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Abstract. We performed a diagnostic study of geomagnetic
storm-induced disturbances that are coupled to the mid-
latitude D region by quantifying the propagation character-
istics of very low-frequency (VLF) radio signals from trans-
mitters located in Cumbria, UK (call sign GQD), and Rhaud-
erfehn, Germany (DHO), and received in southern France
(A118). We characterised the diurnal VLF amplitudes from
two propagation paths into five metrics, namely the mean am-
plitude before sunrise (MBSR), the midday amplitude peak
(MDP), the mean amplitude after sunset (MASS), the sunrise
terminator (SRT) and the sunset terminator (SST). We anal-
ysed and monitored trends in the variation of signal metrics
for up to 20 storms to relate the deviations in the signal am-
plitudes that were attributable to the storms. Five storms and
their effects on the signals were examined in further detail.
Our results indicate that relative to pre-storm levels the storm
day MDP exhibited characteristic decreases in about 80 %
(67 %) of the events for the DHO-A118 (GQD-A118) prop-
agation path. The MBSR showed decreases of about 60 %
(77 %), whereas the MASS decreased by 67 % (58 %). Con-
versely, the SRT and SST showed amplitude decreases of
33 % (25 %) and 47 % (42 %), respectively. Of the two prop-
agation paths, the amplitude decreases for the DHO-A118
propagation path signal were greater, as previously noted by
Nwankwo et al. (2016). To better understand the state of
the ionosphere over the signal propagation paths and how it

might have affected the VLF amplitudes, we further analysed
the virtual heights (h’E, h’F1 and h’F2) and critical frequen-
cies (foE, foF1 and foF2) from ionosondes located near the
transmitters. The results of this analysis showed significant
increases and fluctuations in both the F-region critical fre-
quencies and virtual heights during the geomagnetic storms.
The largest increases in the virtual heights occurred near the
DHO transmitter in Rhauderfehn (Germany), suggesting a
strong storm response over the region which might account
for the larger MDP decrease along the DHO-A118 propaga-
tion path.

1 Introduction

The terrestrial magnetosphere is formed by the interac-
tion between the solar wind and the Earth’s magnetic field
(McPherron et al., 2008). In contrast, the ionosphere is
largely the result of solar photoionisation of the neutral at-
mosphere balanced against chemical recombination and par-
ticle transport (Prolss, 2004; Kelley, 2009). The magne-
tosphere and ionosphere are coupled via the geomagnetic
field, effectively tying these seemingly disparate regions into
a global magnetosphere–ionosphere (M–I) system (Blanc,
1988; Nwankwo et al., 2016). Within the concept of an open
magnetosphere (Dungey, 1961), energy is transferred from
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the solar wind to the M–I system via magnetic reconnection
(Cassak, 2016). Variations within the interplanetary environ-
ment, driven by solar disturbances, affect the M–I system,
particularly when the interplanetary magnetic field (IMF),
embedded within the solar wind, is oriented southward rela-
tive to the outer northward-directed geomagnetic field (Gon-
zalez et al., 1999; Liu and Li, 2002). A geomagnetic storm is
triggered when the solar–terrestrial interaction is sufficiently
intense to energise the ring current (Jordanova et al., 2020)
and to solicit a negative response in ground-based magne-
tometers in terms of the disturbance storm time (Dst) index
(Russel et al., 1974; Mayaud, 1980; Borovsky and Shprits,
2017). The strength of a geomagnetic storm is typically clas-
sified as small, moderate or intense for Dst values less than
(<) −30, <−50 and <−100 nT, respectively (Gonzalez et
al., 1994). The two leading drivers of geomagnetic storms
are coronal mass ejections (CMEs) and corotating interac-
tive regions (CIRs) (Baker, 2000). A CME is the impulsive
release of solar material into interplanetary space from a so-
lar active region that may, or may not, be associated with a
solar flare (Youssef, 2012). Conversely, a CIR is the result of
a high-speed stream (HSS) emitted from a solar coronal hole
overtaking the background solar wind (Choi et al., 2009).
In both cases the shock front at the leading edge of the in-
terplanetary disturbance increases the ram pressure imposed
on the dayside magnetopause, causing a reconfiguration of
the dayside Chapman–Ferraro current system (Chapman and
Ferraro, 1930) and, in turn, the magnetosphere as a whole
(Ganushkina et al., 2018). A typical geomagnetic storm has
three phases consisting of (1) a sudden storm commencement
(SSC) at the time of the increased ram pressure, (2) a main
phase as the ring current is energised and (3) a recovery phase
as the magnetosphere returns to a more quiescent ground
state (Akasofu, 2018; Gonzalez et al., 1994). There are dis-
tinct differences between how and when CME-driven ver-
sus CIR-driven storms affect the Earth (Borovsky and Den-
ton, 2006). Typically, CME-driven storms are stronger with
regards to Dst (Tsurutani et al., 2006) and occur more fre-
quently near the maximum in the Sun’s 11-year activity cy-
cle (Gonzalez et al., 1999), whereas CIR-driven storms are
weaker and occur predominantly on the decreasing phase of
solar activity (Tsurutani et al., 1995). While the impacts of
both CME- and CIR-driven geomagnetic storms on the mid-
dle to upper atmosphere have been extensively studied and
are well known (Fuller-Rowell et al., 1994; Burch, 2016;
Heelis and Maute, 2020), less certain are the geomagnetic
storm effects in the lower ionosphere (Lastovicka, 1996;
Kumar and Kumar, 2014). For the purposes of this report
our attention is limited to CME-driven, moderate geomag-
netic storms and the resulting impacts on D-region very low-
frequency (VLF) radio-wave propagation within the Earth–
ionosphere wave guide (EIWG). The VLF band spans the
range from 3 kHz to 30 kHz.

The discovery of the ionosphere is generally attributed to
Carl Gauss, who, in 1838, speculated on the existence of an

ionised atmospheric layer to explain variations in the mea-
sured geomagnetic field (Gauss, 1838; Glassmeier and Tsu-
rutani, 2014). Heaviside (1902) and Kennelly (1902) both
independently speculated on the existence of an electrically
reflecting layer following Guglielmo Marconi’s demonstra-
tion (Marconi, 1901) of long-range radio-wave transmission.
Appleton and Barnett (1925a, b) were the first to prove
the existence of this “electrical layer”, or simply E layer,
which they determined was located approximately 80 to
90 km above the Earth’s surface. The E layer corresponded
to a local maximum in the vertical electron density profile
which was effective at reflecting radio waves of up to sev-
eral megahertz (Beynon, 1969). Measurements of reflecting
layers both above (Appleton, 1927) and below (Colwell and
Friend, 1936) the E layer, or more generally E region, soon
followed, which were non-coincidently named the F region
and D region, respectively. Further studies soon found a sep-
aration in the F region that was then categorised as the F1
and F2 regions (Appleton and Naismith, 1935). These layers
are the primary regions which comprise the “ionosphere”, a
term that was first coined by Robert Watson-Watt in 1926 and
broadly adopted into the scientific lexicon after 1929 (Gar-
diner, 1969; Appleton, 1933). It has been long recognised
that the ionosphere has both deleterious and enabling effects
on terrestrial radio-wave communications, dependent on the
transmission frequency band in use (Poole, 1999; Benning-
ton, 1944). The D region is uniquely relevant to VLF com-
munication as a means of communication with submarines
and related underwater vehicles (Moore, 1967; Waheed and
Yousufzai, 2011; Lanzagorta, 2012; Sun et al., 2021).

