Articles | Volume 40, issue 4
https://doi.org/10.5194/angeo-40-433-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-433-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diagnostic study of geomagnetic storm-induced ionospheric changes over very low-frequency signal propagation paths in the mid-latitude D region
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
William Denig
Department of Sciences, St. Joseph's College of Maine, Standish, ME 04084, USA
Sandip K. Chakrabarti
Indian Centre for Space Physics, Kolkata 700084, India
Olugbenga Ogunmodimu
Department of Electrical Engineering, Manchester Metropolitan University, Manchester, UK
Department of
Electrical Engineering, University of Bolton, Bolton, UK
Muyiwa P. Ajakaiye
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
Johnson O. Fatokun
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
Paul I. Anekwe
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
Omodara E. Obisesan
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
Olufemi E. Oyanameh
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
Oluwaseun V. Fatoye
Space, Atmospheric Physics and Radio wave Propagation Laboratory, Anchor University, Lagos, Nigeria
Related authors
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Muyiwa P. Ajakaiye, Johnson Fatokun, Adeniyi W. Akanni, Jean-Pierre Raulin, Emilia Correia, John E. Enoh, and Paul I. Anekwe
Ann. Geophys., 39, 397–412, https://doi.org/10.5194/angeo-39-397-2021, https://doi.org/10.5194/angeo-39-397-2021, 2021
Short summary
Short summary
In this work, we simulated the effect of atmospheric drag on satellites in low Earth orbit (LEO) during 1-month intervals of disturbed and quiet solar geomagnetic activity. Our results show that geomagnetic storms (e.g. the Bastille Day event) can cause a significant drop in LEO satellite altitudes and increase their background orbit decay rate by 50–70 %. This work can contribute to improved situational awareness and mitigation of potential threats solar energetic events pose to satellites.
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Muyiwa P. Ajakaiye, Johnson Fatokun, Adeniyi W. Akanni, Jean-Pierre Raulin, Emilia Correia, John E. Enoh, and Paul I. Anekwe
Ann. Geophys., 39, 397–412, https://doi.org/10.5194/angeo-39-397-2021, https://doi.org/10.5194/angeo-39-397-2021, 2021
Short summary
Short summary
In this work, we simulated the effect of atmospheric drag on satellites in low Earth orbit (LEO) during 1-month intervals of disturbed and quiet solar geomagnetic activity. Our results show that geomagnetic storms (e.g. the Bastille Day event) can cause a significant drop in LEO satellite altitudes and increase their background orbit decay rate by 50–70 %. This work can contribute to improved situational awareness and mitigation of potential threats solar energetic events pose to satellites.
Related subject area
Subject: Earth's ionosphere & aeronomy | Keywords: Ionospheric disturbances
Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes
Effects of the super-powerful tropospheric western Pacific phenomenon of September–October 2018 on the ionosphere over China: results from oblique sounding
Ionospheric effects of the 5–6 January 2019 eclipse over the People's Republic of China: results from oblique sounding
Study of the equatorial and low-latitude total electron content response to plasma bubbles during solar cycle 24–25 over the Brazilian region using a Disturbance Ionosphere indeX
Complex analysis of the ionosphere variations during the geomagnetic storm at 20 January 2010 performed by Detection of Ionosphere Anomalies (DIA) software and DEMETER satellite data
Dynamic processes in the magnetic field and in the ionosphere during the 30 August–2 September 2019 geospace storm: influence on high frequency radio wave characteristics
Tomographic imaging of a large-scale travelling ionospheric disturbance during the Halloween storm of 2003
Ionospheric anomalies associated with the Mw 7.3 Iran–Iraq border earthquake and a moderate magnetic storm
Model of the propagation of very low-frequency beams in the Earth–ionosphere waveguide: principles of the tensor impedance method in multi-layered gyrotropic waveguides
Strong influence of solar X-ray flares on low-frequency electromagnetic signals in middle latitudes
A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm
Geomagnetic conjugate observations of ionospheric disturbances in response to a North Korean underground nuclear explosion on 3 September 2017
Emergence of a localized total electron content enhancement during the severe geomagnetic storm of 8 September 2017
Mitigation of ionospheric signatures in Swarm GPS gravity field estimation using weighting strategies
PPP-based Swarm kinematic orbit determination
Impact of magnetic storms on the global TEC distribution
Rezy Pradipta and Pei-Chen Lai
Ann. Geophys., 42, 301–312, https://doi.org/10.5194/angeo-42-301-2024, https://doi.org/10.5194/angeo-42-301-2024, 2024
Short summary
Short summary
A large explosion released a significant amount of energy into the Earth's upper atmosphere in Beirut on 4 Aug 2020, generating traveling ionospheric disturbances (TIDs). These TIDs were observed in previous work using GPS total electron content measurements around Beirut. Here, we used measurements from the Defense Meteorological Satellite Program and ionosondes in the Mediterranean to show that the TIDs from the Beirut explosion were able to reach greater distances than previously reported.
Leonid F. Chernogor, Kostiantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 41, 173–195, https://doi.org/10.5194/angeo-41-173-2023, https://doi.org/10.5194/angeo-41-173-2023, 2023
Short summary
Short summary
The receiver at the Harbin Engineering University and eight surrounding HF broadcast stations ~1000 km observed the response in the ionospheric electron density to the activity of Typhoon Kong-rey (30 September–6 October 2018). On 1–2 and 5–6 October 2018, the 20 min to 60 min period quasi-sinusoidal variations in the electron density with an amplitude of 0.4 % to 6 % resulted in 0.1 Hz to 0.5 Hz amplitude Doppler shift variations, a factor of 2–3 increase as compared to a quiet time reference.
Leonid F. Chernogor, Kostyantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 40, 585–603, https://doi.org/10.5194/angeo-40-585-2022, https://doi.org/10.5194/angeo-40-585-2022, 2022
Short summary
Short summary
The solar eclipse of 5–6 January 2019 perturbed the ionospheric electron density, N, observed with the receiver at the Harbin Engineering University and 14 HF broadcasting stations ~1 000 km around. It was accompanied by ±1.5 Hz Doppler-spectrum broadening, ±0.5 Hz Doppler shift, fD, variations, 15 min period variations in fD caused by 1.6–2.4 % perturbations in N, and period changes of 4–5 min in fD caused by 0.2–0.3 % disturbances in N. The decrease in N attained ~15 % (vs. modeled 16 %).
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022, https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Short summary
In this work, we use the Disturbance Ionosphere indeX (DIX) to study equatorial plasma bubble (EPB) events over the Brazilian equatorial and low latitudes. Our results showed that the DIX detected EPB disturbances in terms of their intensity and occurrence times. Therefore, these responses agreed with the ionosphere behavior before, during, and after the studied EPBs. Finally, these disturbances tended to be higher (lower) in high (low) solar activity.
Anatoliy Lozbin, Viktor Fedun, and Olga Kryakunova
Ann. Geophys., 40, 55–65, https://doi.org/10.5194/angeo-40-55-2022, https://doi.org/10.5194/angeo-40-55-2022, 2022
Short summary
Short summary
Detection of Ionosphere Anomalies (DIA) for detection, identification, and analysis of ionosphere anomalies from satellite spectrograms and time series row data from instruments onboard the DEMETER satellite was designed. Using this software, the analyses of ionosphere parameter variations caused by various factors are provided. The scientific data processing and visualization technologies used in the development of DIA can be used in the creation of software for other scientific space missions.
Yiyang Luo, Leonid Chernogor, Kostiantyn Garmash, Qiang Guo, Victor Rozumenko, and Yu Zheng
Ann. Geophys., 39, 657–685, https://doi.org/10.5194/angeo-39-657-2021, https://doi.org/10.5194/angeo-39-657-2021, 2021
Short summary
Short summary
The 30 August–2 September 2019 geospace storm and its influence on the characteristics of high frequency radio waves over the People's Republic of China have been analyzed. The geospace storm was weak, the magnetic storm was moderate, and the ionospheric storm was moderate to strongly negative, which manifested itself by the reduction in the ionospheric F-region electron density. Appreciable disturbances were also observed to occur in the ionospheric E-region and possibly in the Es layer.
Karl Bolmgren, Cathryn Mitchell, Talini Pinto Jayawardena, Gary Bust, Jon Bruno, and Elizabeth Mitchell
Ann. Geophys., 38, 1149–1157, https://doi.org/10.5194/angeo-38-1149-2020, https://doi.org/10.5194/angeo-38-1149-2020, 2020
Short summary
Short summary
Travelling ionospheric disturbances behave like waves in the ionosphere, the ionised upper part of the atmosphere. In this study, we use an ionospheric tomography technique to map the electron content as affected by the passage of a large-scale travelling ionospheric disturbance launched during the largest geomagnetic storm observed by modern instruments. This is the first such imaging using this software and to the authors' knowledge the first study of this travelling ionospheric disturbance.
Erman Şentürk, Samed Inyurt, and İbrahim Sertçelik
Ann. Geophys., 38, 1031–1043, https://doi.org/10.5194/angeo-38-1031-2020, https://doi.org/10.5194/angeo-38-1031-2020, 2020
Short summary
Short summary
The analysis of unexpected ionospheric phases before large earthquakes is one of the cutting-edge issues in earthquake prediction studies. Ionospheric TEC data were analyzed by short-time Fourier transform and a classic running median to detect abnormalities before the Mw 7.3 Iran–Iraq earthquake on November 12, 2017. The results showed clear positive anomalies 8–9 d before the earthquake as an earthquake precursor due to quiet space weather, local dispersion, and proximity to the epicenter.
Yuriy Rapoport, Vladimir Grimalsky, Viktor Fedun, Oleksiy Agapitov, John Bonnell, Asen Grytsai, Gennadi Milinevsky, Alex Liashchuk, Alexander Rozhnoi, Maria Solovieva, and Andrey Gulin
Ann. Geophys., 38, 207–230, https://doi.org/10.5194/angeo-38-207-2020, https://doi.org/10.5194/angeo-38-207-2020, 2020
Short summary
Short summary
The paper analytically and numerically treats the new theoretical basis for ground-based and satellite monitoring of the most powerful processes in the lower atmosphere and Earth (hurricanes, earthquakes, etc.), solar-wind magnetosphere (magnetic storms) and ionosphere (lightning discharges, thunderstorms, etc.). This can be provided by the determination of phases and amplitudes of radio waves in the Earth and ionosphere. In perspective, damage from the natural disasters can be decreased.
