Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-1031-2020
https://doi.org/10.5194/angeo-38-1031-2020
Regular paper
 | 
05 Oct 2020
Regular paper |  | 05 Oct 2020

Ionospheric anomalies associated with the Mw 7.3 Iran–Iraq border earthquake and a moderate magnetic storm

Erman Şentürk, Samed Inyurt, and İbrahim Sertçelik

Related authors

Monitoring potential ionospheric changes caused by the Van earthquake (Mw7.2)
Samed Inyurt, Selcuk Peker, and Cetin Mekik
Ann. Geophys., 37, 143–151, https://doi.org/10.5194/angeo-37-143-2019,https://doi.org/10.5194/angeo-37-143-2019, 2019
Monitoring potential ionosphere changes caused by Van earthquake (Mw 7.2) using GNSS measurements
Selcuk Peker, Samed Inyurt, and Cetin Mekik
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-11,https://doi.org/10.5194/angeo-2018-11, 2018
Preprint retracted
The Role of Unmanned Aerial Vehicles (UAVs) In Monitoring Rapidly Occuring Landslides
Servet Yaprak, Omer Yildirim, Tekin Susam, Samed Inyurt, and Irfan Oguz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-13,https://doi.org/10.5194/nhess-2018-13, 2018
Preprint retracted
Comparison between IRI-2012 and GPS-TEC observations over the western Black Sea
Samed Inyurt, Omer Yildirim, and Cetin Mekik
Ann. Geophys., 35, 817–824, https://doi.org/10.5194/angeo-35-817-2017,https://doi.org/10.5194/angeo-35-817-2017, 2017
Review of variations in Mw < 7 earthquake motions on position and TEC (Mw = 6.5 Aegean Sea earthquake sample)
Omer Yildirim, Samed Inyurt, and Cetin Mekik
Nat. Hazards Earth Syst. Sci., 16, 543–557, https://doi.org/10.5194/nhess-16-543-2016,https://doi.org/10.5194/nhess-16-543-2016, 2016
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Ionospheric disturbances
Effects of the super-powerful tropospheric western Pacific phenomenon of September–October 2018 on the ionosphere over China: results from oblique sounding
Leonid F. Chernogor, Kostiantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 41, 173–195, https://doi.org/10.5194/angeo-41-173-2023,https://doi.org/10.5194/angeo-41-173-2023, 2023
Short summary
Ionospheric effects of the 5–6 January 2019 eclipse over the People's Republic of China: results from oblique sounding
Leonid F. Chernogor, Kostyantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 40, 585–603, https://doi.org/10.5194/angeo-40-585-2022,https://doi.org/10.5194/angeo-40-585-2022, 2022
Short summary
Study of the equatorial and low-latitude total electron content response to plasma bubbles during solar cycle 24–25 over the Brazilian region using a Disturbance Ionosphere indeX
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022,https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Diagnostic study of geomagnetic storm-induced ionospheric changes over very low-frequency signal propagation paths in the mid-latitude D region
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Olugbenga Ogunmodimu, Muyiwa P. Ajakaiye, Johnson O. Fatokun, Paul I. Anekwe, Omodara E. Obisesan, Olufemi E. Oyanameh, and Oluwaseun V. Fatoye
Ann. Geophys., 40, 433–461, https://doi.org/10.5194/angeo-40-433-2022,https://doi.org/10.5194/angeo-40-433-2022, 2022
Short summary
Complex analysis of the ionosphere variations during the geomagnetic storm at 20 January 2010 performed by Detection of Ionosphere Anomalies (DIA) software and DEMETER satellite data
Anatoliy Lozbin, Viktor Fedun, and Olga Kryakunova
Ann. Geophys., 40, 55–65, https://doi.org/10.5194/angeo-40-55-2022,https://doi.org/10.5194/angeo-40-55-2022, 2022
Short summary

Cited articles

Astafyeva, E., Zakharenkova, I., and Alken, P.: Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation, Earth Planets Space, 68, 152, https://doi.org/10.1186/s40623-016-0526-x, 2016. 
Bagiya, M. S., Joshi, H. P., Iyer, K. N., Aggarwal, M., Ravindran, S., and Pathan, B. M.: TEC variations during low solar activity period (2005–2007) near the Equatorial Ionospheric Anomaly Crest region in India, Ann. Geophys., 27, 1047–1057, https://doi.org/10.5194/angeo-27-1047-2009, 2009. 
Basu, S., Basu, Su., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., Sahai, Y., Fagundes, P. R., and Becker-Guedes, F.: Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms, J. Geophys. Res., 112, A08308, https://doi.org/10.1029/2006JA012192, 2007. 
Burrus, C. S.: Multiband least squares FIR filter design, IEEE T. Signal Proces., 43, 412–421, 1995. 
Center for Orbit Determination in Europe: IONEX files from CODE, ftp://cddis.gsfc.nasa.gov/gps/products/ionex/ (last access: 19 December 2019), 2020. 
Download
Short summary
The analysis of unexpected ionospheric phases before large earthquakes is one of the cutting-edge issues in earthquake prediction studies. Ionospheric TEC data were analyzed by short-time Fourier transform and a classic running median to detect abnormalities before the Mw 7.3 Iran–Iraq earthquake on November 12, 2017. The results showed clear positive anomalies 8–9 d before the earthquake as an earthquake precursor due to quiet space weather, local dispersion, and proximity to the epicenter.