The nominal altitudes for the D- (daytime), E-, F1- and
F2-region peaks are 60, 110, 170 and 300 km, respectively,
although there is considerable variability within each layer
depending on the solar-geophysical conditions (Mangla and
Yadov, 2011). The various ionospheric layers are the result
of ionisation production and loss. Lodge (1902) was the first
to suggest that photoionisation of the background neutral at-
mosphere by solar ultraviolet (UV) radiation was responsible
for establishing Marconi’s electrically reflecting layer. Chap-
man (1931) codified this primary production source for the E
and F layers. Solar UV radiation cannot effectively penetrate
to altitudes below about 100 km (Marr, 1965). An exception
is Lyman-α radiation at a wavelength of 121.5 nm within the
atmospheric window of low absorption (Machol et al., 2019)
and is largely responsible for maintaining the quiescent day-
side D region (Nicolet and Aikin, 1960). The complex chem-
ical processes maintaining the ionospheric layers were ini-
tially discussed by Bates and Massey (1946, 1947) and more
recently by numerous authors (Rishbeth, 1973; Schunk and
Nagy, 2009; Pavlov, 2012). Ionospheric loss processes are
mostly recombination, charge exchange and diffusion (Banks
and Kockarts, 1973). Above about 150 km the dominant
ion species is atomic oxygen, whereas molecular ions are
more abundant at the lower altitudes (Johnson, 1966). Conse-
quently, dissociative recombination is the dominant loss pro-
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cess for the D and E regions, whereas radiative recombina-
tion and charge exchange (followed by dissociative recom-
bination) are more prevalent closer to the F2 peak (Mangla
and Yadov, 2011). Within the topside ionosphere, diffusion
becomes the dominant loss process (Rishbeth, 1973). So-
lar flares emit photons across the electromagnetic spectrum,
producing a transient ionisation source affecting the delicate
balance of ionospheric production and loss (Mitra, 1974).
X-rays, as well as gamma rays, emitted by solar flares are
sufficiently energetic to penetrate the lower ionosphere and
briefly dominate the ionisation production rate of the day-
side D region (Hayes et al., 2021). At night the D-region
electron density is greatly diminished due to the loss of so-
lar radiant photons, whilst diffusive recombination continues
unabated such that the D region seamlessly coalesces into
the lower E region at about 90 km in the absence of other
significant ionisation sources (Thomas et al., 2007; Thom-
son and McRae, 2009). Prior to the space age, the detection
of sudden ionospheric disturbances (SIDs) in the amplitude
and phase of VLF radio-wave transmissions within the D re-
gion was used as an established proxy technique for moni-
toring the occurrence of solar flares (Lincoln, 1964; Moral
et al., 2013; Hegde et al., 2018), which were known to have
a deleterious impact on radio-wave communications (Sauer
and Wilkinson, 2008; Dellinger, 1937). The widely accepted
standard for specifying the ionospheric electron density pro-
file (EDP) is the empirically based International Reference
Ionosphere (IRI) model which has evolved over time (Rawer
et al., 1978; Rawer, 1981; Bilitza, 1990, 2001; Bilitza and
Reinisch, 2008; Bilitza, 2018), with special consideration
given to the D region of the lower ionosphere (Bilitza, 1981;
Friedrich and Torkar, 1992; Danilov and Smirnova, 1995;
Bilitza, 1998). An alternative approach for specifying the D
region is the use of specialised atmospheric models, such as
the Whole Atmosphere Community Climate Model with D-
region ion chemistry (WACCM-D), which are focused on the
neutral atmosphere (Verronen et al., 2016; Andersson et al.,
2016; Siskind et al., 2017), which, of course, is coupled to
the ionised atmosphere via chemistry (Turunen et al., 1996;
Schunk, 1996, 1999; Verronen et al., 2005; Turunen et al.,
2009; Kovacs et al., 2016; Verronen et al., 2016; Turunen et
al., 2016; Miyoshi et al., 2021) within the overall M–I sys-
tem.

Techniques used to probe the ionosphere include both
ground-based and space-based approaches. The earliest
methods used by Appleton and Barnett (1925b, 1926) in
short-range transmitter-to-receiver trials differentiated the re-
flected sky wave from the direct ground wave to determine
the height of the E layer. About the same time, Merve Tuve
and Gregory Breit (Tuve and Breit, 1925; Breit and Tuve,
1925) proposed a methodology of using pulsed radio-wave
transmissions for measuring the heights of overhead reflect-
ing layers. The Tuve–Breit methodology was the basis for
ionosondes and for many years was the preeminent scien-
tific technique for “sounding” the ionosphere (Bibl, 1998).

Ionosondes typically operate in the high-frequency (HF) do-
main from 3 to 30 MHz to derive the vertical ionisation pro-
files of the E and F regions. Ionosondes are quite afford-
able, leading to their widespread use in ionospheric char-
acterisation (Stamper et al., 2005). However, a key limita-
tion is that ground-based ionosondes can effectively mea-
sure only the “bottom-side” ionosphere at and below the F-
region peaks (Reinisch and Xueqin, 1983). A variant is the
space-based “topside sounder” approach from which mea-
surements of the topside ionosphere, above the F2 peak, can
be obtained (Chapman and Warren, 1968; Benson, 2010).
Ionospheric profiles of the E and F regions can also be ob-
tained using incoherent scatter radars (ISRs) (Robinson et al.,
2009), which are typically operated at several hundred mega-
hertz within the ultra-high-frequency (UHF) range (Belehaki
et al., 2016) and rely on the principle of Thomson elec-
tron scattering (Farley et al., 1961; Dougherty and Farley,
1961, 1963). Conversely, coherent scatter HF radars (Green-
wald et al., 1995) rely on Bragg scattering (Takefu, 1989)
from ionospheric structures to probe the ionosphere (Bele-
haki et al., 2016). Examples of these advanced ionospheric
measuring technologies include the Alouette topside sounder
(Jackson, 1986), the Millstone Hill ISR (Evans, 1969a, b)
and the Super Dual Auroral (HF) Radar Network (Super-
DARN) (Greenwald, 2021). More recently, researchers have
leveraged the outstanding capabilities of the Global Naviga-
tion Satellite System (GNSS), initially the Global Position-
ing System (GPS), for ionospheric characterisation (Davies
and Hartmann, 1997) using receivers on the ground (Man-
nucci et al., 1998; Prol et al., 2021) and in space (Man-
nucci et al., 2020). The Continuously Operating Reference
Stations (CORS) (Snay and Soler, 2008) is a good exam-
ple of a ground-based GNSS network, whereas the Constel-
lation Observing System for Meteorology, Ionosphere, and
Climate (COSMIC) (Yue et al, 2014) is an example of the re-
lated space-based approach. With regard to the lower E and
D regions, none of the aforementioned technologies is par-
ticularly effective at monitoring the bottommost ionospheric
region (Cummer et al., 1998; Kumar et al., 2015), which is
the focus of the present work. However, the perspective pro-
vided by considering the state of the local ionosphere allows
us to assess our findings within the context of a coupled M–I
system.

