Articles | Volume 37, issue 3
https://doi.org/10.5194/angeo-37-337-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-337-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geomagnetic conjugate observations of ionospheric disturbances in response to a North Korean underground nuclear explosion on 3 September 2017
Yi Liu
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, China
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, China
Qiong Tang
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, China
Guanyi Chen
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, China
Zhengyu Zhao
Department of Space Physics, School of Electronic Information, Wuhan
University, Wuhan, China
Related authors
Qiong Tang, Chen Zhou, Huixin Liu, Yi Liu, Jiaqi Zhao, Zhibin Yu, Zhengyu Zhao, and Xueshang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-534, https://doi.org/10.5194/acp-2022-534, 2022
Preprint withdrawn
Short summary
Short summary
The geomagnetic and solar effect on Es is studied. The negative correlation between Es and geomagnetic activity at mid-latitude is related to the decreased meteor rate during storm period. The increased Es occurrence in high latitude relates to the changing electric field. The positive correlation between Es and solar activity at high latitude is due to the enhanced IMF in solar maximum. The negative correlation in mid and low latitudes relates to the decreased meteor rate during solar activity.
Mei Li, Zhuangkai Wang, Chen Zhou, Handong Tan, and Meng Cao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-94, https://doi.org/10.5194/nhess-2024-94, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
In order to check the relationship between ground-based electromagnetic anomaly and ionospheric effect before the famous Wenchuan MS 8.0 earthquake, three physical models have been established to simulate the communication process of electromagnetic energy from the Wenchuan hypocenter to the Earth’s surface, via the atmosphere to the ionosphere to cause ionospheric variations.
Qiong Tang, Chen Zhou, Huixin Liu, Yi Liu, Jiaqi Zhao, Zhibin Yu, Zhengyu Zhao, and Xueshang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-534, https://doi.org/10.5194/acp-2022-534, 2022
Preprint withdrawn
Short summary
Short summary
The geomagnetic and solar effect on Es is studied. The negative correlation between Es and geomagnetic activity at mid-latitude is related to the decreased meteor rate during storm period. The increased Es occurrence in high latitude relates to the changing electric field. The positive correlation between Es and solar activity at high latitude is due to the enhanced IMF in solar maximum. The negative correlation in mid and low latitudes relates to the decreased meteor rate during solar activity.
Shufan Zhao, XuHui Shen, Zeren Zhima, and Chen Zhou
Ann. Geophys., 38, 969–981, https://doi.org/10.5194/angeo-38-969-2020, https://doi.org/10.5194/angeo-38-969-2020, 2020
Short summary
Short summary
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu earthquake by analyzing the signal-to-noise ratio (SNR) and using the full-wave model to illustrate a possible mechanism for how the anomalies occurred. The results show that very low-frequency (VLF) radio wave SNR in the ionosphere decreased before the Yushu earthquake. The full-wave simulation results confirm that electron density variation in the lower ionosphere will affect VLF radio signal SNR.
Jiaqi Zhao and Chen Zhou
Ann. Geophys., 37, 263–271, https://doi.org/10.5194/angeo-37-263-2019, https://doi.org/10.5194/angeo-37-263-2019, 2019
Moran Liu, Chen Zhou, Xiang Wang, Bin Bin Ni, and Zhengyu Zhao
Ann. Geophys., 36, 855–866, https://doi.org/10.5194/angeo-36-855-2018, https://doi.org/10.5194/angeo-36-855-2018, 2018
Xiang Xu, Chen Zhou, Run Shi, Binbin Ni, Zhengyu Zhao, and Yuannong Zhang
Ann. Geophys., 34, 815–829, https://doi.org/10.5194/angeo-34-815-2016, https://doi.org/10.5194/angeo-34-815-2016, 2016
Short summary
Short summary
ULF waves can be generated by modulated HF heating in the ionospheric F region, which has long been considered for secure communication with submarines. In this paper we study the effects of background parameters on the process of ULF wave generation and propagation by using a numerical simulation. We find that wave radiation efficiency is higher in the daytime ionosphere at lower latitudes, while ground wave intensity is larger in the nighttime ionosphere with lower modulation frequency.