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
Jing Liu, Dong-He Zhang, Anthea J. Coster, Shun-Rong Zhang, Guan-Yi Ma, Yong-Qiang Hao, and Zuo Xiao
Ann. Geophys., 37, 673–687, https://doi.org/10.5194/angeo-37-673-2019, https://doi.org/10.5194/angeo-37-673-2019, 2019
Yi Liu, Chen Zhou, Qiong Tang, Guanyi Chen, and Zhengyu Zhao
Ann. Geophys., 37, 337–345, https://doi.org/10.5194/angeo-37-337-2019, https://doi.org/10.5194/angeo-37-337-2019, 2019
Short summary
Short summary
Underground nuclear explosion (UNE) can produce ionospheric disturbances through a lithosphere–atmosphere–ionosphere coupling mechanism, which is very similar with earthquakes. By using the total electron content observations and Swarm ionospheric current data, we have investigated the geomagnetic conjugate ionospheric disturbances. We proposed that the electric field generated during the UNE test can be an important mechanism for ionospheric disturbance.
Carlos Sotomayor-Beltran and Laberiano Andrade-Arenas
Ann. Geophys., 37, 153–161, https://doi.org/10.5194/angeo-37-153-2019, https://doi.org/10.5194/angeo-37-153-2019, 2019
Short summary
Short summary
A localized total electron content enhancement (LTE) was observed as a product of the geomagnetic storm that happened on 8 September 2017. This result was unexpected because it was located south of the equatorial ionization anomaly (EIA). The origin of the enhancement of the TEC in the EIA is very likely due to the super-fountain effect. On the other hand, the LTE is suggested to be produced by the contribution of the super-fountain effect along with traveling ionospheric disturbances.
Lucas Schreiter, Daniel Arnold, Veerle Sterken, and Adrian Jäggi
Ann. Geophys., 37, 111–127, https://doi.org/10.5194/angeo-37-111-2019, https://doi.org/10.5194/angeo-37-111-2019, 2019
Short summary
Short summary
Comparing Swarm GPS-only gravity fields to the ultra-precise GRACE K-Band gravity field schematic errors occurs around the geomagnetic equator. Due to the end of the GRACE mission, and the gap to the GRACE-FO mission, only Swarm can provide a continuous time series of gravity fields. We present different and assess different approaches to remove the schematic errors and thus improve the quality of the Swarm gravity fields.
Le Ren and Steffen Schön
Ann. Geophys., 36, 1227–1241, https://doi.org/10.5194/angeo-36-1227-2018, https://doi.org/10.5194/angeo-36-1227-2018, 2018
Short summary
Short summary
In this contribution, we analyse the performance of the Swarm onboard GPS receiver and present the approach for determination of the IfE Swarm kinematic orbit with PPP. The differences between our kinematic orbits and ESA reduced-dynamic orbits are at 1.5 cm, 1.5 cm and 2.5 cm level in along-track, cross-track and radial directions, respectively. A comparison with SLR underlines an accuracy of the kinematic orbits of 3–4 cm.
Donat V. Blagoveshchensky, Olga A. Maltseva, and Maria A. Sergeeva
Ann. Geophys., 36, 1057–1071, https://doi.org/10.5194/angeo-36-1057-2018, https://doi.org/10.5194/angeo-36-1057-2018, 2018
Cited articles
A118: SID Monitoring Station, https://sidstation.loudet.org/data-en.xhtml, last access: 15 May
2022. a
Abd Rashid, M. M., Ismail, M., Hasbie, A. M., Salut, M. M., and Abdullah, M.: VLF observation of D-region disturbances associated with solar flares at UKM Selangor Malaysia, IEEE International Conference on Space Science and Communication (IconSpace), 249–252, https://doi.org/10.1109/IconSpace.2013.6599474, 2013. a
Ahrens, C. D. and Henson, R.: Meteorology Today: An Introduction to Weather, Climate and the Environment, Cengage Learning, Boston, MA, 736, ISBN-13: 978-0357452073, 2021. a
Akasofu, S.: Relationship Between Geomagnetic Storms and Auroral/Magnetospheric Substorms: Early Studies, Frontiers Astron. Space Sci, 7, 16, https://doi.org/10.3389/fspas.2020.604755, 2020. a
Akasofu, S.-I.: The development of the auroral substorm, Planet. Space Sci., 12, 273–282, https://doi.org/10.1016/0032-0633(64)90151-5, 1964. a
Akasofu, S.-I.: A Review of the Current Understanding in the Study of Geomagnetic Storms, Int. J. Earth Sci. Geophys., 4, 13, https://doi.org/10.35840/2631-5033/1818, 2018. a
Andersson, M. E., Verronen, P. T., Marsh, D. R., Paivarinta, S.-M., and Plane, J. M. C.: WACCM-D-Improved modeling of nitric acid and active chlorine during energetic particle precipitation, J. Geophys. Res.-Atmos., 121, 10328–10341, https://doi.org/10.1002/2015JD024173, 2016. a
Angelopoulos, V., Artemyev, A., Phan, T. D., and Miyashita, Y.: Near-Earth Magnetotail Reconnection Powers Space Storms, Nat. Phys., 16, 317–321, https://doi.org/10.1038/s41567-019-0749-4, 2020. a
Appleton, E. V.: The Existence of more than one Ionised Layer in the Upper Atmosphere, Nature, 120, 1476–4687, https://doi.org/10.1038/120330a0,
1927. a
Appleton, E. V.: Meeting for discussion on the ionosphere, P. Roy. Soc. Lond. A, 141, 697–721, https://doi.org/10.1098/rspa.1933.0149, 1933. a
Appleton, E. and Barnett, M.: Local Reflection of Wireless Waves from the Upper Atmosphere, Nature, 115, 333–334, https://doi.org/10.1038/115333a0, 1925a. a
Appleton, E. V. and Barnett, M. A. F.: On some direct evidence for downward atmospheric reflection of electric rays, P. Roy. Soc. Lond. A., 109, 621–641, https://doi.org/10.1098/rspa.1925.0149, 1925b. a, b
Appleton, E. V. and Barnett, M. A. F.: On wireless interference phenomena between ground waves and waves deviated by the upper atmosphere, P. Roy. Soc. Lond. A, 113, 450–458, https://doi.org/10.1098/rspa.1926.0164, 1926. a
Appleton, E. V. and Naismith, R.: Some further measurements of upper atmospheric ionization, P. Roy. Soc. Lond. A, 150, 685–708, https://doi.org/10.1098/rspa.1935.0129, 1935. a
Araki, T.: Anomalous Phase Changes of Trans equatorial VLF Radio Waves during Geomagnetic Storms, J. Geophys. Res., 79, 4811–4813, https://doi.org/10.1029/JA079i031p04811, 1974. a, b
Aryan, H., Bortnik, J., Meredith, N. P., Horne, R. B., Sibeck, D. G., and Balikhin, M. A.: Multi-parameter chorus and plasmaspheric hiss wave models, J. Geophys. Res.-Space, 126, e2020JA028403, https://doi.org/10.1029/2020JA028403, 2021. a
Aubry, M. P., Russell, C. T., and Kivelson, M. G.: Inward motion of the magnetopause before a substorm, J. Geophys. Res., 75, 7018–7031, https://doi.org/10.1029/JA075i034p07018, 1970. a
Baker, D. N.: Effects of the Sun on the Earth's environment, J. Atmos. Sol.-Terr. Phys., 62, 1669–1681, https://doi.org/10.1016/S1364-6826(00)00119-X, 2000. a
Baker, D. N., Hoxie, V., Zhao, H., Jaynes, A. N., Kanekal, S., Li, X., and Elkington, S.: Multiyear measurements of radiation belt electrons: Acceleration, transport, and loss, J. Geophys. Res.-Space, 124, 588–2602, https://doi.org/10.1029/2018JA026259, 2019. a, b, c
Banks, P. M. and Kockarts, G.: Aeronomy, Academic Press Inc, NY, USA, eBook ISBN 978-1-48326-0-068, 1973. a
Barr, R., Jones, D. L., and Rodger, C. J.: ELF and VLF radio waves, J. Atmos. Sol.-Terr. Phys., 62, 1689–1718, https://doi.org/10.1016/S1364-6826(00)00121-8, 2000. a
Bates, D. R. and Massey, H. S. W.: The basic reactions in the upper atmosphere, P. Roy. Soc. Lond. A., 187, 261–296, https://doi.org/10.1098/rspa.1946.0078, 1946. a
Bates, D. R. and Massey, H. S. W.: The basic reactions in the upper atmosphere II. The theory of recombination in the ionized layers, P. Roy. Soc. Lond. A, 192, 1028, https://doi.org/10.1098/rspa.1947.0134, 1947. a
Belehaki, A., James, S., Hapgood, M., Ventouras, S., Galkin, I., Lembesis, A., Tsagouri, I., Charisi, A., Spogli, L., Berdermann, J., and Häggström, I.: The ESPAS e-infrastructure: Access to data from near-Earth space, Adv. Space Res., 58, 1177–1200, https://doi.org/10.1016/j.asr.2016.06.014, 2016. a, b
Belrose, J. S. and Thomas, L.: Ionization changes in the middle latitude D-region associated with geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 30, 1397–1413, https://doi.org/10.1016/S0021-9169(68)91260-9, 1968. a
Bennington, T. W.: Radio Waves and the Ionosphere, Nature, 154, 413, https://doi.org/10.1038/154413a0, 1944. a
Benson, R. F.: Four Decades of Space-Borne Radio Sounding, URSI Radio Science Bulletin, 2010, 24–44, 2010. a
Betz, H. D., Schmidt, K., and Oettinger, W. P.: LINET–An international VLF/LF lightning detection network in Europe, in: Lightning: principles, instruments and applications, Springer, Dordrecht, 115–140, https://doi.org/10.1007/978-1-4020-9079-0_5, 2009. a
Beynon, W. J. G.: The physics of the ionosphere, Sci. Prog., 57, 415–433, http://www.jstor.org/stable/43419882 (last access: 18 May 2022), 1969. a
Bibl, K.: Evolution of the ionosonde, Ann. Geophys., 41, https://doi.org/10.4401/ag-3810, 1998. a