Reliance on VLF waves has proven to be an effec-
tive tool for monitoring and characterising the lower iono-
sphere (Sechrist, 1974; Inan et al., 2010; Gross and Cohen,
2020). Early research within the VLF band was focused on
lightning-induced “sferics” (Pierce, 1969), a technique that
formed the basis for modern lightning detection networks
(Betz et al., 2009). VLF sferics can travel significant dis-
tances within the EIWG (Wait and Spies, 1964) and be de-
tected as sound “tweeks” due to the dispersive nature of
the ionosphere (Singh et al., 2016). D-region characteris-
tics can be derived from these events, although some care
is required to account for their sporadic nature, both tem-
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porally and spatially (McCormick and Morris, 2018). Con-
versely, controlled experiments using known VLF frequen-
cies and transmitter–receiver great circle paths (TRGCPs)
can be used to characterise the lower ionosphere nomi-
nally to and from fixed locations (Kumar and Kumar, 2020).
Well-known features in VLF TRGCP propagation are diur-
nal variations in amplitude and phase (Yokoyama and Tan-
imura, 1933; Pierce, 1955; Taylor, 1960; Chilton et al., 1964;
Lynn, 1978; Barr et al., 2000; McRae and Thomson, 2000;
Sharma and More, 2017) and characteristic signatures of sun-
rise and sunset (Walker, 1965; Crombie, 1964, 1966; Ries,
1967; Samanes et al., 2015; Sharma and More, 2017; Gu
and Xu, 2020). These features can be explained within the
context of the wave-mode theory of VLF propagation at-
tributed to Budden (1951, 1953, 1957) and promulgated by
Wait (1960, 1961, 1963, 1964, 1968, 1970) and collabora-
tors (Spies and Wait, 1961; Wait and Spies, 1964). While the
transient response of VLF TRGCP propagation to solar flares
has been well documented (Mitra, 1974; Thomson and Clil-
verd, 2001; McRae and Thomson, 2004; Abd Rashid et al.,
2013; Palit et al., 2013; Rozhnoi et al., 2019), the associated
characterisation to geomagnetic storms has been less quanti-
fied due, perhaps, to the mixed ionospheric responses in the
lower atmosphere from geoeffective CMEs and CIRs (Turner
et al. , 2006; Kim et al., 2008; Laughlin et al., 2008; Verbanac
et al., 2011; Soni et al., 2020). The focus of this effort is then
to augment the limited body of research related to the impact
of geomagnetic storms on VLF propagation along TRGCPs
within the EIWG (Tatsuta et al., 2015).

The ionospheric response to geomagnetic storms is var-
ied, and interpreting the response in terms of a regional or
global specification of electron density often requires the use
of sophisticated environmental models (Schunk et al., 2004;
Immel and Mannucci, 2013; Greer et al., 2017). However,
these models are mostly focused on the upper ionosphere, E
region and above, and inclusion of the D region involves sep-
arate modules that, in turn, are mostly focused on the prompt
D-region response to solar transient events in the forms of
flares and related energetic particle events (Bilitza, 1998; Ec-
cles et al., 2005; Sauer and Wilkinson, 2008; Rogers and
Honary, 2014; Kulyamin and Dymnikov, 2016). The cou-
pling between the dayside upper- and lower-ionospheric re-
gions is tenuous as the electron density of the upper iono-
sphere is largely driven by solar extreme ultraviolet (EUV)
radiation, whereas chemistry, mostly involving nitric oxide
(NO), controls the quiescent D region (Siskind et al., 2017).
To facilitate the development of improved D-region mod-
els, the impacts of geomagnetic storms must be considered
(Spjeldvik and Thorne, 1975; Dickinson and Bennett, 1978).
Particularly germane to this present discussion is the impact
of post-storm energetic particle precipitation (EPP) on the
chemistry of the D region (Seppala et al., 2015; Rodger et
al., 2015). Indices used to specify the D region include the
reflection height, H ′ (km), and bottom-side profile sharp-
ness, β (km−1), parameters originally developed by James

Wait (Wait and Spies, 1964) and commonly used in research
applications (Thomson, 1993; Thomas et al., 2007; Nina et
al., 2021) as well as operations involving VLF propagation
within the EIWG (Nunn et al., 2004). Another pair of in-
dices refer to the sunset D-layer disappearance time (DLDT)
and the sunrise D-layer preparation time (DLPT) associated
with anomalous ionospheric behaviour during geomagnetic
storms (Choudhury et al., 2015) and earthquakes (Sasmal and
Chakrabarti, 2009; Chakrabarti et al., 2010). Within this pa-
per we choose to adopt a modified set of indices originally
introduced by Nwankwo et al. (2016), which corresponds to
the midday signal amplitude peak (MDP), the mean signal
amplitude before sunrise (MBSR) and the mean signal ampli-
tude after sunset (MASS). The use of these indices within the
study by Nwankwo et al. (2016) revealed trends, albeit incon-
sistent, in the signal strength of VLF radio waves propagating
within the EIWG in response to several geomagnetic storms
of moderate intensity. The intent of the current effort is to
expand on the findings of Nwankwo et al. (2016) to further
elucidate the effects of geomagnetic storms on the physics of
the mid-latitude D region. The following paragraphs review
the status of geomagnetic storm-related impacts on the high-
, middle- and low-latitude D-region ionosphere (Lastovicka,
1996).