Zheng Xiang, Binbin Ni, Chen Zhou, Zhengyang Zou, Xudong Gu, Zhengyu Zhao, Xianguo Zhang, Xiaoxin Zhang, Shenyi Zhang, Xinlin Li, Pingbing Zuo, Harlan Spence, and Geoffrey Reeves
Ann. Geophys., 34, 493–509, https://doi.org/10.5194/angeo-34-493-2016, https://doi.org/10.5194/angeo-34-493-2016, 2016
Short summary
Short summary
We used 14 satellites(GOES, POES, THEMIS, RBSP, FENGYUN, REPTile) measurement to investigate the loss mechanisms of a electron dropout event during a intense solar wind dynamic pressure pulse. The observations demonstrated that magnetopause shadowing and atmospheric loss both play important roles in electron flux dropout. Moreover, substrom injections and convection strongly enhanced the energetic electron fluxes, which may delay other than avoid the occurrence of electron flux dropout.
C. Zhou, H. Qing, G. Chen, X. Gu, B. Ni, G. Yang, Y. Zhang, and Z. Zhao
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-7-11901-2014, https://doi.org/10.5194/amtd-7-11901-2014, 2014
Revised manuscript not accepted
Short summary
Short summary
Wuhan atmosphere radio exploration (WARE) radar is the first Mesosphere- -Stratosphere-Troposphere (MST) radar that becomes operative in the mainland of China and is dedicated to real-time atmospheric observations. We present the main configurations and initial results in this paper.The results can be very significant for analyzing the atmospheric characteristics in mid-latitude China and contributing to the worldwide MST community.
S. S. Chang, B. B. Ni, J. Bortnik, C. Zhou, Z. Y. Zhao, J. X. Li, and X. D. Gu
Ann. Geophys., 32, 507–518, https://doi.org/10.5194/angeo-32-507-2014, https://doi.org/10.5194/angeo-32-507-2014, 2014
J. J. Zhao, C. Zhou, G. B. Yang, C. H. Jiang, S. S. Chang, P. Zhu, X. D. Gu, B. B. Ni, and Z. Y. Zhao
Ann. Geophys., 32, 465–472, https://doi.org/10.5194/angeo-32-465-2014, https://doi.org/10.5194/angeo-32-465-2014, 2014
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Ionospheric disturbances
Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes
Investigation of the October effect in VLF signals
Effects of the super-powerful tropospheric western Pacific phenomenon of September–October 2018 on the ionosphere over China: results from oblique sounding
Ionospheric effects of the 5–6 January 2019 eclipse over the People's Republic of China: results from oblique sounding
Study of the equatorial and low-latitude total electron content response to plasma bubbles during solar cycle 24–25 over the Brazilian region using a Disturbance Ionosphere indeX
Diagnostic study of geomagnetic storm-induced ionospheric changes over very low-frequency signal propagation paths in the mid-latitude D region
Complex analysis of the ionosphere variations during the geomagnetic storm at 20 January 2010 performed by Detection of Ionosphere Anomalies (DIA) software and DEMETER satellite data
Dynamic processes in the magnetic field and in the ionosphere during the 30 August–2 September 2019 geospace storm: influence on high frequency radio wave characteristics
Tomographic imaging of a large-scale travelling ionospheric disturbance during the Halloween storm of 2003
Ionospheric anomalies associated with the Mw 7.3 Iran–Iraq border earthquake and a moderate magnetic storm
Model of the propagation of very low-frequency beams in the Earth–ionosphere waveguide: principles of the tensor impedance method in multi-layered gyrotropic waveguides
Strong influence of solar X-ray flares on low-frequency electromagnetic signals in middle latitudes
A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm
Emergence of a localized total electron content enhancement during the severe geomagnetic storm of 8 September 2017
Mitigation of ionospheric signatures in Swarm GPS gravity field estimation using weighting strategies
PPP-based Swarm kinematic orbit determination
Impact of magnetic storms on the global TEC distribution
Rezy Pradipta and Pei-Chen Lai
Ann. Geophys., 42, 301–312, https://doi.org/10.5194/angeo-42-301-2024, https://doi.org/10.5194/angeo-42-301-2024, 2024
Short summary
Short summary
A large explosion released a significant amount of energy into the Earth's upper atmosphere in Beirut on 4 Aug 2020, generating traveling ionospheric disturbances (TIDs). These TIDs were observed in previous work using GPS total electron content measurements around Beirut. Here, we used measurements from the Defense Meteorological Satellite Program and ionosondes in the Mediterranean to show that the TIDs from the Beirut explosion were able to reach greater distances than previously reported.