Bilitza, D.: Electron density in the D-region as given by the International Reference Ionosphere, in: International Reference Ionosphere IRI 79, UAG-82, World Data Center A for Solar-Terrestrial Physics, edited by: Lincoln, J. V. and Conkright, R.O., 7–10, https://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_uag/ (last access: 2 Decmeber 2021), 1981. a
Bilitza, D.: International Reference Ionosphere 1990, NSSDC, Report 90-22, Greenbelt, MD, 160, https://ntrs.nasa.gov/api/citations/19910021307/downloads/19910021307.pdf (last access: 2 Demceber 2021), 1990. a
Bilitza, D.: The E- and D-region in IRI, Adv. Space Res., 21, 871–874, https://doi.org/10.1016/S0273-1177(97)00645-5, 1998. a, b
Bilitza, D.: International Reference Ionosphere 2000, Radio Sci., 36, 261–275, https://doi.org/10.1029/2000RS002432,
2001. a
Bilitza, D.: IRI the International Standard for the Ionosphere, Adv. Radio Sci., 16, 1–11, https://doi.org/10.5194/ars-16-1-2018, 2018. a
Bilitza, D. and Reinisch, B. W.: International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42, 599–609, https://doi.org/10.1016/j.asr.2007.07.048, 2008. a
Blake, J. B., Inan, U. S., Walt, W., Bell, T. F., Bortnik, J., Chenette, D. L., and Christian, H. J.: Lightning-induced energetic electron flux enhancements in the drift loss cone, J. Geophys. Res., 106, 29733–29744, https://doi.org/10.1029/2001JA000067, 2001. a
Blanc, M.: Magnetosphere-Ionosphere Coupling, Comput. Phys. Commun., 49, 103–118, https://doi.org/10.1016/0010-4655(88)90219-6, 1988. a
Blanc, M. and Richmond, A.: The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669–1686, https://doi.org/10.1029/JA085iA04p01669, 1980. a
Blanch, E., Marsal, S., Segarra, A., Torta, J. M., Altadill, D., and Curto, J. J.: Space weather effects on Earth's environment associated to the 24–25 October 2011 geomagnetic storm, Space Weather, 11, 153–168, https://doi.org/10.1002/swe.20035, 2013. a
Bonde, R. E. F., Lopez, R. E., and Wang, J. Y.: The effect of IMF fluctuations on the subsolar magnetopause position: A study using a global MHD model, J. Geophys. Res.-Space, 123 2598–2604, https://doi.org/10.1002/2018JA025203, 2018. a
Borovsky, J. E. and Denton, M. H.: Differences between CME-driven storms and CIR-driven storms, J Geophys. Res., 111, A07S08, https://doi.org/10.1029/2005JA011447, 2006. a
Borovsky, J. E. and Shprits, Y. Y.: Is the Dst index sufficient to define all geospace storms? J. Geophys. Res.-Space, 122, 11543–11547, https://doi.org/10.1002/2017JA024679, 2017. a
Breit, G., and Tuve, M. A.: A radio method of estimating the height of the conducting layer, Nature, 116, p. 357, https://doi.org/10.1038/116357A0, 1925. a
Budden, K. D.: I. The Propagation of a Radio-Atmospheric, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, 1–19, https://doi.org/10.1080/14786445108561218, 1951. a
Budden, K. G.: The propagation of very low frequency radio waves to great distances, Philos. Mag., 44, 504–513, https://doi.org/10.1080/14786440508520335, 1953. a
Budden, K. G.: The “Waveguide Mode” Theory of the Propagation of Very-Low-Frequency Radio Waves, Proc. IRE, 45, 772–774, https://doi.org/10.1109/JRPROC.1957.278471, 1957. a
Burch, J. L.: Magnetosphere-Ionosphere Coupling, Past to Future, in: Magnetosphere‐Ionosphere Coupling in the Solar System, Geophysical Monograph Series, edited by: Chappell, C. R., Schunk, R. W., Banks, P. M., Burch, J. L., and Thorne, R. M., ISBN: 9781119066774, 1–17, https://doi.org/10.1002/9781119066880.ch1, 2016. a
Cassak, P. A.: Inside the Black Box: Magnetic Reconnection and the Magnetospheric Multiscale Mission, Space Weather, 14, 186–197, https://doi.org/10.1002/2015SW001313, 2016. a
Chakrabarti, S. K., Sasmal, S., and Chakrabarti, S.: Ionospheric anomaly due to seismic activities – Part 2: Evidence from D-layer preparation and disappearance times, Nat. Hazards Earth Syst. Sci., 10, 1751–1757, https://doi.org/10.5194/nhess-10-1751-2010, 2010. a
Chakraborty, M., Kumar, S., De, B. K. and Guha, A.: Effects of geomagnetic storm on low latitude ionospheric total electron content: A case study from Indian sector, J. Earth Syst. Sci., 124, 1115–1126, https://doi.org/10.1007/s12040-015-0588-3, 2015. a
Chand, A. E. and Kumar, S.: VLF modal interference distance and nighttime D region VLF reflection height for west-east and east-west propagation paths to Fiji, Radio Sci., 52, 1004–1015, https://doi.org/10.1002/2016RS006221, 2017. a
Chandra, R., Gopalswamy, N., Mäkelä, P., Xie, H., Yashiro, S., Akiyama, S., Uddin, W., Srivastava, A. K., Joshi, N. C., Jain, R., Awasthi, A. K., Manoharan, P. K., Mahalakshmi, K., Dwivedi, V. C., Choudhary, D. P., and Nitta, N. V.: Solar energetic particle events during the rise phases of solar cycles 23 and 24, Adv. Space Res., 52, 2102–2111, https://doi.org/10.1016/j.asr.2013.09.006, 2013. a
Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Proc. Phys. Soc., 43, 26–45, https://doi.org/10.1088/0959-5309/43/1/305, 1931. a
Chapman, S. and Ferraro, V.: A New Theory of Magnetic Storms, Nature, 126, 129–130, https://doi.org/10.1038/126129a0, 1930. a
Chapman, J. H. and Warren, E. S.: Topside sounding of the Earth's ionosphere, Space Sci. Rev., 8, 846–865, https://doi.org/10.1007/BF00175119, 1968. a
Chilton, C. J., Crombie, D. D., and Jean, A. G.: Phase Variations in V.L.F. Propagation (Chapter 19), in: Propagation of Radio Waves at Frequencies Below 300 kc/s: Proceedings of the Seventh meeting of the AGARD Ionospheric Research Committee, Munich 1962, edited by: Blackband, W. T., AGARDograph, Elsevier, Amsterdam, Netherlands, 74, 257–290, https://doi.org/10.1016/B978-0-08-010268-9.50023-8, 1964. a
Choi, Y., Moon, Y. J., Choi, S., Baek, J. H., Kim, S. S., Cho, K. S., and Choe, G. S.: Statistical Analysis of the Relationships among Coronal Holes, Corotating Interaction Regions, and Geomagnetic Storms, Sol. Phys., 254, 311–323, https://doi.org/10.1007/s11207-008-9296-3, 2009. a
Choudhury, A., De, B. K., Guha, A., and Roy, R.: Long-duration geomagnetic storm effects on the D region of the ionosphere: Some case studies using VLF signal, J. Geophys. Res.-Space, 120, 778–787, https://doi.org/10.1002/2014JA020738, 2015. a, b, c
Clilverd, M. A., Seppala, A., Rodger, C. J., Thomson, N. R., Lichtenberger, J., and Steinbach, P.: Temporal variability of the descent of high-altitude NOX inferred from ionospheric data, J. Geophys. Res.-Space, 112, A09307, https://doi.org/10.1029/2006JA012085, 2007. a
Clilverd, M. A., Rodger, C. J., Thomson, N. R., Brundell, J. B., Ulich, T., Lichtenberger, J., Cobbett, N., Collier, A. B., Menk, F. W., Seppälä, A., Verronen, P. T., and Turunen, E.: Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network, Space Weather, 7, S04001, https://doi.org/10.1029/2008SW000412, 2009. a
Clilverd, M. A., Rodger, C. J., Neal, J. J., and Cresswell-Moorcock, K.: Remote sensing space weather events through ionospheric radio: The AARDDVARK network, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1–1, https://doi.org/10.1109/URSIGASS.2014.6929921, 2014. a
Colwell, R. and Friend, A.: The D Region of the Ionosphere, Nature, 137, p. 782. https://doi.org/10.1038/137782a0, 1936. a, b
Crombie, D. D.: Phase and Time Variations in VLF Propagation Over Long Distances, J. Res. NBS Radio Science, 68D, 1223–1224, 1964. a
Crombie, D. D.: Further Observations of Sunrise and Sunset Fading of Very-Low-Frequency Signals, Radio Sci., 1, 47–51, https://doi.org/10.1002/rds19661147, 1966. a
Cummer, S. A., Inan, U. S., and Bell, T. F.: Ionospheric D region remote sensing using VLF radio atmospherics, Radio Sci., 33, 1781–1792, https://doi.org/10.1029/98RS02381, 1998. a
Danilov, A. D. and Smirnova, N. V.: Improving the 75 to 300 km ion composition model of the IRI, Adv. Space Res., 15, 171–177, https://doi.org/10.1016/S0273-1177(99)80044-1, 1995. a
Davies, K. and Hartmann, G. K.: Studying the ionosphere with the Global Positioning System, Radio Sci., 32, 1695–1703, https://doi.org/10.1029/97RS00451, 1997. a
Dellinger, J. H.: Sudden ionospheric disturbances, Terr. Magn. Atmos. Electr., 42, 49–53, https://doi.org/10.1029/TE042i001p00049, 1937. a
Dickinson, P. H. G. and Bennett, F. D. G: Diurnal variations in the D-region during a storm after-effect, J. Atmos. Terr. Phys., 40, 549–558, https://doi.org/10.1016/0021-9169(78)90092-2, 1978. a, b
Dierckxsens, M., Tziotziou, K., Dalla, S., Patsou, I., Marsh, M. S., Crosby, N. B., Malandraki, O., and Tsiropoula, G.: Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events, Sol. Phys., 290 841–874, https://doi.org/10.1007/s11207-014-0641-4, 2015. a
Dougherty, J. P. and Farley, D. T.: A theory of incoherent scattering of radio waves by a plasma, P. Roy. Soc. Lond. A, 259, 79–99, https://doi.org/10.1098/rspa.1960.0212, 1961. a
Dougherty, J. P. and Farley, D. T.: A theory of incoherent scattering of radio waves by a plasma: 3. Scattering in a partly ionized gas, J. Geophys. Res., 68, 5473–5486, https://doi.org/10.1029/JZ068i019p05473, 1963. a