It was previously noted that solar Lyman-α radiation is pri-
marily responsible for maintaining the quiescent dayside D
region (Nicolet and Aikin, 1960), whereas flare-associated
X-rays are the dominant D-region ionisation source during
solar flares (Thomson and Clilverd, 2001; Quan et al., 2021).
Solar flares are transient events which actively emit ionis-
ing X-rays lasting for up to several tens of minutes (Veronig
et el., 2002). A related class of solar transient is a solar
particle event (SPE) resulting from an interplanetary shock
(Tsurutani et al., 2003; Mittal et al., 2011; Chandra et al.,
2013; Dierckxsens et al., 2015; Gopalswamy, 2018), wherein
charged particles, mostly protons, are accelerated to high en-
ergies and impact the lower atmosphere at the higher lati-
tudes within the open magnetosphere (Zawedde et al., 2018).
The precipitation of greater than 10 MeV solar energetic pro-
tons (SEPs) both affects the chemistry of the lower meso-
sphere (Ahrens and Henson , 2021), between 50 and 85 km
(Turunen et al., 2009), and acts as a source of ionisation that
can temporarily increase the D-region electron density (Hun-
sucker, 1992; Sauer and Wilkinson, 2008; Neal et al., 2013).
A sufficiently intense and energetic flux of SEPs can impact
radio-wave communications in the form of a polar-cap ab-
sorption (PCA) event with a delayed onset following a so-
lar flare, assuming the flare has a related CME, and a dura-
tion lasting for up to several days (Rose and Ziauddin, 1962;
Potemra et al., 1970; Mitra, 1974; Rogers and Honary, 2014;
Rogers et al., 2016). The Antarctic-Arctic Radiation-belt
(Dynamic) Deposition-VLF Atmospheric Research Konsor-
tium (AARDDVARK) network was established to probe the
D region with extreme sensitivity (Clilverd et al., 2009, 2014;
Neal et al., 2015). An example of an early use of the AARD-
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DVARK network was monitoring changes in the polar D re-
gion from an SPE (Clilverd et al., 2007). Strictly speaking,
an SPE is quite distinct from a geomagnetic storm, although
they both have a common originating source. However, as it
relates to our objective of better quantifying the D-region re-
sponse to geomagnetic storms, we are unaware of any efforts
to separate out the storm-specific responses from other, albeit
related, sources.

During and following geomagnetic storms, enhanced
fluxes of energetic electrons from the outer van Allen radi-
ation belts (van Allen et al., 1958) precipitate into the sub-
auroral atmosphere (Peter et al., 2006), contributing to the
formation of the storm time mid-latitude D region (Peder-
sen, 1962; Grafe et al., 1980; Horne et al., 2009; Zawedde
et al., 2018; George et al., 2020). The nominal L-shell lo-
cation (McIlwain, 1961) for the outer radiation belt is from
L∼3 to L∼10 (George et al., 2020), which, for an idealised
Earth dipole field, maps to invariant latitudes of 55 and 72◦,
respectively (Kilfoyle and Jacka, 1968). The processes which
regulate the electron populations within the outer belts dur-
ing storm conditions are complicated and interdependent
(Reeves and Daglis, 2016; Baker, 2019). An aspect not yet
discussed is the fundamental role that aurora/magnetospheric
substorms play in the dynamics of the magnetosphere (Aka-
sofu, 1964; McPherron, 1979; Rostoker et al., 1980; Spence,
1996; Akasofu, 2020) and, germane to the topic at hand, the
impacts on the mid-latitude D region (Guerrero et al., 2017).
A substorm is described as a “transient process initiated on
the night side of the Earth in which a significant amount
of energy derived from the solar wind-magnetosphere inter-
action is deposited in the auroral ionosphere and magneto-
sphere” (McPherron, 1979). This description is consistent
with the concept of an open magnetosphere wherein the IMF
and geomagnetic field lines merge at the dayside magne-
topause and are then swept tailward with the solar wind into
the nightside, or geotail, where the geomagnetic field lines
and IMF, respectively, reconnect (Russell, 1991). When the
IMF has a southward component, the magnetopause stand-
off distance at noon is nominally located at about 10 Earth
radii (RE) (Aubry, 1970; Fairfield, 1971; Shue et al., 1997;
Suvorova and Dmitriev, 2015; Bonde et al., 2018; Samsonov
et al., 2020). During a geomagnetic storm the magnetopause
can be significantly “eroded” (Wiltberger et al., 2003; Le
et al., 2016), reducing the location of the standoff distance
which may be within the geostationary orbit of 6.7RE un-
der extreme conditions (Shue et al., 1998). In response to
the storm, the polar-cap potential and the cross-tail current
increase as energy is continually transferred from the solar
wind into the geotail (Angelopoulos et al., 2020). While it
is curious that the electron density within the outer radiation
belt can either increase or decrease under storm conditions
(Reeves et al., 2020), more relevant to establishing (night-
side) or maintaining (dayside) the ionospheric D region is
that the electrons within the outer belt can be pumped up to
extremely high energies, including relativistic ones, by lo-

cal wave activity and radial diffusion (Baker, 2019; Kanekal
and Miyoshi, 2021). A fraction of these energetic electrons
can be subsequently scattered into the atmospheric loss cone
(Porazik et al., 2014) by naturally occurring electromagnetic
waves (Spjeldvik and Thorne, 1975; Gu et al., 2020; Ripoll
et al., 2020; Aryan et al., 2021) and precipitate into the
lower ionosphere at mid-latitudes, where they collisionally
ionise the neutral atmospheric constituents (Rodger et al.,
2007, 2010, 2012; Naidu et al., 2020). The outer radiation
belt can relax to its more quiescent state on timescales rang-
ing from minutes (Turner et al., 2013) to many days (Baker,
2019) following a significant geomagnetic storm. It should
be noted, in conclusion, that although the evidence provided
herein shows a clear association of magnetic storms with en-
hanced levels of electron precipitation, it is likely that even
during geomagnetically quiet intervals electron precipitation
persists but apparently at a greatly reduced rate (Mironova et
al., 2021).

As previously discussed, Appleton and contemporaries
(Colwell and Friend, 1936) in the early 1900s used short-
distance VLF radio-wave transmissions to probe and study
the D region, whereas the efforts of Wait and colleagues
(Wait and Spies, 1964) were to facilitate global VLF com-
munications within the EIWG. The early work to quantify
storm-related D-region impacts involved the general tech-
nique of HF radio-wave absorption (Eccles et al., 2005; Ped-
erick and Cervera, 2014; Scotto and Settimi, 2014; Siskind
et al., 2017). In this regard, Lauter and Knuth (1967) found
that the after-effects of geomagnetic storms on the absorp-
tion of 245 kHz radio waves in the mid-latitude D region
could persist for more than 10 d. Supporting in situ rocket
data (Dickinson and Bennett, 1978) revealed that the elec-
tron density on the days following an “intense” geomagnetic
storm could be 4 to 10 times the normal daytime density and
that these measurements were well correlated with changes
in HF radio-wave absorption. An interesting finding by Satori
(1991) was the countering effect of a Forbush decrease in the
density of the D region at mid-latitudes. A Forbush decrease
refers to the measured reduction in the galactic cosmic ray
background due to an Earth-passing CME (Forbush, 1954;
Raghav et al., 2020; Janvier et al., 2021). Cosmic rays are
an important D-region ionisation source at night and a mi-
nor contributor during the day (Moler, 1960). According to
Satori (1991), the reduction in the galactic cosmic ray flux
associated with a CME counters the increased D-region ion-
isation from precipitating radiation belt electrons during a
geomagnetic storm.