Marc Hansen, Daniela Banyś, Mark Clilverd, David Wenzel, and M. Mainul Hoque
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-38, https://doi.org/10.5194/angeo-2023-38, 2024
Revised manuscript accepted for ANGEO
Short summary
Short summary
The VLF amplitude does not show a symmetrical behavior over the year, which would be expected from its dependency on the solar position. The VLF amplitude rather shows a distinctive sharp decrease around October, which is hence called the “October effect”. This study is the first to systematically investigate this October effect, which shows a clear latitudinal dependency.
Leonid F. Chernogor, Kostiantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 41, 173–195, https://doi.org/10.5194/angeo-41-173-2023, https://doi.org/10.5194/angeo-41-173-2023, 2023
Short summary
Short summary
The receiver at the Harbin Engineering University and eight surrounding HF broadcast stations ~1000 km observed the response in the ionospheric electron density to the activity of Typhoon Kong-rey (30 September–6 October 2018). On 1–2 and 5–6 October 2018, the 20 min to 60 min period quasi-sinusoidal variations in the electron density with an amplitude of 0.4 % to 6 % resulted in 0.1 Hz to 0.5 Hz amplitude Doppler shift variations, a factor of 2–3 increase as compared to a quiet time reference.
Leonid F. Chernogor, Kostyantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 40, 585–603, https://doi.org/10.5194/angeo-40-585-2022, https://doi.org/10.5194/angeo-40-585-2022, 2022
Short summary
Short summary
The solar eclipse of 5–6 January 2019 perturbed the ionospheric electron density, N, observed with the receiver at the Harbin Engineering University and 14 HF broadcasting stations ~1 000 km around. It was accompanied by ±1.5 Hz Doppler-spectrum broadening, ±0.5 Hz Doppler shift, fD, variations, 15 min period variations in fD caused by 1.6–2.4 % perturbations in N, and period changes of 4–5 min in fD caused by 0.2–0.3 % disturbances in N. The decrease in N attained ~15 % (vs. modeled 16 %).
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022, https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Short summary
In this work, we use the Disturbance Ionosphere indeX (DIX) to study equatorial plasma bubble (EPB) events over the Brazilian equatorial and low latitudes. Our results showed that the DIX detected EPB disturbances in terms of their intensity and occurrence times. Therefore, these responses agreed with the ionosphere behavior before, during, and after the studied EPBs. Finally, these disturbances tended to be higher (lower) in high (low) solar activity.
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Olugbenga Ogunmodimu, Muyiwa P. Ajakaiye, Johnson O. Fatokun, Paul I. Anekwe, Omodara E. Obisesan, Olufemi E. Oyanameh, and Oluwaseun V. Fatoye
Ann. Geophys., 40, 433–461, https://doi.org/10.5194/angeo-40-433-2022, https://doi.org/10.5194/angeo-40-433-2022, 2022
Short summary
Short summary
We combined the observed diurnal VLF amplitude variation in the D region with standard measurements of the E and F regions to perform a diagnostic investigation of coupled geomagnetic storm effects in order to understand the observed storm-induced variations in VLF narrowband based on state and responses of the ionosphere. The dayside VLF amplitude showed a tendency for attenuation following geomagnetic storms, and the h’E and h’F variations confirmed strong storm response over the signal paths.