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961. a
Eccles, J. V., Hunsucker, R. D., Rice, D., and Sojka, J. J.: Space weather effects on midlatitude HF propagation paths: Observations and a data-driven D region model, Space Weather, 3, S01002, https://doi.org/10.1029/2004SW000094, 2005. a, b
Evans, J. V.: Millstone Hill Thomson scatter results for 1965, Tech. Rep. 474, Lincoln Lab., Mass. Inst. of Technol., Cambridge, 8 December, http://hdl.handle.net/1721.1/97666 (last access: 18 May 2022), 1969a. a
Evans, J. V.: Theory and practice of ionosphere study by Thomson scatter radar, Proc. IEEE, 57, 496–530, https://doi.org/10.1109/PROC.1969.7005, 1969b. a
Fagundes, P. R., Cardoso, F. A., Fejer, B. G., Venkatesh, K., Ribeiro, B. A. G., and Pillat, V. G.: Positive and negative GPS‐TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector, J. Geophys. Res.-Space, 121, 5613–5625, https://doi.org/10.1002/2015JA022214, 2016. a
Fairfield, D. H., Average and unusual locations of the Earth's magnetopause and bow shock, J. Geophys. Res., 76, 6700–6716, https://doi.org/10.1029/JA076i028p06700, 1971. a
Farley, D. T., Dougherty, J. P., and Barron, D. W.: A Theory of Incoherent Scattering of Radio Waves by a Plasma II. Scattering in a Magnetic Field, P. Roy. Soc. London A, 263, 238–258, https://doi.org/10.1098/rspa.1961.0158, 1961. a
Fejer, B. G., Larsen, M. F., and Farley, D. T.: Equatorial disturbance dynamo electric fields, Geophys. Res. Lett., 10, 537–540, https://doi.org/10.1029/GL010i007p00537, 1983. a
Forbush, S. E: World-wide cosmic ray variations, 1937–1952, J. Geophys. Res., 59, 525–542, https://doi.org/10.1029/JZ059i004p00525, 1954. a
Friedrich, M. and Torkar, K. M.: An empirical model of the non-auroral D Region, Radio Sci., 27, 945–953, https://doi.org/10.1029/92RS01929, 1992. a
Fuller-Rowell, T. J., Codrescu, M. V., Moffett, R. J., and Quegan, S.: Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893–3914, https://doi.org/10.1029/93JA02015, 1994. a
Ganushkina, N. Y., Liemohn, M. W., and Dubyagin, S.: Current systems in the Earth's magnetosphere, Rev. Geophys., 56, 309–332, https://doi.org/10.1002/2017RG000590, 2018. a
Gardiner, G. W.: Origin of the Term Ionosphere, Nature, 224, 1096, https://doi.org/10.1038/2241096a0, 1969. a
Gauss, C. F.: Allgemeine Theorie des Erdmagnetismus, in: Resultate aus den Beobachtungen des magnetischen Vereins im Jahre 1838, edited by: Gauss, C. F. and Weber, W., Weidmannsche Buchhandlung, Leipzig, 1–57, https://archive.org/details/ResultateausdenBd2Gaus
(last access: 18 May 2022), 1838. a
George, H., Kilpua, E., Osmane, A., Asikainen, T., Kalliokoski, M. M. H., Rodger, C. J., Dubyagin, S., and Palmroth, M.: Outer Van Allen belt trapped and precipitating electron flux responses to two interplanetary magnetic clouds of opposite polarity, Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, 2020. a, b
GFZ: German Research Center for Geosciences, Potsdam (Germany), https://www.gfzpotsdam.de/en/kp-index,
last access: 1 June 2022. a
Glassmeier, K.-H. and Tsurutani, B. T.: Carl Friedrich Gauss – General Theory of Terrestrial Magnetism – a revised translation of the German text, Hist. Geo Space. Sci., 5, 11–62, https://doi.org/10.5194/hgss-5-11-2014, 2014. a
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: What is a geomagnetic storm?, J. Geophys. Res.-Space, 99, 5771–5792, https://doi.org/10.1029/93JA02867, 1994. a, b
Gonzalez, W. D., Tsurutani, B. T., and Clúa de Gonzalez, A. L.: Interplanetary origin of geomagnetic storms, Space Sci. Rev., 88, 529–562, https://doi.org/10.1023/A:1005160129098, 1999. a, b
Gopalswamy N., Chapter 2 – Extreme Solar Eruptions and their Space Weather Consequences, in: Extreme Events in Geospace, edited by: Buzulukova, N., Elsevier Publishing Co., Amsterdam, Netherlands, 37–63, https://doi.org/10.1016/B978-0-12-812700-1.00002-9, 2018. a
Grafe, A., Lauter, E.-A., Nikutowski, B., and Wagner, C. U.: Precipitation of Energetic Electrons into the Mid-Latitude Ionosphere After Geomagnetic Storms, edited by: Rycroft, M. J., COSPAR Colloquia Series, Pergamon, Oxford, U.K., 20, 157–162, https://doi.org/10.1016/S0964-2749(13)60035-9, 1980. a
Greenwald, R. A.: History of the Super Dual Auroral Radar Network (SuperDARN)-I: pre-SuperDARN developments in high frequency radar technology for ionospheric research and selected scientific results, Hist. Geo Space. Sci., 12, 77–93, https://doi.org/10.5194/hgss-12-77-2021, 2021. a
Greenwald R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., and Yamagishi, H.: Darn/superdarn, Space Sci. Rev., 71, 761–796, https://doi.org/10.1007/BF00751350, 1995. a
Greer, K. R., Immel, T., and Ridley, A.: On the variation in the ionospheric response to geomagnetic storms with time of onset, J. Geophys. Res.-Space, 122, 4512–4525, https://doi.org/10.1002/2016JA023457, 2017. a
Gross, N. C. and Cohen, M. B.: VLF remote sensing of the D region ionosphere using neural networks, J. Geophys. Res.-Space, 125, e2019JA027135, https://doi.org/10.1029/2019JA027135, 2020. a
Gu, T. T. and Xu, H. L.: Mode Interferences of VLF Waves in the Presence of an Anisotropic Terrestrial Waveguide, in: Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering, edited by: Steglich, P., 23, InTechOpen Limited, London, https://doi.org/10.5772/intechopen.91238, 2020. a
Gu, X., Xia, S., Fu, S., Xiang, Z., Ni, B., Guo, J., and Cao, X.: Dynamic Responses of Radiation Belt Electron Fluxes to Magnetic Storms and their Correlations with Magnetospheric Plasma Wave Activities, Astrophys. J., 891, 127, https://doi.org/10.3847/1538-4357/ab71fc, 2020. a
Guerrero, A., Palacios, J., Rodríguez-Bouza, M., Rodríguez-Bilbao, I., Aran, A., Cid, C., Herraiz, M., Saiz, E., Rodrigues-Caderot, G., and Cerrato, Y.: Storm and substorm causes and effects at midlatitude location for the St. Patrick's 2013 and 2015 events, J. Geophys. Res.-Space, 122, 9994–10011, https://doi.org/10.1002/2017JA024224, 2017. a
Hajra, R.: September 2017 Space-Weather Events: A Study on Magnetic Reconnection and Geoeffectiveness, Sol. Phys., 296, 50, https://doi.org/10.1007/s11207-021-01803-7, 2021. a
Hayes, L. A., O'Hara, O. S. D., Murray, S. A., and Gallagher, P. T.: Solar Flare Effects on the Earth's Lower Ionosphere, Sol. Phys., 296, 157, https://doi.org/10.1007/s11207-021-01898-y, 2021. a
Heaviside, O.: Telegraphy, in: Encyclopaedia Britannica, 214, Edinburgh and London, Adam and Charles Black, 1902. a
Heelis, R. A. and Maute, A.: Challenges to understanding the Earth's ionosphere and thermosphere, J. Geophys. Res.-Space, 125, e2019JA027497, https://doi.org/10.1029/2019JA027497, 2020. a
Hegde, S., Bobra, M. G., and Scherrer, P. H.: Classifying Signatures of Sudden Ionospheric Disturbances, Research Notes of the AAS, 2, 162, https://doi.org/10.3847/2515-5172/aade47, 2018. a
Horne, R. B., Lam, M. M., and Green, J. C.: Energetic electron precipitation from the outer radiation belt during geomagnetic storms, Geophys. Res. Lett., 36, L19104, https://doi.org/10.1029/2009GL040236, 2009. a
Hui, D., Chakrabarty, D., Sekar, R., Reeves, G. D., Yoshikawa, A., and Shiokawa, K.: Contribution of storm time substorms to the prompt electric field disturbances in the equatorial ionosphere, J. Geophys. Res.-Space, 122, 5568–5578, https://doi.org/10.1002/2016JA023754, 2017. a
Hunsucker, R. D.: Auroral and polar-cap ionospheric effects on radio propagation, IEEE Trans. Antennas Propagation, 40, 818–828, https://doi.org/10.1109/8.155747, 1992. a
Immel, T. J. and Mannucci, A. J.: Ionospheric redistribution during geomagnetic storms, J. Geophys. Res.-Space, 118, 7928–7939, https://doi.org/10.1002/2013JA018919, 2013. a
Inan, U. S., Cummer, S. A., and Marshall, R. A.: A survey of ELF and VLF research on lightning-ionosphere interactions and causative discharges, J. Geophys. Res., 115, A00E36, https://doi.org/10.1029/2009JA014775, 2010. a, b
Jackson, J. E.: Alouette-ISIS Program Summary, NSSDC/WDC-A-R and S 86-09, 94, https://www.scribd.com/document/48695449/Alouette-IsIS-Program-Summary
(last access: 18 May 2022), 1986. a
Janvier, M., Demoulin, P., Guo, J., Dasso, S., Regnault, F., Topsi-Moutesidou, S., Gutierrez, C., and Perri, B.: The Two-step Forbush Decrease: A Tale of Two Substructures Modulating Galactic Cosmic Rays within Coronal Mass Ejections, Astrophys. J., 922, 216, https://doi.org/10.3847/1538-4357/ac2b9b, 2021. a
Johnson, C. Y.: Ionospheric composition and density from 90 to 1200 kilometers at solar minimum, J. Geophys. Res., 71, 330–332, https://doi.org/10.1029/JZ071i001p00330, 1966. a