Again, the focus of this report is on the geomagnetic
storm-related impacts on VLF TRGCP radio-wave propaga-
tion and the information on the D region that can be gleaned
from this approach. In this regard, Belrose and Thomas
(1968) reported that mid-latitude VLF amplitudes during a
geomagnetic storm were unaffected, whereas phase measure-
ments showed rapid fluctuations with residual effects lasting
several days following the storm. Muraoka (1979) found that
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the prevalence of these phase anomalies was dependent on
the strength of the magnetic storm. Upon further examina-
tion, as reported by Rodger et al. (2007), both signal am-
plitude and phase variations in VLF TRGCP transmissions
were found to be sensitive to electron precipitation events
during geomagnetic storms. Choudhury et al. (2015) found
that receiver position electron density was the main control-
ling factor in their storm time metric of the sunrise DLPT
depth in VLF TRGCP radio-wave propagation. This met-
ric plus the MDP parameter (after Nwankwo et al., 2016)
were used by Naidu et al. (2020) to ascertain, again, that
geomagnetic-storm-related impacts on the D region were due
to energetic electron precipitation. Recently, Kerrache et al.
(2021) clarified the role of lightning-induced electron pre-
cipitation (LEP) events (Voss et al., 1998; Blake et al., 2001;
Inan et al., 2010) in the pitch angle scattering of outer radi-
ation belt electrons during geomagnetic storms and their im-
pact on VLF TRGCP transmissions within the mid-latitude
EIWG.

The mechanisms that affect the low-latitude D region
in response to geomagnetic storms have not been exten-
sively studied and are still relatively unknown (Araki, 1974;
Kleimenova et al., 2004; Kumar and Kumar, 2014; Kumar
et al., 2015; Maurya et al., 2018). It is recognised that the
low-latitude E- and F-region ionospheres can be affected
by storm-induced prompt penetration electric fields (PPEFs)
(Tsurutani et al., 2008; Timocin, 2022) and disturbance dy-
namo electric fields (DDEFs) (Blanc and Richmond, 1980;
Fejer et al., 1983; Scherliess and Fejer, 1997) plus related
substorm effects (Sastri, 2006; Chakraborty et al., 2015; Hui
et al., 2017). Generally speaking, PPEFs refer to the imme-
diate and sustained fields resulting from the active response
of the magnetosphere to an externally imposed forcing func-
tion such as an interplanetary shock (Nava et al., 2016),
whereas DDEFs result from the delayed equatorward motion
of the thermosphere in response to auroral heating and chem-
istry (Zesta and Oliveira, 2019; Robinson and Zanetti, 2021).
Transient substorms affect the dynamics of the low-latitude
ionosphere as the magnetotail attempts to accommodate an
increased storm time reconnection rate (Hajra, 2021). How-
ever, these storm time perturbations do not appear to affect
the lower ionosphere except under the most extreme situa-
tions. For example, in a limited study of seven moderate (Dst
<−50) to intense (Dst <−100) geomagnetic storms, Ku-
mar and Kumar (2014) found that only the intense storm of
16 December 2006, with Dst=−145, had a clear measurable
effect on VLF TRGCP transmissions at low latitudes. These
findings are consistent with early studies (Araki, 1974) on the
effects of large storms on transequatorial VLF propagation.
Other case studies of intense (Kumar et al., 2015; Maurya et
al., 2018) to super (Dst<−200, Wu et al., 2016) geomag-
netic storms validate this D-region response, although the
specific mechanisms for coupling the low-latitude D-region
ionosphere to the higher latitudes in terms of gravity waves
or chemical processes have not yet been confirmed.

We have provided an extensive and, hopefully, well-
documented background on the use of VLF radio waves to
probe the ionospheric D region, with an emphasis on the im-
pacts of geomagnetic storms. Monitoring VLF radio-wave
propagation within the EIWG along TRGCPs is a conve-
nient and cost-effective technique for determining how space
weather affects this lowest traditional ionospheric density
layer. While the D region is an important enabling element
for VLF communications, it is also an interface linking the
middle atmospheric regions to the upper ionosphere. We
have stressed the role of the D region within an M–I per-
spective of a driven system during geomagnetic storms, per-
haps at the expense of expanding on the impacts on and the
feedback from the neutral atmosphere. While much of the
basic physics and chemistry of the D region is well under-
stood, how geomagnetic storms affect this region of space
remains an active area of research. Our goal within this pa-
per is to contribute in some small way to the existing body
of knowledge concerning the D region as it pertains to VLF
radio-wave propagation. Therefore, in this study we com-
bine the observed diurnal VLF amplitude variations in the
D region with standard measurements of the E and F re-
gions to perform a diagnostic investigation of coupled ge-
omagnetic storm effects in order to understand the observed
storm-induced variations in VLF propagation based on the
state and responses of the ionosphere.

2 Data and method

We obtained the VLF amplitude data for the DHO-A118
and GQD-A118 propagation paths received at the A118 SID
monitoring station in Muret, southern France (lat 43.53◦ N,
long 1.39◦ E). The locations of the transmitters (GQD –
22.1 kHz, lat 54.73◦ N, long 2.88◦W – and DHO – 23.4 kHz,
lat 53.08◦ N, long 7.61◦W) and the receiver (A118) are
shown in Fig. 1. The DHO-A118 and GQD-A118 TRGCPs
are 1169 and 1316 km, respectively. Supporting ancillary
data include solar X-ray flux, solar wind speed (Vsw) and
particle density (PD), planetary geomagnetic Ap and the Dst
index. These data adequately described in Nwankwo et al.
(2016) and references therein.

We consider the TRGCP VLF data for the extended inter-
vals 16 through 31 September 2011 and 22 October through
5 November 2011 which included the geomagnetic storm
sub-intervals of interest on 17 September, 26–27 September,
25 October and 1 November 2011. The MBSR and MASS
indices, as previously described, are the respective 2 to 4 h
(dependent on signal quality or season, e.g. winter/summer)
mean VLF signal amplitudes measured before local sunrise
and after local sunset, whereas the MDP index is the peak
signal amplitude measured near local noon. The frequency
and power for the DHO and GQD transmitters can be con-
sidered constants in our analysis, whereas the received sig-
nal strength at A118 is subject to the path-integrated effect
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Figure 1. VLF signal propagation paths (DHO-A118 and GQD-
A118) used in the study. Map adopted from the A118 channel; de-
tails at https://sidstation.loudet.org/channels-details-en.xhtml (last
access: 18 May 2022).

of attenuation due to the structure of the D region within the
EIWG and the impact of atmospheric absorption. Figure 2
includes several examples of the diurnal variation in VLF
signal strength for the DHO-A118 TRGCP. Times are ref-
erenced to Universal Time (UT), which is essentially local
time of day at the A118 receiver site. The top trace is a rather
well-behaved sample where the MBSR, MASS and MDP
indices can be readily determined. Also shown in this top
trace are the signal effects of the sunrise and sunset termina-
tors, denoted as SRT and SST, respectively, which transit the
TRGCP and are generally understood in terms of VLF-mode
theory (Wait, 1960). However, not all diurnal traces are so
well behaved. The middle example in Fig. 2 shows the tran-
sient effect of a solar flare on the VLF amplitude, which in
this case would be classified as a SID and, more specifically,
as a sudden enhancement of the signal strength of atmospher-
ics (SEA) in accordance with Lincoln (1961). The lower
trace includes an example of a “pseudo-SRT”, which illus-
trates the complicating effect of terminator-related modal in-
terference along the TRGCP (Chand and Kumar, 2017). Re-
latedly, the evening-side SST signatures in the middle and
lower traces are rather ambiguous, which, again, may be due
to modal interference. The gist of these comments is to high-
light the deleterious nature of VLF radio-wave propagation
as a complicating factor in deriving the MBSR, MASS, MDP,
SRT and SST indices. In previous work (Nwankwo et al.,
2016, 2020, 2022), we have discussed how these factors can
be effectively addressed and the somewhat subjective nature
of the determination.