Anatoliy Lozbin, Viktor Fedun, and Olga Kryakunova
Ann. Geophys., 40, 55–65, https://doi.org/10.5194/angeo-40-55-2022, https://doi.org/10.5194/angeo-40-55-2022, 2022
Short summary
Short summary
Detection of Ionosphere Anomalies (DIA) for detection, identification, and analysis of ionosphere anomalies from satellite spectrograms and time series row data from instruments onboard the DEMETER satellite was designed. Using this software, the analyses of ionosphere parameter variations caused by various factors are provided. The scientific data processing and visualization technologies used in the development of DIA can be used in the creation of software for other scientific space missions.
Yiyang Luo, Leonid Chernogor, Kostiantyn Garmash, Qiang Guo, Victor Rozumenko, and Yu Zheng
Ann. Geophys., 39, 657–685, https://doi.org/10.5194/angeo-39-657-2021, https://doi.org/10.5194/angeo-39-657-2021, 2021
Short summary
Short summary
The 30 August–2 September 2019 geospace storm and its influence on the characteristics of high frequency radio waves over the People's Republic of China have been analyzed. The geospace storm was weak, the magnetic storm was moderate, and the ionospheric storm was moderate to strongly negative, which manifested itself by the reduction in the ionospheric F-region electron density. Appreciable disturbances were also observed to occur in the ionospheric E-region and possibly in the Es layer.
Karl Bolmgren, Cathryn Mitchell, Talini Pinto Jayawardena, Gary Bust, Jon Bruno, and Elizabeth Mitchell
Ann. Geophys., 38, 1149–1157, https://doi.org/10.5194/angeo-38-1149-2020, https://doi.org/10.5194/angeo-38-1149-2020, 2020
Short summary
Short summary
Travelling ionospheric disturbances behave like waves in the ionosphere, the ionised upper part of the atmosphere. In this study, we use an ionospheric tomography technique to map the electron content as affected by the passage of a large-scale travelling ionospheric disturbance launched during the largest geomagnetic storm observed by modern instruments. This is the first such imaging using this software and to the authors' knowledge the first study of this travelling ionospheric disturbance.
Erman Şentürk, Samed Inyurt, and İbrahim Sertçelik
Ann. Geophys., 38, 1031–1043, https://doi.org/10.5194/angeo-38-1031-2020, https://doi.org/10.5194/angeo-38-1031-2020, 2020
Short summary
Short summary
The analysis of unexpected ionospheric phases before large earthquakes is one of the cutting-edge issues in earthquake prediction studies. Ionospheric TEC data were analyzed by short-time Fourier transform and a classic running median to detect abnormalities before the Mw 7.3 Iran–Iraq earthquake on November 12, 2017. The results showed clear positive anomalies 8–9 d before the earthquake as an earthquake precursor due to quiet space weather, local dispersion, and proximity to the epicenter.
Yuriy Rapoport, Vladimir Grimalsky, Viktor Fedun, Oleksiy Agapitov, John Bonnell, Asen Grytsai, Gennadi Milinevsky, Alex Liashchuk, Alexander Rozhnoi, Maria Solovieva, and Andrey Gulin
Ann. Geophys., 38, 207–230, https://doi.org/10.5194/angeo-38-207-2020, https://doi.org/10.5194/angeo-38-207-2020, 2020
Short summary
Short summary
The paper analytically and numerically treats the new theoretical basis for ground-based and satellite monitoring of the most powerful processes in the lower atmosphere and Earth (hurricanes, earthquakes, etc.), solar-wind magnetosphere (magnetic storms) and ionosphere (lightning discharges, thunderstorms, etc.). This can be provided by the determination of phases and amplitudes of radio waves in the Earth and ionosphere. In perspective, damage from the natural disasters can be decreased.