Jordanova, V. K., Ilie, R., and Chen, M. W.: Introduction and historical background, in: Ring Current Investigations (The Quest for Space Weather Prediction), edited by: Jordanova, V. K., Ilie, R., and Chen, M. W., Elsevier, Amsterdam, ISBN: 9780128155714, 1–13, https://doi.org/10.1016/B978-0-12-815571-4.00001-9, 2020. a
Kane, R. P.: Ionospheric foF2 anomalies during some intense geomagnetic storms, Ann. Geophys., 23, 2487–2499, https://doi.org/10.5194/angeo-23-2487-2005, 2005. a
Kelley, M. C.: The Earth's Ionosphere, Plasma Physics and Electrodynamics, Academic Press, Cambridge, Massachusetts, U.S.A., 576 pp., ISBN: 978012088425, 2009. a
Kennelly, A.: On the Elevation of the Electrically-Conducting Strata of the
Earth's Atmosphere, Elec. World and Engr., 39, p. 473, 1902. a
Kanekal, S. and Miyoshi, Y.: Dynamics of the terrestrial radiation belts: a review of recent results during the VarSITI (Variability of the Sun and Its Terrestrial Impact) era, 2014–2018, Prog. Earth Planet Sci., 8, 22, https://doi.org/10.1186/s40645-021-00413-y, 2021. a
Kerrache, F., Amor, S. N., and Kumar, S.: Ionospheric D region disturbances due to FAC and LEP associated with three severe geomagnetic storms as observed by VLF signals, J. Geophys. Res.-Space, 126, e2020JA027838, https://doi.org/10.1029/2020JA027838, 2021. a
Kikuchi, T. and Evans, D. S.: Quantitative study of substorm-associated VLF phase anomalies and precipitating energetic electrons on November 13, 1979, J. Geophys. Res., 88, 871–880, https://doi.org/10.1029/JA088iA02p00871, 1983. a
Kilfoyle, B. and Jacka, F.: Geomagnetic L Coordinates, Nature, 220, 773–775, https://doi.org/10.1038/220773a0, 1968. a
Kim, R. S., Cho, K. H., Kim, Y. D., Park, Y. J., Moon, Y. J., Yi, Y., Lee, J., Wang, H., Song, H., and Dryer, M.: CME Earthward Direction as an Important Geoeffectiveness Indicator, Astrophys. J., 677, 1378–1384, https://doi.org/10.1086/528928, 2008. a
Kleimenova, N. G., Kozyreva, O. V., Rozhnoy, A. A., and Soloveva, M. S.: Variations in the VLF signal parameters on the Australia-Kamchatka radio path during magnetic storms, Geomagn. Aeron. 44, 385–393, 2004. a
Kovács, T., Plane, J. M. C., Feng, W., Nagy, T., Chipperfield, M. P., Verronen, P. T., Andersson, M. E., Newnham, D. A., Clilverd, M. A., and Marsh, D. R.: D-region ion–neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) – WACCM-SIC and WACCM-rSIC, Geosci. Model Dev., 9, 3123–3136, https://doi.org/10.5194/gmd-9-3123-2016, 2016. a
Kulyamin, D. V. and Dymnikov, V. P.: Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region, Russ. J. Numer. Anal. M., 31, 159–171, https://doi.org/10.1515/rnam-2016-0016, 2016. a
Kumar, A. and Kumar, S.: Space weather effects on the low latitude D-region ionosphere during solar minimum, Earth Planet. Space, 66, 76, https://doi.org/10.1186/1880-5981-66-76, 2014. a, b, c
Kumar, A. and Kumar, S.: Ionospheric D region parameters obtained using VLF measurements in the South Pacific region, J. Geophys. Res.-Space, 125, e2019JA027536, https://doi.org/10.1029/2019JA027536, 2020. a
Kumar, S., Kumar, A., Menk, F., Maurya, A. K., Singh, R., and Veenadhari, B.: Response of the low-latitude D region ionosphere to extreme space weather event of 14–16 December 2006, J. Geophys. Res.-Space, 120, 788–799, https://doi.org/10.1002/2014JA020751, 2015. a, b, c
Kutiev, I., Tsagouri, I., Perrone, L., Pancheva, D., Mukhtarov, P., Mikhailov, A., Lastovicka, J., Jakowski, N., Buresova, D., Blanch, E., Andonov, B., Altadill, D., Magdaleno, S., Parisi, M., and Torta, J. M.: Solar activity impact on the Earth's upper atmosphere, J. Space Weather Space Clim., 3, https://doi.org/10.1051/swsc/2013028, 2013. a
Lanzagorta, M.: Underwater Communications (Synthesis Lectures on Communications), Morgan and Claypool Publishers, San Rafael, California (USA), 129, https://doi.org/10.2200/S00409ED1V01Y201203COM006, 2012. a
Lauter, E. A. and Knuth, R. H.: Precipitation of high energy particles into the upper atmosphere at medium latitudes after magnetic storms, J. Atmos. Sol.-Terr. Phys., 29, 411–417, https://doi.org/10.1016/0021-9169(67)90023-2, 1967. a
Lastovicka, J.: Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere, J. Atmos. Sol.-Terr. Phys., 58, 831–843, https://doi.org/10.1016/0021-9169(95)00106-9, 1996. a, b
Laughlin, L. K., Turner, N. E., and Mitchell, E. J. J.: Geoeffectiveness of CIR and CME Events: Factors Contributing to Their Differences, Southeast. Assoc. Res. Astron., 2, 19–22, 2008. a
Le, H., Liu, L., Ren, Z., Chen, Y., Zhang, H., and Wan, W.: A modeling study of global ionospheric and thermospheric responses to extreme solar flare, J. Geophys. Res.-Space, 121, 832–840, https://doi.org/10.1002/2015JA021930, 2008. a
Lincoln, J. V.: Geomagnetic and solar data, J. Geophys. Res., 66, 1561–1563, https://doi.org/10.1029/JZ066i005p01561, 1961. a
Lincoln, J. V.: The listing of sudden ionospheric disturbances, Planet. Space Sci., 12, 419–434, https://doi.org/10.1016/0032-0633(64)90035-2, 1964. a
Liu, S. L. and Li, L. W.: Study on Relationship between Southward IMF Events and Geomagnetic Storms, Chinese J. Geophys., 45, 301–310, https://doi.org/10.1002/cjg2.243, 2002. a
Lodge, O.: Mr. Marconi's Results in Day and Night Wireless Telegraphy, Nature, 66, 1705, https://doi.org/10.1038/066222c0, 1902. a
Lynn, K. J. W.: Some differences in diurnal phase and amplitude variations for VLF signals, J. Atmos. Terr. Phys., 40, 145–150, https://doi.org/10.1016/0021-9169(78)90018-1, 1978. a
Machol, J., Snow, M., Woodraska, D., Woods, T., Viereck, R., and Coddington. O.: An improved lyman-alpha composite, Earth Space Sci., 6, 2263–2272, https://doi.org/10.1029/2019EA000648, 2019. a
Mannucci, A. J., Wilson, B. D., Yuan, D. N., Ho, C. H., Lindqwister, U. J., and Runge, T. F.: A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci., 33, 565–582, https://doi.org/10.1029/97RS02707, 1998. a
Mannucci, A. J., Ao, C. O., and Williamson, W.: GNSS Radio Occultation, in: Position, Navigation, and Timing Technologies in the 21st Century, edited by: Morton, Y. T. J., Diggelen, F., Spilker, J. J., Parkinson, B. W., Lo, S., and Gao, G., chap. 33, 971–1013, https://doi.org/10.1002/9781119458449.ch33, 2020. a
Marconi, G.:, Syntonic Wireless Telegraphy, J. Soc. Arts, 49, 505–520, 1901. a
Marr, G. V.: The penetration of solar radiation into the atmosphere, P. Roy. Soc. Lond. A, 288, 531–539, https://doi.org/10.1098/rspa.1965.0239, 1965. a
Maurya, A. K., Venkatesham, K., Kumar, S., Singh, R., Tiwari, P., and Singh, A. K.: Effects of St. Patrick's Day geomagnetic storm of March 2015 and of June 2015 on low-equatorial D region ionosphere, J. Geophys. Res.-Space, 123, 6836–6850, https://doi.org/10.1029/2018JA025536, 2018. a, b
Mayaud, P. N: Derivation, Meaning, and Use of Geomagnetic Indices, Geophys. Monogr. Ser., 22, ISBN: 9780875900223, https://doi.org/10.1029/GM022, 1980. a
McCormick, J. C. and Morris, M. B.: D region Ionospheric Imaging Using VLF/LF Broadband Sferics, Forward Modeling, and Tomography, 25th International Lightning Detection Conference and 7th International Lightning Meteorology Conference, 12–15 March 2018, Ft. Lauderdale, FL, 2018. a
McIlwain, C. E.: Coordinates for mapping the distribution of magnetically trapped particles, J. Geophys. Res., 66, 3681–3691, https://doi.org/10.1029/JZ066i011p03681, 1961. a
McPherron, R. L.: Magnetospheric substorms, Rev. Geophys., 17, 657–681, https://doi.org/10.1029/RG017i004p00657, 1979. a, b, c
McPherron, R., Weygand, J., and Hsu, T.-S.: Response of the Earth's magnetosphere to changes in the solar wind, J. Atmos. Sol.-Terr. Phys., 70, 303–315, https://doi.org/10.1016/j.jastp.2007.08.040, 2008. a
McRae, W. M. and Thomson, N. R.: VLF phase and amplitude: daytime ionospheric parameters, J. Atmos. Sol.-Terr. Phys., 62, 609–618, https://doi.org/10.1016/S1364-6826(00)00027-4, 2000. a
McRae, W. M. and Thomson, N. R.: Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations, J. Atmos. Sol.-Terr. Phys., 66, 77–87, https://doi.org/10.1016/j.jastp.2003.09.009, 2004. a
Mironova, I., Sinnhuber, M., Bazilevskaya, G., Clilverd, M., Funke, B., Makhmutov, V., Rozanov, E., Santee, M. L., and Sukhodolov, T.: Exceptional middle latitude electron precipitation detected by balloon observations: implications for atmospheric composition, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-737, in review, 2021. a
Mittal, N., Gupta, A., Negi, P. S., and Narain, U.: On Some Properties of SEP Effective CMEs, International Scholarly Research Notice, 2011, 727140, https://doi.org/10.5402/2011/727140, 2011. a
Miyoshi, Y., Kurita, S., Oyama, S.-I., Ogawa, Y., Saito, S., Shinohara, I., Kero, A., Turunen, E., Verronen, P. T., Kasahara, S., Yokota, S., Mitani, T., Takashima, T., Higashio, N., Kasahara, Y., Matsuda, S., Tsuchiya, F., Kumamoto, A., Matsuoka, A., Hori, T., Keika, K., Shoji, M., Teramoto, M., Imajo, S., Jun, C., and Nakamura, S.: Penetration of MeV electrons into the mesosphere accompanying pulsating aurorae, Sci. Rep., 11, 13724, https://doi.org/10.1038/s41598-021-92611-3, 2021. a