Figure 2. Diurnal VLF signal amplitude signatures (from the DHO-
A118 propagation path) showing analysed signal metrics.

The examples in Fig. 2 clearly illustrate that VLF TRGCP
propagation within the EIWG is affected by the dynamics of
the ionosphere and, to a lesser extent, the thermosphere. The
“classic” quantifications of the VLF reflection height,H ′ and
sharpness, b (after Wait and Spies, 1964), are useful tools
for assessing the local D-region response to solar-induced
perturbations, for example SIDs, EPP, solar eclipses and ge-
omagnetic storms as well as non-solar phenomena such as
gravity waves and lightning (Silber and Price, 2017). For the
TRGCP dataset at hand the received VLF amplitude reflects
the integrated state of the traversed ionosphere along the sig-
nal path. In this regard we believe that the MBSR, MASS,
MDP, SRT and SST indices provide a simpler yet more com-
prehensive set of metrics for assessing VLF TRGCP radio-
wave propagation, particularly in the aftermath of a geomag-
netic storm. By comparing and contrasting the changes in
these indices for pre-storm versus storm time intervals, we
hope to facilitate the development of a more comprehensive
D-region specification that can be integrated into an empiri-
cal ionospheric model such as the IRI.

3 Results and discussion

3.1 Analysis of VLF amplitude variations during
intervals of geomagnetic storms

Figure 3 is a composite plot including the diurnal variation
in VLF amplitudes for the (a) DHO-A118 and (b) GQD-
A118 propagation paths plus the daily variation in the (c) so-
lar X-ray flux output, (d) solar wind speed (Vsw), (e) solar
wind PD, (f) Dst, (g) planetary geomagnetic Ap and (h) au-
roral electrojet (AE) indices during 16–30 September 2011.
Four storm conditions occurred during this extended pe-
riod, including an isolated storm of moderate intensity on
17 September (Dst=−60) and consecutive storms on 26
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Figure 3. (a) Diurnal VLF amplitude for DHO-A118 and (b) GQD-A118 propagation paths, (c) daily variation in X-ray flux output, (d) solar
wind speed (Vsw), (e) solar particle density (PD), (f) disturbance storm time (Dst), (g) planetary Ap, and (h) auroral electrojet (AE) indices
during 16–30 September 2011.

September (Dst=−101), 27 September (Dst=−88) and 28
September (Dst=−62), presumably driven by the signifi-
cant increase in Vsw and PD on 17 September and 26 Septem-
ber (Fig. 3a–f). However, the main reference storms are those
of 17 September and 26 September. The variation of the AE
(especially between 26 September and 29 September) ap-
pears to be consistent with storm-related high-intensity, long-
duration continuous AE activity events (HILDCAAs) during
which “fresh energy was presumably injected” into the mag-
netosphere (Tsurutani et al., 2011). A notable drop occurred
in the DHO-A118 VLF signal level on 26 September around
midday, coincident with a relatively intense storm with Dst of
−101 (Fig. 3a). This scenario (signal strength decrease) has
been associated with storm-induced variations in energetic
electron precipitation flux (Kikuchi and Evans, 1983; Peter et
al., 2006). During a geomagnetic storm, the current system in
the ionosphere and the energetic particles precipitating into
the ionosphere can influence the density and distribution of
density in the atmosphere (NOAA, 2016). The characterised
metrics (e.g. MBSR, MDP, MASS, SST and SRT) of the VLF
signal amplitude make it easier to study the behaviour of the
signal during the storms. We therefore monitor trends of the
signal variation in the analysis to follow for possible identi-
fication of storm-induced variation in the signal due to lower
ionosphere responses.

Figure 4 shows daily mean fluctuation of Dst and AE and
variations in the VLF midday signal amplitude peak (MDP),
mean signal amplitude before local sunrise (MBSR), mean
signal amplitude after sunset (MASS), sunrise terminator

(SRT) and sunset terminator (SST) for the (a) DHO-A118
and (b) GQD-A118 propagation paths from 16 to 30 Septem-
ber 2011. In the GQD-A118 propagation path (Fig. 4a), we
observed a dipping of the MDP on 17 September (extend-
ing to 20 September) as well as dipping of the MASS on 17
September but an increase in the MBSR, SRT and SST. Fol-
lowing the recurrent storms between 26 and 28 September,
we observed dipping of the MDP on 26 September (extend-
ing to 29 September). The slight increase in the signal (MDP)
on 28 September appears to be due to the significant flare ac-
tivity (three C-class and one M-class), suggesting an increase
in both the instantaneous and background X-ray flux output
that usually results in an increase in signal amplitude (as de-
picted in Fig. 2b). High flare activity can “overshadow” the
signal’s response to geomagnetic storms when the event co-
incides with storm time (Nwankwo et al., 2016). There is also
a significant dipping of all the signal metrics (MDP, MBSR,
MASS, SRT and SST) on 27 September. We note dipping
of the MBSR on the days following the main (reference)
storms on 18 and 27 September. Since the events occurred af-
ter dawn (around midday), the post-storm ionospheric effects
are expected well into the day following the storm. This trend
(post-storm day signal dip) suggests that the signals dipped
in response to continuous driving of the ionosphere on the
days following the events. However, such a response also de-
pends on the characteristics of the signal propagation path.
In the DHO-A118 propagation path, dipping of the MDP,
MBSR, SRT and SST occurred on 17 September, while the
MDP, MASS and SST also decreased on 26 September. The
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MASS and SRT maintained the pre-storm day values of 16
and 25 September, respectively. While the MBSR increased
slightly on 26 September (main storm day), there is a signif-
icant dipping of the signal following the recurrent storm of
27 September.