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
Jing Liu, Dong-He Zhang, Anthea J. Coster, Shun-Rong Zhang, Guan-Yi Ma, Yong-Qiang Hao, and Zuo Xiao
Ann. Geophys., 37, 673–687, https://doi.org/10.5194/angeo-37-673-2019, https://doi.org/10.5194/angeo-37-673-2019, 2019
Carlos Sotomayor-Beltran and Laberiano Andrade-Arenas
Ann. Geophys., 37, 153–161, https://doi.org/10.5194/angeo-37-153-2019, https://doi.org/10.5194/angeo-37-153-2019, 2019
Short summary
Short summary
A localized total electron content enhancement (LTE) was observed as a product of the geomagnetic storm that happened on 8 September 2017. This result was unexpected because it was located south of the equatorial ionization anomaly (EIA). The origin of the enhancement of the TEC in the EIA is very likely due to the super-fountain effect. On the other hand, the LTE is suggested to be produced by the contribution of the super-fountain effect along with traveling ionospheric disturbances.
Lucas Schreiter, Daniel Arnold, Veerle Sterken, and Adrian Jäggi
Ann. Geophys., 37, 111–127, https://doi.org/10.5194/angeo-37-111-2019, https://doi.org/10.5194/angeo-37-111-2019, 2019
Short summary
Short summary
Comparing Swarm GPS-only gravity fields to the ultra-precise GRACE K-Band gravity field schematic errors occurs around the geomagnetic equator. Due to the end of the GRACE mission, and the gap to the GRACE-FO mission, only Swarm can provide a continuous time series of gravity fields. We present different and assess different approaches to remove the schematic errors and thus improve the quality of the Swarm gravity fields.
Le Ren and Steffen Schön
Ann. Geophys., 36, 1227–1241, https://doi.org/10.5194/angeo-36-1227-2018, https://doi.org/10.5194/angeo-36-1227-2018, 2018
Short summary
Short summary
In this contribution, we analyse the performance of the Swarm onboard GPS receiver and present the approach for determination of the IfE Swarm kinematic orbit with PPP. The differences between our kinematic orbits and ESA reduced-dynamic orbits are at 1.5 cm, 1.5 cm and 2.5 cm level in along-track, cross-track and radial directions, respectively. A comparison with SLR underlines an accuracy of the kinematic orbits of 3–4 cm.
Donat V. Blagoveshchensky, Olga A. Maltseva, and Maria A. Sergeeva
Ann. Geophys., 36, 1057–1071, https://doi.org/10.5194/angeo-36-1057-2018, https://doi.org/10.5194/angeo-36-1057-2018, 2018
Cited articles
Che, I.-Y., Kim, T. S., Jeon, J.-S., and Lee, H.-I.: Infrasound observation
of the apparent North Korean nuclear test of 25 May 2009, Geophys. Res.
Lett., 36, L22802, https://doi.org/10.1029/2009GL041017, 2009.
Chum, J., Cabrera, M. A., Mošna, Z., Fagre, M., Baše, J., and
Fišer, J.: Nonlinear acoustic waves in the viscous thermosphere and
ionosphere above earthquake, J. Geophys. Res.-Space, 121, 12126–12137, https://doi.org/10.1002/2016JA023450, 2016.
Chum, J., Liu, J.-Y., Podolská, K., and Šindelářová, T.:
Infrasound in the ionosphere from earthquakes and typhoons, J. Atmos. Sol.
Terr. Phy., 171, 72–82, 2018.
Garrison, J. L., Yang, Y.-M., and Lee, S.-C.: Observations of ionospheric
disturbances coincident with North Korean underground nuclear tests,
Abstract SA43B-1754 presented at 2010 Fall Meeting, AGU, 13–17 December 2010, San Francisco,
Calif., 2010.
Gokhberg, M. B., Pilipenlco, V. A., Pokhotelov, O. A., and Partasaraty, S.:
Acoustic disturbance induced by underground nuclear explosion as source of
electrostatic turbulence in the magnetosphere, Doklady AN SSSR, 313,
568–574, 1990.
Gousheva, M., Danov, D., Hristov, P., and Matova, M.: Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects, Nat. Hazards Earth Syst. Sci., 8, 101–107, https://doi.org/10.5194/nhess-8-101-2008, 2008.
