Articles | Volume 37, issue 5
Ann. Geophys., 37, 825–834, 2019
https://doi.org/10.5194/angeo-37-825-2019
Ann. Geophys., 37, 825–834, 2019
https://doi.org/10.5194/angeo-37-825-2019
Regular paper
19 Sep 2019
Regular paper | 19 Sep 2019

Scaling laws in Hall inertial-range turbulence

Yasuhito Narita et al.

Related authors

Reconstruction of Mercury's internal magnetic field beyond the octupole
Simon Toepfer, Ida Oertel, Vanita Schiron, Yasuhito Narita, Karl-Heinz Glassmeier, Daniel Heyner, Patrick Kolhey, and Uwe Motschmann
Ann. Geophys., 40, 91–105, https://doi.org/10.5194/angeo-40-91-2022,https://doi.org/10.5194/angeo-40-91-2022, 2022
Short summary
Electromotive force in the solar wind
Yasuhito Narita
Ann. Geophys., 39, 759–768, https://doi.org/10.5194/angeo-39-759-2021,https://doi.org/10.5194/angeo-39-759-2021, 2021
Short summary
Magnetosheath plasma flow model around Mercury
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021,https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Wavevector spectral signature of decay instability in space plasmas
Horia Comişel, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 39, 165–170, https://doi.org/10.5194/angeo-39-165-2021,https://doi.org/10.5194/angeo-39-165-2021, 2021
Short summary
Error estimate for fluxgate magnetometer in-flight calibration on a spinning spacecraft
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021,https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary

Related subject area

Subject: Magnetosphere & space plasma physics | Keywords: Turbulence
On the ion-inertial-range density-power spectra in solar wind turbulence
Rudolf A. Treumann, Wolfgang Baumjohann, and Yasuhito Narita
Ann. Geophys., 37, 183–199, https://doi.org/10.5194/angeo-37-183-2019,https://doi.org/10.5194/angeo-37-183-2019, 2019
Short summary

Cited articles

Alexandrova, O., Carbone, V., Veltri, P., and Sorriso-Valvo, L.: Small-scale energy cascade of the solar wind turbulence, Astrophys. J., 674, 1153–1157, https://doi.org/10.1086/524056, 2008. a, b
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., and Robert, P.: Universality of solar-wind turbulent spectrum from MHD to electron scales, Phys. Rev. Lett., 103, 165003, https://doi.org/10.1103/PhysRevLett.103.165003, 2009. a
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S., and Reme, H.: Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence, Phys. Rev. Lett., 94, 215002, https://doi.org/10.1103/PhysRevLett.94.215002, 2005. a, b
Biskamp, D., Schwarz, E., and Drake, J. F.: Two-dimensional electron magnetohydrodynamic turbulence, Phys. Rev. Lett., 76, 1264–1267, 1996. a
Download
Short summary
Scaling laws and energy spectra for the electric field, magnetic field, flow velocity, and density are theoretically derived for small-scale turbulence in space plasma on which the electrons behave as a fluid but the ions more as individual particles due to the difference in the mass (the Hall effect). Our theoretical model offers an explanation for the small-scale turbulence spectra measured in near-Earth space.