Articles | Volume 37, issue 5
Ann. Geophys., 37, 825–834, 2019
https://doi.org/10.5194/angeo-37-825-2019
Ann. Geophys., 37, 825–834, 2019
https://doi.org/10.5194/angeo-37-825-2019

Regular paper 19 Sep 2019

Regular paper | 19 Sep 2019

Scaling laws in Hall inertial-range turbulence

Yasuhito Narita et al.

Related authors

Review: Electromotive force in the solar wind
Yasuhito Narita
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-18,https://doi.org/10.5194/angeo-2021-18, 2021
Revised manuscript under review for ANGEO
Short summary
Wavevector spectral signature of decay instability in space plasmas
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 39, 165–170, https://doi.org/10.5194/angeo-39-165-2021,https://doi.org/10.5194/angeo-39-165-2021, 2021
Short summary
Error estimate for fluxgate magnetometer in-flight calibration on a spinning spacecraft
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021,https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Magnetosheath plasma flow model around Mercury
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-1,https://doi.org/10.5194/angeo-2021-1, 2021
Revised manuscript accepted for ANGEO
Short summary
Mathematical foundation of Capon's method for planetary magnetic field analysis
Simon Toepfer, Yasuhito Narita, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Geosci. Instrum. Method. Data Syst., 9, 471–481, https://doi.org/10.5194/gi-9-471-2020,https://doi.org/10.5194/gi-9-471-2020, 2020
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Turbulence
On the ion-inertial-range density-power spectra in solar wind turbulence
Rudolf A. Treumann, Wolfgang Baumjohann, and Yasuhito Narita
Ann. Geophys., 37, 183–199, https://doi.org/10.5194/angeo-37-183-2019,https://doi.org/10.5194/angeo-37-183-2019, 2019
Short summary

Cited articles

Alexandrova, O., Carbone, V., Veltri, P., and Sorriso-Valvo, L.: Small-scale energy cascade of the solar wind turbulence, Astrophys. J., 674, 1153–1157, https://doi.org/10.1086/524056, 2008. a, b
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., and Robert, P.: Universality of solar-wind turbulent spectrum from MHD to electron scales, Phys. Rev. Lett., 103, 165003, https://doi.org/10.1103/PhysRevLett.103.165003, 2009. a
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S., and Reme, H.: Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence, Phys. Rev. Lett., 94, 215002, https://doi.org/10.1103/PhysRevLett.94.215002, 2005. a, b
Biskamp, D., Schwarz, E., and Drake, J. F.: Two-dimensional electron magnetohydrodynamic turbulence, Phys. Rev. Lett., 76, 1264–1267, 1996. a
Download
Short summary
Scaling laws and energy spectra for the electric field, magnetic field, flow velocity, and density are theoretically derived for small-scale turbulence in space plasma on which the electrons behave as a fluid but the ions more as individual particles due to the difference in the mass (the Hall effect). Our theoretical model offers an explanation for the small-scale turbulence spectra measured in near-Earth space.