Gousheva, M., Danov, D., Hristov, P., and Matova, M.: Ionospheric quasi-static electric field anomalies during seismic activity in August–September 1981, Nat. Hazards Earth Syst. Sci., 9, 3–15, https://doi.org/10.5194/nhess-9-3-2009, 2009.
Hao, Y. Q., Xiao, Z., and Zhang, D. H.: Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res.-Space, 118, 3914–3923, 2013.
Huang, Q.: Retrospective investigation of geophysical data possibly
associated with the M s8.0 Wenchuan earthquake in Sichuan, China, J. Asian
Earth Sci., 41, 421–427, 2011.
Jonah, O. F., Kherani, E. A., and De Paula, E. R.: Investigations of
conjugate MSTIDS over the Brazilian sector during daytime, J. Geophys. Res.-Space, 122, 9576–9587, 2017.
Klimenko, M. V., Klimenko, V. V., Karpov, I. V., and Zakharenkova, I. E.:
Simulation of Seismo-Ionospheric Effects Initiated by Internal Gravity
Waves, Russ. J. Phys. Chem. B, 5, 393–401, 2011.
Kong, J., Yao, Y., Zhou, C., Liu, Y., Zhai, C., Wang, Z., and Liu, L.:
Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance
around the time of 2015 Nepal earthquake, J. Geodesy, 3, 1–12, 2018.
Li, M. and Parrot, M.: Statistical analysis of the ionospheric ion density
recorded by DEMETER in the epicenter areas of earthquakes as well as in
their magnetically conjugate point area, Adv. Space Res., 61, 974–984,
2017.
Liu, J. Y., Le, H., Chen, Y. I., Chen, C. H., Liu, L., Wan, W., Su, Y. Z.,
Sun, Y. Y., Lin, C. H., and Chen, M. Q.: Observations and simulations of
seismo-ionospheric GPS total electron content anomalies before the 12
January 2010 M7 Haiti earthquake, J. Geophys. Res., 116, A04302, https://doi.org/10.1029/2010JA015704, 2011.
Liu, J. Y., Chen, C. H., Sun, Y. Y., Chen, C. H., Tsai, H. F., Yen, H. Y.,
Chum, J., Lastovicka, J., Yang, Q. S., Chen, W. S., and Wen, S.: The
vertical propagation of disturbances triggered by seismic waves of the 11
March 2011 M9.0 Tohoku earthquake over Taiwan, Geophys. Res. Lett., 43,
1759–1765, 2016.
Maruyama, T., Yusupov, K., and Akchurin, A.: Ionosonde tracking of
infrasound wavefronts in the thermosphere launched by seismic waves after
the 2010 M8.8 Chile earthquake, J. Geophys. Res.-Space, 121,
2683–2692, 2016.
Mikhailov, Y. M., Mikhailova, G. A., and Kapustina, O. V.: VLF effects in
the outer ionosphere from the underground nuclear explosion on Novaya Zemlya
island on 24 October, 1990 (INTERCOSMOS 24 satellite data), Phys. Chem.
Earth Pt. C, 25, 93–96, 2000.
Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P.: Geomagnetic
conjugate observations of equatorial airglow depletions, Geophys. Res.
Lett., 29, 1753, https://doi.org/10.1029/2002GL015347, 2002.
Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P.: Geomagnetic
conjugate observations of medium-scale traveling ionospheric disturbances at
midlatitude using all-sky airglow imagers, Geophys. Res. Lett., 31, L15803, https://doi.org/10.1029/2004GL020262,
2004.
Park, J., Frese, R. R. B. von, Grejner-Brzezinska, D. A., Morton, Y., and
Gaya-Pique, L. R.: Ionospheric detection of the 25 May 2009 North Korean
underground nuclear test, Geophys. Res. Lett., 38, L22802, https://doi.org/10.1029/2011GL049430, 2011.