Figure 5 depicts the diurnal VLF amplitude for the
(a) DHO-A118 and (b) GQD-A118 propagation paths, daily
variation in (c) X-ray flux output, (d) Vsw, (e) PD, (f) Dst,
(g) Ap and (h) AE indices from 22 October to 5 Novem-
ber 2011. This period was associated with a severe storm
with the main phase on 25 October (Dst=−132) and con-
secutive storms on 1 November (Dst=−71) and 2 Novem-
ber (Dst=−57), presumably driven by the highly variable
Vsw and PD (Fig. 5d–e). It has been shown that the ca-
pability of a given value of the solar wind electric field
(SWEF) to create a Dst disturbance or geo-efficiency is en-
hanced by high solar wind density (Weigel, 2010; Tsurutani
et al., 2011). Variation of the AE between 30 October and
3 November also appears to be consistent with a HILDCAA
event (Fig. 5h). The DHO-A118 VLF signal level on 25 Oc-
tober around midday also showed a visible reduction follow-
ing the intense storm condition with a Dst of −132 (Fig. 5a).
VLF signal data for the GQD-A118 propagation path are not
available from 12:00 on 25 October to 18:00 on 26 October
(Fig. 5b).

Figure 6 plots the daily deviations of Dst and AE and vari-
ations in the MDP, MBSR, MASS, SRT and SST for the
(a) DHO-A118 and (b) GQD-A118 propagation paths from
22 October to 5 November 2011. Although data for the GQD-
A118 propagation path during 25 and 26 October were in-
adequate for the present analysis, we did observe a dipping
of the MBSR on the main storm day (25 October). Dipping
of the MDP, MASS and SST occurred on 1 November and
those of MBSR, MASS and SRT on 2 November, following
the consecutive storms. In the DHO-A118 propagation path,
we observed dipping of the MDP, MBSR, MASS and SRT on
25 October, dipping of the MDP, MBSR, MASS and SST on
1 November and dipping of the MBSR and SRT on 2 Novem-
ber. Similar to the first case (Figs. 4 and 5), we note the
numerous flare events on 2 November (up to seven C-class
and one M-class) that may have induced a spike in the MDP
on the day in both the GQD-A118 and DHO-A118 propa-
gation paths. Although dipping of the MDP signal (follow-
ing storm events) has shown considerable consistency across
the cases presented so far, the MBSR and MASS (in partic-
ular) appear to be influenced by storm occurrence time and
the high variability or fluctuation of the dusk-to-dawn iono-
sphere (and signal) (Nwankwo et al., 2016). However, pre-
senting a consistency across a substantial number of cases is
vital to the conclusion of this work. We, therefore, analysed
15 additional storm cases between September 2011 and Oc-
tober 2012 in order to obtain a statistically significant set of
observations. The 15 storm cases are presented in Table 1.

In Fig. 7, we show Dst deviations (σDst) and trends in vari-
ation of the MDP, MBSR, MASS, SRT and SST signals on

Table 1. Summary of the 15 analysed geomagnetic storm events.

No. Date Max. Dst σDst Flare count
ddmmyyyy (nT) (C M X)

1 26092011 −101 ±50.73 9 2 0
2 25102011 −132 ±30.76 1 0 0
3 22012012 −67 ±37.00 4 0 0
4 15022012 −58 ±9.63 0 0 0
5 19022012 −54 ±12.8 1 0 0
6 07032012 −74 ±25.41 1 0 0
7 15032012 −74 ±20.75 1 0 0
8 28032012 −55 ±12.09 1 0 0
9 05042012 −54 ±13.82 3 0 0
10 23042012 −95 ±32.23 3 0 0
11 12062012 −51 ±12.47 13 0 0
12 16062012 95 ±20.24 4 0 0
13 15072012 −126 ±47.88 8 0 0
14 02092012 −54 ±13.86 5 0 0
15 09102012 −105 ±25.64 10 1 0

the day before the storm (blue bar), the storm day (red bar)
and after the storm day (brown bar) for the 15 selected storm
cases in the (a) GQD-A118 and (b) DHO-A118 propagation
paths. σDst is the measure or extent of daily fluctuation in
measured values of Dst. We recognised the 3 consecutive
days as day before event (BE), during event (DE) and after
event (AEv). A missing index indicates an absence of data. It
should be noted however (for this analysis) that these events
were separate events and not continuous events. In the GQD-
A118 propagation path, about 8 of 12 MDPs, 10 of 13 MB-
SRs, 7 of 12 MASSs, 3 of 12 SRTs and 5 of 12 SSTs showed
dipping features, while 12 of 15 MDPs, 9 of 15 MBSRs, 10
of 15 MASSs, 5 of 15 SRTs and 7 of 15 SSTs showed dip-
ping in the DHO-A118 propagation path. These values cor-
respond to 67 %, 77 %, 58 %, 25 % and 42 % dipping in the
GQD-A118 propagation path and 80 %, 60 %, 67 %, 33 %
and 47 % dipping in the DHO-A118 propagation path. The
signal levels along with the percentage dip are presented in
Table 2. The MDP signals (in both propagation paths) gen-
erally show a tendency for dipping following geomagnetic
storm conditions. However, we also observe a few cases of
increase in the MDP during separate events in each of the
propagation paths (e.g. events 4 and 7 in GQD-A118 and
9 in DHO-A118) as well as coincident increases occurring
in both propagation paths during the same event (e.g. events
3 and 12). While the probable reason for this coincidence
is suggestive of factors such as propagation characteristics
and/or X-ray flux-induced spikes in amplitude (e.g. signifi-
cant X-ray output during events 3 and 7 in Fig. 8c), further
investigation into why this characteristic exists will be pur-
sued. In the meantime, we analysed variations in X-ray flux
output and geomagnetic indices during events 3 and 12 to
better interpret the prevailing ionospheric conditions at the
time.
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Figure 4. Daily deviations of (a) Dst, (b) AE, (c) variations in the peak value of midday signal amplitude (MDP), (d) mean signal amplitude
before local sunrise (MBSR), (e) mean signal amplitude after sunset (MASS), (f) variation in sunrise terminator (SRT), and (g) sunset
terminator (SST) for the GQD-A118 (left column) and DHO-A118 (right column) propagation paths from 16 to 30 September 2011.

Figure 5. (a) Diurnal VLF amplitude for the DHO-A118 and (b) GQD-A118 propagation paths, (c) daily variation in X-ray flux output,
(d) solar wind speed (Vsw), (e) solar particle density (PD), (f) Dst, (g) planetary Ap, and (h) AE indices from 22 October to 5 November
2011.

In Fig. 8, we present the diurnal VLF amplitudes for the
(a) DHO-A118 and (b) GQD-A118 propagation paths, daily
variation in (c) X-ray flux output, (d) Vsw, (e) PD and (f) Dst
indices for a day before and after each of the 15 storms. Data
showed (Fig. 8c, f) the occurrence of an M-class flare in as-

sociation with the storm on 22–23 January 2012 (event 3 on
21 January), both events having near-corresponding peaks.
This scenario suggests an enhancement of both the instan-
taneous and background X-ray flux output (as stated earlier)
that may have caused an increase (or spike) in the signal level
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Figure 6. Daily deviations of (a) Dst and (b) AE and (c) variations in MDP, (d) MBSR, (e) MASS, (f) SRT, and (g) SST for the GQD-A118
(left column) and DHO-A118 (right column) propagation paths from 22 October to 5 November 2011.

Table 2. Summary of the trend in dipping of the signals’ metrics during 15 geomagnetic storm cases in the (a) DHO-A118 and GQD-A118
propagation paths.