Moler, W. F.: VLF propagation effects of a D-region layer produced by cosmic rays, J. Geophys. Res., 65, 1459–1468, https://doi.org/10.1029/JZ065i005p01459, 1960. a
Moore, R. K.: Radio communication in the sea, IEEE Spectrum, 4, 42–51, https://doi.org/10.1109/MSPEC.1967.5217169, 1967. a
Moral, A. C., Eyiguler, E. C. K., and Kaymaz, Z.: Sudden Ionospheric Disturbances and their detection over Istanbul, 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 12–14 June 2013, 765–768, https://doi.org/10.1109/RAST.2013.6581313, 2013. a
Muraoka, Y.: Lower ionospheric disturbances observed in long-distance VLF transmission at middle latitude, J. Atmos. Terr. Phys., 41, 1031–1042, https://doi.org/10.1016/0021-9169(79)90106-5, 1979. a
Naidu, P. P., Madhavilatha, T., and Devi, M. I.: Influence of geomagnetic storms on the mid latitude D and F2 regions, Ann. Geophys., 63, GM214, https://doi.org/10.4401/ag-8127, 2020. a, b, c
NASA: National Space and Aeronautics Administration, Goddard Space Flight Center, Greenbelt,
Maryland, USA, https://sohoftp.nascom.nasa.gov/sdb/goes/ace/daily/, last access: 15
May 2022. a
Nava, B., Rodriguez-Zuluaga, J., Alazo-Cuartas, K., Kashcheyev, A., Migoya-Orue, Y., Radicella, S. M., Amory-Mazaudier, C., and Fleury, R.: Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm, J. Geophys. Res.-Space, 121, 3421–3438, 2016. a
Neal, J. J., Rodger, C. J., and Green, J. C.: Empirical determination of solar proton access to the atmosphere: Impact on polar flight paths, Space Weather, 11, 420–433, https://doi.org/10.1002/swe.20066, 2013. a
Neal, J. J., Rodger, C. J., Thomson, N. R., Clilverd, M. A., Raita, T., and Ulich, T.: Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations, J. Geophys. Res.-Space, 120, 2194–2211, https://doi.org/10.1002/2014JA020689, 2015. a
Nicolet, M. and Aikin, A. C.: The formation of the D region of the ionosphere, J. Geophys. Res., 65, 1469–1483, https://doi.org/10.1029/JZ065i005p01469, 1960. a, b
Nina, A., Nico, G., Mitrović, S. T., Čadež, V. M., Milošević, I. R., Radovanović, M., and Popović, L. Č.: Quiet Ionospheric D-Region (QIonDR) Model Based on VLF/LF Observations, Remote Sensing, 13, https://doi.org/10.3390/rs13030483, 2021. a
NOAA: Geomagnetic Storms, NOAA Space Weather Prediction Center, http://www.ngdc.noaa.gov/phenomena/geomagnetic-storms (last access: 18 May 2022), 2016. a
Nunn, D., Clilverd, M. A., Rodger, C. J., and Thomson, N. R.: The impact of PMSE and NLC particles on VLF propagation, Ann. Geophys., 22, 1563–1574, https://doi.org/10.5194/angeo-22-1563-2004, 2004. a
Nwankwo, V. U. J. and Chakrabarti, S. K.: Effects of space weather on the ionosphere and LEO satellites' orbital trajectory in equatorial, low and middle latitude, Adv. Space Res., 61, 1880–1889, https://doi.org/10.1016/j.asr.2017.12.034, 2018. a
Nwankwo, V. U. J., Chakrabarti, S. K., and Ogunmodimu, O.: Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region via propagation characteristics of very low frequency radio signals, J. Atmos. Sol.-Terr. Phys., 145, 154–169, https://doi.org/10.1016/j.jastp.2016.04.014, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Nwankwo, V. U. J., Chakrabarti, S. K., Sasmal, S., Denig, W., Ajakaiye, M. P., Akinsola, T., Adeyanju, M., Anekwe, P., Iluore, K., Olatunji, M., Bhowmick, D., Fatokun, J., Ayoola, M. A., Soneye, O. O., and Ajamu, J.: Radio aeronomy in Nigeria: First results from very low frequency (VLF) radio waves receiving station at Anchor University, Lagos, 2020 IEEE-ICMCECS, Lagos, Nigeria, 1–7, https://doi.org/10.1109/ICMCECS47690.2020.247002, 2020. a, b
Palit, S., Basak, T., Mondal, S. K., Pal, S., and Chakrabarti, S. K.: Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry, Atmos. Chem. Phys., 13, 9159–9168, https://doi.org/10.5194/acp-13-9159-2013, 2013. a
Pavlov, A. V.: Ion Chemistry of the Ionosphere at E- and F-Region Altitudes: A Review, Surv. Geophys., 33, 1133–1172, https://doi.org/10.1007/s10712-012-9189-8, 2012. a
Pederick, L. H. and Cervera M. A.: Semiempirical Model for Ionospheric Absorption based on the NRLMSISE‐00 atmospheric model, Radio Sci., 49, 81–93, https://doi.org/10.1002/2013RS005274, 2014. a
Pedersen, A.: Time, height, and latitude distribution of D layers in the subauroral zone and their relation to geomagnetic activity and aurora, J. Geophys. Res., 67, 2685–2694, https://doi.org/10.1029/JZ067i007p02685, 1962. a
Peter, W. B., Chevalier, M. W., and Inan, U. S.: Perturbations of mid-latitude sub-ionospheric VLF signals associated with lower ionospheric disturbances during major geomagnetic storms, J. Geophys. Res., 111, AO3301, https://doi.org/10.1029/2005JA011346, 2006. a, b
Pierce, E. T.: Sferics, Conference Proceedings, NAS-NRC Atmospheric Exploration by Remote Probes, Vol. 2, NTRS 19720017733, 25, 1969. a
Pierce, J. A.: The Diurnal Carrier-Phase Variation of a 16-Kilocycle Transatlantic Signal, Proc. IRE, 43, 584–588, https://doi.org/10.1109/JRPROC.1955.278102, 1955. a
Poole, I.: Radio Waves and the Ionosphere, in QST (Calling All Stations), November 1999, monthly publication of the American Radio Relay League (ARRL), 3 pp., http://www.arrl.org/qst (last access: 13 December 2021), 1999. a
Potemra, T. A., Zmuda, A. J., Shaw, B. W., and Have, C.R.: VLF phase disturbances, HF absorption, and solar protons in the PCA events of 1967, Radio Sci., 5, 1137–1145, https://doi.org/10.1029/RS005i008p01137, 1970. a
Porazik, P., Johnson, J. R., Kaganovich, I., and Sanchez, E.: Modification of the loss cone for energetic particles, Geophys. Res. Lett., 41, 8107–8113, https://doi.org/10.1002/2014GL061869, 2014. a
Prol, F. S., Kodikara, T., Hoque, M. M., and Borries, C.: Global-scale ionospheric tomography during the March 17, 2015 geomagnetic storm, Space Weather, 19, e2021SW002889, https://doi.org/10.1029/2021SW002889, 2021. a
Prolss, G. W.: Physics of the Earth's space environment, Springer Berlin Heidelberg, Germany, ISBN: 978-3-540-21426-7, 159–208, https://doi.org/10.1007/978-3-642-97123-5_4, 2004. a
Quan, L., Cai, B., Hu, X., Xu, Q., and Li, L.: Study of ionospheric D region changes during solar flares using MF radar measurements, Adv. Space Res., 67, 715–721, https://doi.org/10.1016/j.asr.2020.10.015, 2021. a
Raghav, A., Shaikh, Z., Misal, D., Rajan, G., Mishra, W., Kasthurirangan, S., Bhaskar, A., Bijewar, N., Johri, A., and Vichare, G.: Exploring the common origins of the Forbush decrease phenomenon caused by the interplanetary counterpart of coronal mass ejections or corotating interaction regions, Phys. Rev. D, 101, 062003, https://doi.org/10.1103/PhysRevD.101.062003, 2020. a
Rawer, K.: Introduction to IRI 1979, in International Reference Ionosphere IRI 97, UAG-82, World Data Center A for Solar-Terrestrial Physics, edited by: Lincoln, J. V. and Conkright, R. O., 1–6, https://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_uag/ (last access: 2 December 2021), 1981. a
Rawer, K., Bilitza, D., and Ramakrishnan, S.: Goals and status of the International Reference Ionosphere, Rev. Geophys., 16, 177–181, https://doi.org/10.1029/RG016i002p00177, 1978. a
Reeves, G. D. and Daglis, I. A.: Geospace Magnetic Storms and the Van Allen Radiation Belts, in: Waves, Particles, and Storms in Geospace: A Complex Interplay, chap. 3, edited by: Balasis, G., Daglis, I. A., and Mann, I. R., https://doi.org/10.1093/acprof:oso/9780198705246.003.0004, 2016. a
Reeves, G. D., Spence, H. E., Henderson, M. G., Morley, S. K., Friedel, R. H., Funsten, H. O., Baker, D. N., Kanekal, S. G., Blake, J. B., Fennell, J. F., Claudepierre, S. G., Thorne, R. M., Turner, D. L., Kletzing, C. A., Kurth, W. S., Larsen, B. A., and Niehof, J. T.: Electron acceleration in the heart of the Van Allen radiation belts, Science, 341, 6149, https://doi.org/10.1126/science.1237743, 2013. a
Reinisch, B. W. and Xueqin, H.: Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms, Radio Sci., 18, 477–492, https://doi.org/10.1029/RS018i003p00477, 1983. a
Rishbeth, H.: Physics and chemistry of the ionosphere, Contemporary Physics, 14, 229–249, https://doi.org/10.1080/00107517308210752, 1973. a, b
Ries, G.: Results Concerning the Sunrise Effect of VLF Signals Propagated Over Long Paths, Radio Sci., 2, 531–538, https://doi.org/10.1002/rds196726531, 1967. a
Ripoll, J.-F., Denton, M., Loridan, V., Santolík, O., Malaspina, D., Hartley, D. P., Cunningham, G. S., Reeves, G., Thaller, S., Turner, D. L., Fennell, J. F., Drozdov, A. Y., Cervantes Villa, J. S., Shprits, Y. Y., Chu, X., Hospodarsky, G., Kurth, W. S., Kletzing, C. A., Wygant, J., Henderson, M. G., and Ukhorshiy, A. Y.: How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm, J. Phys. Conf. Ser., 1623, paper 012005, 14th Int. Conf. on Numerical Modeling of Space Plasma Flows: ASTRONUM-2019 1-5 July 2019, Paris, France, 2020. a