Park, J., Helmboldt, J., Grejner-Brzezinska, D. A., von Frese, R. R. B., and
Wilson, T. L.: Ionospheric observations of underground nuclear explosions
(UNE) using GPS and the Very Large Array, Radio Sci., 48, 463–469, 2013.
Pokhotelov, O. A., Pilipenko, V. A., Fedorov, E. N., Stenflo, L., and
Shukla, P. K.: Induced electromagnetic turbulence in the ionosphere and the
magnetosphere, Phys. Scripta, 50, 600–605, 1994.
Pokhotelov, O. A., Parrot, M., Fedorov, E. N., Pilipenko, V. A., Surkov, V. V., and Gladychev, V. A.: Response of the ionosphere to natural and man-made acoustic sources, Ann. Geophys., 13, 1197–1210, https://doi.org/10.1007/s00585-995-1197-2, 1995.
Pokhotelov, O. A., Pilipenko, V. A., and Parrot, M.: Strong atmospheric disturbances as a possible origin of inner zone particle diffusion, Ann. Geophys., 17, 526–532, https://doi.org/10.1007/s00585-999-0526-2, 1999.
Pulinets, S. A., Boyarchuk, K. A., Hegai, V. V., Kim, V. P., and Lomonosov,
A. M.: Quasi-electrostatic model of atmosphere-thermosphere-ionosphere
coupling, Adv. Space Res., 26, 1209–1218, 2000.
Ritter, P., Lühr, H., and Rauberg, J.: Determining field-aligned
currents with the Swarm constellation mission, Earth Planets Space, 65,
1285–1294, 2013.
Ruzhin, Y. Y., Larkina, V. I., and Depueva, A. K.: Earthquake precursors in
magnetically conjugated ionosphere regions, Adv. Space Res., 21, 525–528,
1998.
Sorokin, V. M., Chmyrev, V. M., and Yaschenko, A. K.: Electrodynamic model
of the lower atmosphere and the ionosphere coupling, J. Atmos. Sol. Terr.
Phy., 63, 1681–1691, 2001.
Xu, T., Hu, Y., Wu, J., Wu, Z., Li, C., Xu, Z., and Suo, Y.: Anomalous
enhancement of electric field derived from ionosonde data before the great
Wenchuan earthquake, Adv. Space Res., 47, 1001–1005, 2011.
Yang, Y.-M., Garrison, J. L., and Lee, S. C.: Ionospheric disturbances
observed coincident with the 2006 and 2009 North Korean underground nuclear
tests, Geophys. Res. Lett., 39, L02103, https://doi.org/10.1029/2011GL050428, 2012.
Zhao, B. and Hao, Y.: Ionospheric and geomagnetic disturbances caused by
the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res.-Space, 120,
5758–5777, 2015.
Zhang, X., Shen, X., Liu, J., Ouyang, X., Qian, J., and Zhao, S.: Analysis of ionospheric plasma perturbations before Wenchuan earthquake, Nat. Hazards Earth Syst. Sci., 9, 1259–1266, https://doi.org/10.5194/nhess-9-1259-2009, 2009.
Zhang, X., Shen, X., Zhao, S., Yao, L., Ouyang, X., and Qian, J.: The
characteristics of quasistatic electric field perturbations observed by
DEMETER satellite before large earthquakes, J. Asian Earth Sci., 79,
42–52, 2014.
Zhou, C., Liu, Y., Zhao, S., Liu, J., Zhang, X., Huang, J., Shen, X., Ni,
B., and Zhao, Z.: An electric field penetration model for seismo-ionospheric
research, Adv. Space Res., 60, 2217–2232, 2017.
Short summary
Underground nuclear explosion (UNE) can produce ionospheric disturbances through a lithosphere–atmosphere–ionosphere coupling mechanism, which is very similar with earthquakes. By using the total electron content observations and Swarm ionospheric current data, we have investigated the geomagnetic conjugate ionospheric disturbances. We proposed that the electric field generated during the UNE test can be an important mechanism for ionospheric disturbance.
Underground nuclear explosion (UNE) can produce ionospheric disturbances through a...