnetic storms, Ann. Geophys., 62, GM448, https://doi.org/10.4401/ag-7788, 2018. a
Tozzi, R., De Michelis, P., Coco, I., and Giannattasio, F.: A Preliminary Risk Assessment of Geomagnetically Induced Currents over the Italian Territory, Space Weather, 17, 46–58, https://doi.org/10.1029/2018SW002065, 2019. a, b, c
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., and Smith, E. J.: Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93 8519–8531, https://doi.org/10.1029/JA093iA08p08519, 1988.
Tsyganenko, N. A. and Sitnov, M. I.: Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, https://doi.org/10.1029/2004JA010798, 2005. a, b
Uritsky, V. M. and Pudovkin, M. I.: Low frequency 1/f-like fluctuations of the AE-index as a possible manifestation of self-organized criticality in the magnetosphere, Ann. Geophys., 16, 1580–1588, 1998. a
Uritsky, V. M., Klimas, A. J., Vasiliadis, D., Chua, D., and Parks, G.: Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: Dynamic magnetosphere is an avalanching system, J. Geophys. Res., 107, 1426–1437, https://doi.org/10.1029/2001JA000281, 2002. a
Villante U. and Piersanti, M.: Sudden impulses at geosynchronous orbit and at ground, J. Atm. Sol. Terr. Phys., 73, 61–76, https://doi.org/10.1016/j.jastp.2010.01.008, 2011. a, b, c, d
Viñas, A. F. and Scudder, J. D.: Fast and optimal solution to the “Rankine-Hugoniot problem”, J. Geophys. Res., 91, 39–58, https://doi.org/10.1029/JA091iA01p00039, 1986.
Vršnak, B., Žic, T., Vrbanec, D., Temmer, M., Rollett, T., Möstl, C., Veronig, A., Čalogović, J., Dumbović, M., Lulić, S., Moon, Y.-J., and Shanmugaraju, A.: Propagation of interplanetary coronal mass ejections: the drag-based model, Sol. Phys., 285, 1–2, https://doi.org/10.1007/s11207-012-0035-4, 2013.
a
Wang, C., Li, H., Richardson, J. D., and Kan, J. R.: Interplanetary shock characteristics and associated geosynchronous magnetic field variations estimated from sudden impulses observed on the ground, J. Geophys. Res., 115, 09215, https://doi.org/10.1029/2009JA014833, 2010. a
Wang X., Cheng, W., Yang, D., and Liu, D.: Preliminary validation of in situ electron density measurements onboard CSES using observations from Swarm Satellites, Adv. Space Res. 64, 982–994, https://doi.org/10.1016/j.asr.2019.05.025, 2019. a
Xiong, C., Stolle, C., and Park, J.: Climatology of GPS signal loss observed by Swarm satellites, Ann. Geophys., 36, 679–693, https://doi.org/10.5194/angeo-36-679-2018, 2018. a
Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H., and Gopalswamy, N.: Statistical distributions of speeds of coronal mass ejections, Astrophys. J., 619, 599–603, https://doi.org/10.1086/426129, 2005. a
Zhou, B., Cheng, B., Gou, X., Li, L., Zhang, Y., Wang, J., Magnes, W., Lammegger, R., Pollinger, A., Ellmeier, M., Xiao, Q., Zhu, X., Yuan, S., Yang, Y., and Shen, X.: First in-orbit results of the vector magnetic field measurement of the High Precision Magnetometer onboard the China Seismo-Electromagnetic Satellite, Earth Planets Space, 71, 119, https://doi.org/10.1186/s40623-019-1098-3, 2019. a
Zurbuchen, T. H. and Richardson, I. G.: In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections, in: Coronal Mass Ejections, Space Sciences Series of ISSI, Vol. 21, Springer, New York, NY, https://doi.org/10.1007/978-0-387-45088-9-3, 2006.
Short summary
This paper presents a comprehensive analysis of the solar event that occurred on 25 August 2018. This kind of comprehensive analysis plays a key role in better understanding the complexity of the processes occurring in the Sun–Earth system determining the geoeffectiveness of manifestations of solar activity. The analysis presented here shows for the first time a direct link between characteristics of solar perturbation, the magnetosphere–ionosphere system response and space weather effects.
This paper presents a comprehensive analysis of the solar event that occurred on 25 August 2018....
Special issue