Robinson, R. M. and Zanetti, L. J.: Auroral energy flux and Joule heating derived from global maps of field-aligned currents, Geophys. Res. Lett., 48, e2020GL091527, https://doi.org/10.1029/2020GL091527, 2021. a
Robinson, R. M., van Eyken, A., and Farley, D.: Fiftieth Anniversary of the First Incoherent Scatter Radar Experiment, Eos T. AGU, 90, p. 267, https://doi.org/10.1029/2009EO310005, 2009. a
Rodger, C. J., Clilverd, M. A., Thomson, N. R., Gamble, R. J., Seppälä, A., Turunen, E., Meredith, N. P., Parrot, M., Sauvaud, J.-A., and Berthelier, J. J.: Radiation belt electron precipitation into the atmosphere: Recovery from a geomagnetic storm, J. Geophys. Res., 112, A11307, https://doi.org/10.1029/2007JA012383, 2007. a, b
Rodger, C. J., Clilverd, M. A., Seppälä, A., Thomson, N. R., Gamble, R. J., Parrot, M., Sauvaud, J.-A., and Ulich, T.: Radiation belt electron precipitation due to geomagnetic storms: Significance to middle atmosphere ozone chemistry, J. Geophys. Res., 115, A11320, https://doi.org/10.1029/2010JA015599, 2010. a, b
Rodger, C. J., Clilverd, M. A., Kavanagh, A. J., Watt, C. E. J., Verronen, P. T., and Raita, T.: Contrasting the responses of three different ground-based instruments to energetic electron precipitation, Radio Sci., 47, RS2021, https://doi.org/10.1029/2011RS004971, 2012. a, b
Rodger, C. J., Hendry, A. T., Clilverd, M. A., Kletzing, C. A., Brundell, J. B., and Reeves, G. D.: High‐resolution in situ observations of electron precipitation‐causing EMIC waves, Geophys. Res. Lett., 42, 9633–9641, https://doi.org/10.1002/2015GL066581, 2015. a
Rogers, N. and Honary, F.: D-region HF absorption models incorporating real-time riometer measurements, XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 2014, 1–2, https://doi.org/10.1109/URSIGASS.2014.6929716, 2014. a, b
Rogers, N. C., Kero, A., Honary, F., Verronen, P. T., Warrington, E. M., and Danskin, D. W.: Improving the twilight model for polar cap absorption nowcasts, Space Weather, 14, 950–972, https://doi.org/10.1002/2016SW001527, 2016. a
Rose, D. C. and Ziauddin, S.: The Polar Cap Absorption Effect, Space Sci. Rev., 1, 115–134, https://doi.org/10.1007/BF00174638, 1962. a
Rostoker, G., Akasofu, S. I., Foster, J., Greenwald, R., Kamide, Y., Kawasaki, K., Lui, A., McPherron, R., and Russell, C.: Magnetospheric substorms—definition and signatures, J. Geophys. Res., 85, 1663–1668, https://doi.org/10.1029/JA085iA04p01663, 1980. a
Rozhnoi, A., Solovieva, M., Fedun, V., Gallagher, P., McCauley, J., Boudjada, M. Y., Shelyag, S., and Eichelberger, H. U.: Strong influence of solar X-ray flares on low-frequency electromagnetic signals in middle latitudes, Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, 2019. a
Russell, C. T.: The Magnetosphere, Annu. Rev. Earth Pl. Sc., 19, 169–182, https://doi.org/10.1146/annurev.ea.19.050191.001125, 1991. a
Russell, C. T., McPherron, R. L., and Burton, R. K.: On the cause of geomagnetic storms, J. Geophys. Res., 79, 1105–1109, https://doi.org/10.1029/JA079i007p01105, 1974. a
Samanes, J. E., Raulin, J., Macotela, E. L., and Guevara Day, W. R.: Estimating the VLF modal interference distance using the South America VLF Network (SAVNET), Radio Sci., 50, 122–129, https://doi.org/10.1002/2014RS005582, 2015. a
Samsonov, A. A., Bogdanova, Y. V., Branduardi-Raymont, G., Sibeck, D. G., and Toth, G.: Is the relation between the solar wind dynamic pressure and the magnetopause standoff distance so straightforward?, Geophys. Res. Lett., 47, e2019GL086474, https://doi.org/10.1029/2019GL086474, 2020. a
Sasmal, S. and Chakrabarti, S. K.: Ionosperic anomaly due to seismic activities – Part 1: Calibration of the VLF signal of VTX 18.2 KHz station from Kolkata and deviation during seismic events, Nat. Hazards Earth Syst. Sci., 9, 1403–1408, https://doi.org/10.5194/nhess-9-1403-2009, 2009. a
Sastri, J. H.: Effect of magnetic storms and substorms on the low- latitude/ equatorial ionosphere, in: Solar Influence on the Heliosphere and Earth's Environment: Recent Progress and Prospects, edited by: Gopalswamy, N. and Bhattacharyya, A., Proc. ILWS Workshop in Goa, India, 19–24 February 2006, https://cdaw.gsfc.nasa.gov/publications/ilws_goa2006/361_Sastri.pdf (last access: 18 January 2022), 2006. a
Satori, G.: Combined ionospheric effect due to Forbush decreases and magnetospheric high energy particles at mid-latitudes, J. Atmos. Terr. Phys., 53, 325–332, https://doi.org/10.1016/0021-9169(91)90116-O, 1991. a, b
Sauer, H. H. and Wilkinson, D. C.: Global mapping of ionospheric HF/VHF radio wave absorption due to solar energetic protons, Space Weather, 6, S12002, https://doi.org/10.1029/2008SW000399, 2008. a, b, c
Sharma, A. K. and More, C.: Diurnal Variation of VLF Radio Wave Signal Strength at 19.8 and 24 kHz Received at Khatav India (16∘ 46'N, 75∘ 53'E), J. Space Sci. Tech., 6, 15–34, https://doi.org/10.37591/.v6i2.2000, 2017. a, b
Scherliess, L. and Fejer, B. G.: Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res.-Space, 102, 24037–24046, https://doi.org/10.1029/97JA02165, 1997. a
Schunk, R. W.: Handbook of Ionospheric Models, Report, Aeronomic Models of the Ionosphere, Solar-Terrestrial Energy Program (STEP), Working Group 3.6, 301, 1996. a
Schunk, R. W.: Guide to Reference and Standard Ionosphere, ANSI/AIAA G-034-1998, American National Standards Institute, 67, 1999. a
Schunk, R. and Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd Edn., Cambridge Atmospheric and Space Science Series, Cambridge University Press, https://doi.org/10.1017/CBO9780511635342, 2009. a
Schunk, R. W., Scherliess, L., Sojka, J. J., Thompson, D. C., Anderson, D. A., Codrescue, M., Minter, C., Fuller-Rowell, T. J., Heelis, R. A., and Howe, B. M.: Global Assimilation of Ionospheric Measurements (GAIM), Radio Sci., 39, RS1S0, https://doi.org/10.1029/2002RS002794, 2004. a
Scotto, C. and Settimi, A.: The calculation of ionospheric absorption with modern computers, Adv. Space Res., 54, 1642–1650, https://doi.org/10.1016/j.asr.2014.06.017, 2014. a
Sechrist, C. F.: Comparisons of techniques for measurement of D‐region electron densities, Radio Sci., 9, 137–149, https://doi.org/10.1029/RS009i002p00137, 1974. a
Seppälä, A., Clilverd, M. A., Beharrell, M. J., Rodger, C. J., Verronen, P. T., Andersson, M. E., and Newnham, D. A.: Substorm-induced energetic electron precipitation: Impact on atmospheric chemistry, Geophys. Res. Lett., 42, 8172–8176, https://doi.org/10.1002/2015GL065523, 2015. a
Shue, J. H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., and Singer, H. J.: A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res.-Space, 102, 9497–9511, https://doi.org/10.1029/97JA00196, 1997. a
Shue, J.-H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, J. Geophys. Res.-Space Phy., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998. a
Silber, I. and Price, C.: On the use of VLF narrowband measurements to study the lower ionosphere and the mesosphere-lower thermosphere, Surv. Geophys., 38, 407–441, https://doi.org/10.1007/s10712-016-9396-9, 2017. a
Singh, R., Verma, U. P., and Singh A. K.: Exploring Middle Atmosphere (D-Region) by Very Low Frequency (VLF) Waves, International Journal of Latest Technology in Engineering, Management and Applied Science (IJLTEMAS), V, VI, 51–55, 2016. a
Siskind, D. E., Zawdie, K., Sassi, F., Drob, D., and Friedrich, M.: Global modeling of the low and mid latitude ionospheric D and lower E regions and implications for HF radio wave absorption, Space Weather, 15, 115–130, https://doi.org/10.1002/2016SW001546, 2017. a, b, c, d
Snay, R. A. and Soler, T.: Continuously Operating Reference Station (CORS): History, Applications, and Future Enhancements, J. Surv. Eng., 134, 95–104, https://doi.org/10.1061/(ASCE)0733-9453(2008)134:4(95), 2008. a
Spence, H. E.: The what, where, when, and why of magnetospheric substorm triggers, Eos T. AGU, 77, 81–86, https://doi.org/10.1029/96EO00051, 1996. a
Spies, K. P. and Wait, J. R.: Mode calculations for VLF propagation in the earth-ionosphere waveguide, NBS Technical Note 114, 116, Call Number: QC100.U5753 no.114 1961, https://archive.org/details/modecalculations114spie/mode/2up (last access: 10 April 2020), 1961. a
Spjeldvik, W. N. and Thorne, R. M.: A simplified D-region model and its application to magnetic storm after-effects, J. Atmos. Terr. Phys., 37, 1313–1325, https://doi.org/10.1016/0021-9169(75)90124-5, 1975. a, b
Stoker, P. H.: Energetic Electron Power Flux Deposition at Sanae (L=4.0) from Riometer Recording, J. Geophys. Res., 98, 19111–19116, https://doi.org/10.1029/93JA01951, 1993.
Stamper, R., Davis, C., and Bradford, V.: RAL Low-Cost Ionosonde System, paper SM21A-0361, AGU Fall Meeting, 5–9 December 2005, San Francisco, CA U.S.A., 2005. a
Soni, S. L., Yadav, M. L., Gupta, R. S., and Verma, P. L.: Exhaustive study of three-time periods of solar activity due to single active regions: sunspot, flare, CME, and geo-effectiveness characteristics, Astrophys. Space Sci., 365, 189, https://doi.org/10.1007/s10509-020-03905-3, 2020. a
Sun, K., Cui, W., and Chen, C.: Review of Underwater Sensing Technologies and Applications, Sensors, 21, 7849, https://doi.org/10.3390/s21237849, 2021. a
Suvorova, A. V. and Dmitriev, A. V.: Magnetopause inflation under radial IMF: Comparison of models, Earth Space Sci., 2, 107–114, https://doi.org/10.1002/2014EA000084, 2015. a
Takefu, M.: Bragg scattering of radio waves by ionospheric wavelike irregularities, J. Geomag. Geoelect., 41, 647–672, 1989. a
Tatsuta, K., Hobara, Y., Pal, S., and Balikhin, M.: Sub-ionospheric VLF signal anomaly due to geomagnetic storms: a statistical study, Ann. Geophys., 33, 1457–1467, https://doi.org/10.5194/angeo-33-1457-2015, 2015. a, b
Taylor, W. L.: Daytime Attenuation Rates in the Very Low Frequency Band Using Atmospherics, J. Res. NBS, 64D, 349–355, 1960. a
Thomson, N. R., Clilverd, M. A., and McRae, W. M.: Nighttime ionospheric D-region parameters from VLF phase and amplitude, J. Geophys. Res., 112, A07304, https://doi.org/10.1029/2007JA012271, 2007. a, b
Thomson, N. R.: Experimental daytime VLF ionospheric parameters, J. Atmos. Terr. Phys., 55, 173–184, https://doi.org/10.1016/0021-9169(93)90122-F, 1993. a
Thomson, N. R. and Clilverd, M. A.: Solar flare induced ionospheric D-region enhancements from VLF amplitude observations, J. Atmos. Sol.-Terr. Phys., 63, 1729–1737, https://doi.org/10.1016/S1364-6826(01)00048-7, 2001. a, b
Thomson, N. R. and McRae, W. M.: Nighttime ionospheric D region: Equatorial and nonequatorial, J. Geophys. Res., 114, A08305, https://doi.org/10.1029/2008JA014001, 2009. a
Timocin, E.: Swarm satellite observations of the effect of prompt penetration electric fields (PPEFs) on plasma density around noon and midnight side of low latitudes during the 07–08 September 2017 geomagnetic storm, Adv. Space Res., 69, 1335–1343, https://doi.org/10.1016/j.asr.2021.11.027, 2022. a
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., and Okada, M.: Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res., 100, 21717–21733, https://doi.org/10.1029/95JA01476, 1995. a
Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., and Alex, S.: The extreme magnetic storm of 1-2 September 1859, J. Geophys. Res.-Space, 108, 1268, https://doi.org/10.1029/2002JA009504, 2003. a
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., Kamide, Y., Kasahara, Y., Lu, G., Mann, I., McPherron, R. L., Soraas, F., and Vasyliunas, V. M.: Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01, https://doi.org/10.1029/2005JA011273, 2006. a
Tsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., Saito, A., Araki, T., Yumoto, K., Tsuda, T., Abdu, M. A., Sobral, J. H. A., Gonzalez, W. D., McCreadie, H., Lakhina, G. S., and Vasyliūnas, V. M.: Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003, J. Geophys. Res., 113, A05311, https://doi.org/10.1029/2007JA012879, 2008. a
Tsurutani, B. T., Echer, E., Guarnieri, F. L., and Gonzalez, W. D.: The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23, J. Atmos. Sol.-Terr. Phys., 73, 164, https://doi.org/10.1016/j.jastp.2010.04.003, 2011. a, b
Turner, N. E., Mitchell, E. J., Knipp, D. J., and Emery, B. A.: Energetics of Magnetic Storms Driven by Corotating Interaction Regions: A Study of Geoeffectiveness, in: Recurrent Magnetic Storms: Corotating Solar Wind Streams, edited by: Tsurutani, B., McPherron, R., Lu, G., Sobral, J. H. A., and Gopalswamy, N., https://doi.org/10.1029/167GM11, 2006. a
Turner, D. L., Angelopoulos, V., Li, W., Hartinger, M. D., Usanova, M., Mann, I. R., and Shprits, Y.: On the storm‐time evolution of relativistic electron phase space density in Earth's outer radiation belt, J. Geophys. Res.-Space, 118, 2196–2212, 2013. a
Turunen, E., Matveinen, H., Tolvanen, J., and Ranta, H.: D-region ion chemistry model, in STEP Handbook of Ionospheric Models, edited by: Schunk, R. W., SCOSTEP Secretariat, Boulder, Colo., reference STEP Handbook, 1–25, 1996. a
Turunen, E., Verronen, P. T., Seppälä, A., Rodger, C. J., Clilverd, M. A., Tamminen, J., Enell, C.-F., and Ulich, V.: Impact of different energies of precipitating particles on NOx generation in the middle and upper atmosphere during geomagnetic storms, J. Atmos. Sol.-Terr. Phys., 71, 1176–1189, https://doi.org/10.1016/j.jastp.2008.07.005, 2009. a, b, c
Turunen, E., Kero, A., Verronen, P. T., Miyoshi, Y., Oyama, S. I., and Saito, S.: Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora, J. Geophys. Res.-Atmos., 121, 11852–11861, https://doi.org/10.1002/2016JD025015, 2016. a
Tuve, M. A. and Breit, G.: Note on a radio method of estimating the height of the conducting layer, Terrestrial Magnetism and Atmospheric Electricity, 30, 15–16, 1925. a
UKSSDC: U.K. Solar System Data Centre, Rutherford Appleton Laboratory, Oxfordshire (UK), https://www.ukssdc.ac.uk/, last access: 15 May 2022. a
van Allen, J. A., Ludwig, G. H., Ray, E. C., and McIlwain, C. E.: Observation of High Intensity Radiation by Satellites 1958 Alpha and Gamma, Jet Propulsion, September 1958, American Rocket Society, Inc., 5, https://doi.org/10.2514/8.7396, 1958. a
Verbanac G., Vršnak, B., Živković, S., Hojsak, T., Veronig, A. M., and Temmer, M.: Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23, Astron. Astrophys., 533, 6, https://doi.org/10.1051/0004-6361/201116615, 2011. a
Veronig, A., Temmer, M., Hanslmeier, A., Itruba, W., and Messerotti, M.: Temporal aspects and frequency distributions of solar soft X-ray flares, Astron. Astrophys., 382, 1070–1080, https://doi.org/10.1051/0004-6361:20011694, 2002. a
Verronen, P. T., Seppala, A., Clilverd, M. A., Rodger, C. J., Kyrola, E., Enell, C. F., Ulich, T., and Turunen, E.: Diurnal variation of ozone depletion during the October–November 2003 solar proton events, J. Geophys. Res.-Space, 110, A09S32, https://doi.org/10.1029/2004JA010932, 2005. a
Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovacs, T., and Plane, J. M. C.: WACCM-D—Whole Atmosphere Community Climate Model with D-region ion chemistry, J. Adv. Model. Earth Sy., 8, 954–975, https://doi.org/10.1002/2015MS000592, 2016. a, b
Voss, H. D., Walt, M., Imhof, W. L., Mobilia, J., and Inan, U. S.: Satellite observations of lightning-induced electron precipitation, J. Geophys. Res., 103, 11725–11744, https://doi.org/10.1029/97JA02878, 1998. a
Waheed-uz-Zaman, M. and Yousufzai, M. A. K.: Design and Construction of Very Low Frequency Antenna, J. Basic Appl. Sci., 7, 141–145, 2011. a
Wait, J. R.: Terrestrial Propagation of Very-Low-Frequency Radio Waves, J. Res. Nat Bureau Standards, 64D, 153–204, https://doi.org/10.6028/JRES.064D.022, 1960. a, b
Wait, J. R.: A New Approach to the Mode Theory of VLF Propagation, J. Res. NBS: D. Radio Propagation, 65D, 37–46, https://doi.org/10.6028/JRES.065D.007, 1961. a
Wait, J. R.: A Note on Diurnal Phase Changes of Very‐Low‐Frequency Waves for Long Paths, J. Geophys. Res., 68, 338–340, https://doi.org/10.1029/JZ068i001p00338, 1963. a
Wait, J. R.: Two-Dimensional Treatment of Mode Theory of the Propagation of VLF Radio Waves, J. Res. NBS, 68D, 1, 81–93, https://doi.org/10.6028/jres.068d.019, 1964. a
Wait, J. R.: 1968 Mode conversion and refraction effects in the Earth‐ionosphere waveguide for VLF radio waves, J. Geophys. Res., 73, 3537–3548, https://doi.org/10.1029/JA073i011p03537, 1964. a
Wait, J. R.: Electromagnetic waves in stratified media, Pergamon Press, Oxford, ISBN: 978-0-08-006636-3, 609 pp., https://doi.org/10.1016/C2013-0-05239-5, 1970. a
Walker, D.: Phase steps and amplitude fading of VLF signals at dawn and dusk, Radio Sci., 68D, 1435–1443, https://doi.org/10.6028/JRES.069D.155, 1965. a
WDCG (World Data Center for Geomagnetism): Data Analysis Center for Geomagnetism and
Space Magnetism, Kyoto University (Japan), http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html,
last access: 18 May 2022.
a
Weigel, R. S.: Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 115, A09201, https://doi.org/10.1029/2009JA015062, 2010. a
Wiltberger, M., Lopez, R. E., and Lyon, L. G.: Magnetopause erosion: A global view from MHD simulation, J. Geophys. Res., 108, 1235, https://doi.org/10.1029/2002JA009564, 2003. a
Wu, C. C., Liou, K., Lepping, R. P., Hutting, L., Plunkett, S., Howard, R. A., and Socker, D.: The first super geomagnetic storm of solar cycle 24: The St. Patrick's day event (17 March 2015), Earth Planet Space, 68, 151, https://doi.org/10.1186/s40623-016-0525, 2016. a
Yokoyama, E. and Tanimura, I.: Some Long-Distance Transmission Phenomena of Low-Frequency Waves, Proc. IRE, 21, 263–270, https://doi.org/10.1109/JRPROC.1933.227600, 1933. a
Youssef, M.: On the relation between the CMEs and the solar flares, NRIAG J. Astron. Geophys., 1, 172–178, https://doi.org/10.1016/j.nrjag.2012.12.014, 2012. a
Yue, X., Schreiner, W. S., Pedatella, N., Anthes, R. A., Mannucci, A. J., Straus, P. R., and Liu, J. Y.: Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2, Space Weather, 12, 616–621, https://doi.org/10.1002/2014SW001133, 2014. a
Zawedde, A. E., Nesse Tyssøy, H., Stadsnes, J., and Sandanger, M. I.: The impact of energetic particle precipitation on mesospheric OH – Variability of the sources and the background atmosphere, J. Geophys. Res.-Spac, 123, 5764–5789, https://doi.org/10.1029/2017JA025038, 2018. a, b
Zesta, E. and Oliveira, D. M.: Thermospheric heating and cooling times during geomagnetic storms, including extreme events, Geophys. Res. Lett., 46, 12739–12746, https://doi.org/10.1029/2019GL085120, 2019. a
Short summary
We combined the observed diurnal VLF amplitude variation in the D region with standard measurements of the E and F regions to perform a diagnostic investigation of coupled geomagnetic storm effects in order to understand the observed storm-induced variations in VLF narrowband based on state and responses of the ionosphere. The dayside VLF amplitude showed a tendency for attenuation following geomagnetic storms, and the h’E and h’F variations confirmed strong storm response over the signal paths.
We combined the observed diurnal VLF amplitude variation in the D region with standard...