GQD-A118 propagation path DHO-A118 propagation path

Signal (dB) Available data No. of dips % dip Available data No. of dips % dip

MDP 12 8 67 15 12 80
MBSR 13 10 77 15 9 60
MASS 12 7 58 15 10 67
SRT 12 3 25 15 5 33
SST 12 5 42 15 7 47

and thus probably overshadowed geomagnetic effects on the
signal. While this explanation may be argued for events 1
(25–27 September 2011) and 6 (6–8 March 2012), it should
be noted that the flare events started well before the storms
and continued until the storm time (in each case), suggest-
ing an established increase in the overall background X-ray
before the storms. Hence, it is possible for a storm-induced
dipping to manifest under such a condition. However, fur-
ther investigation is encouraged, which is beyond the scope
of this work. For event 12 (from 15 to 17 July 2012), we ob-
served that the peak of the storm (that commenced by mid-
night on 16 July) was on 17 July (recognised as AEv). There-
fore, any geomagnetic influence on the signal (e.g. dipping)
is expected on 17 July (or after) and not 16 July, hence the
dipping of the AEv signal (on 17 September) in the DHO-
A118 propagation path.

Figure 9 shows Dst deviation (fluctuation) and 2 d mean
variations of MDP, MBSR, MASS, SRT and SST signals be-
fore, during and after each event for the (a) GQD-A118 and

(b) DHO-A118 propagation paths. This analysis is impor-
tant for corroborating the result presented in Fig. 7, because
the data selection criteria differ from those of Fig. 7 in some
ways. While BE, DE and AEv represent data for 3 consecu-
tive days with reference to the event’s day (DE) in the former
analysis (presented in Fig. 7), each abbreviation (BE, DE or
AEv) represents a relatively quiescent 2 d mean amplitude
before and after DE (but not necessarily in succession to/after
DE). However, it should be noted that, due to the data averag-
ing (2 d), a “pronounced” increase or dipping in the signals
(comparable to those in the former analysis, Fig. 7) is not
expected. Another important data selection criterion for this
analysis is a relatively geomagnetic quiet day BE and AEv
with respect to DE.

In the GQD-A118 propagation path, 7 of 12 MDPs, 7 of
13 MBSRs, 7 of 12 MASSs, 6 of 12 SRTs and 3 of 12 SSTs
showed dipping following the storms, while 10 of 15 MDPs,
11 of 15 MBSRs, 11 of 15 MASSs, 6 of 14 SRTs and 6 of 15
SSTs showed dipping in the DHO-A118 propagation path.
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Figure 7. Dst deviation (or fluctuation) and variations in MDP, MBSR, MASS, SRT and SST signals 1 d before, during and after each of the
15 events for the GQD-A118 and DHO-A118 propagation paths. Note that each Dst bar represents the deviation (σ ) corresponding to the
VLF amplitude before, during and after the selected events (storm) as listed in Table 1 and shown in Fig. 8. The events are selected (for the
intervals shown in Fig. 8) and are not continuous.

These values correspond to, respectively, 58 %, 54 %, 58 %,
50 % and 25 % dipping in the GQD-A118 propagation path
and 67 %, 73 %, 73 %, 43 % and 40 % dipping in the DHO-
A118 propagation path. The signal levels along with the per-
centage dip of the signals are presented in Table 3. In gen-
eral, the trend of variation of the signal metrics reflected the
prevailing space weather-coupled effects in the lower iono-
sphere. The MDP signal appears to be more responsive to ge-

omagnetic perturbations (58 % and 67 % (67 % and 80 % for
1 d mean analysis) in the respective propagation paths shown
in Figs. 7 and 9) than other signal metrics. However, the 2 d
mean analysis showed improvement in MBSR and MASS
(73 %) of the DHO-A118 propagation path, thereby reenforc-
ing the responsiveness of this propagation path to geomag-
netic storm impacts. While the mechanism of VLF amplitude
(and/or MDP) response to flare-induced SIDs is well under-
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Figure 8. Diurnal VLF amplitude for the (a) DHO-A118 and (b) GQD-A118 propagation paths, daily variation in (c) X-ray flux output,
(d) Vsw, (e) PD, and (f) Dst indices for a day before and after each of the 15 storms.

stood (see Sect. 1.3 of Nwankwo et al., 2016), the mecha-
nism of the transient response of the signal to geomagnetic
storming is not well developed. We speculate that the dipping
response of the MDP may be related to (i) a positive storm
effect, which affects, albeit to a small extent, the attenuation
of the VLF radio waves (Fagundes et al., 2016), (ii) adjust-
ment of the D layer to storm-driven energy input (McPher-
ron, 1979), (iii) precipitation of energetic electrons (Rodger
et al., 2010, 2012; Naidu et al., 2020) and/or (iv) charge
exchange between surrounding ionospheric regions (Tatsuta
et al., 2015). Since the processes are gradual (when com-
pared with the SID scenario) and originate from the magneto-
sphere, it is not likely that a remote spike would occur in the
diurnal signal (as observed during the flare condition). One
other likely reason for the observed dipping characteristic is
the modification of the chemistry of the D region by storm
precipitation of SEPs (Turunen et al., 2009), since chemistry
(mainly NO) controls the quiescent D region (Siskind et al.,
2017).

Nwankwo et al. (2016) noted the existence of pseudo
SRT and/or SST sometimes exhibited by diurnal VLF sig-
nal (see Fig. 2c) as a drawback in SRT and SST analysis.
This anomaly is due to the secondary destructive interfer-
ence pattern in signals and/or occurrence of solar flares dur-
ing sunrise/sunset (Sandip Chakrabarti, personal communi-
cation, 2016). The authors concluded in their study that the
post-storm SRT and SST variations do not appear to have a
well-defined trend associated with the storm effect based on

the approach used in the analysis (Nwankwo et al., 2016).
In this work, we considered the “first” SRT and SST values
(in the event of a pseudo-terminator) during analysis of the
signal metrics. A rise in SRT and SST amplitude under ge-
omagnetic storm conditions appears to occur more than oth-
erwise in both propagation paths. We found a respective dip-
ping of 50 % and 25 % (43 % and 40 %) of the SRT and SST.
Storm-induced disturbances may not have a significant influ-
ence on these metrics (SRT and SST), and since the sunrise
and sunset signatures relate to mode conversion in the VLF
propagation path, it might imply that the D-region density is
not a significant contributor to this effect. It is important to
note that, of the two propagation paths used in this study, the
DHO-A118 signal appears to be more sensitive to geomag-
netic storm-induced magnetosphere–ionospheric dynamics.
We do not expect a “perfect” consistency in signal trend and
variations across all cases, because the individual effects of
solar and other forcing mechanisms (including those of litho-
spheric and atmospheric sources) on the ionosphere are dif-
ficult to estimate (Kutiev, 2013; Nwankwo et al., 2016). This
scenario can also cause non-linear coupling processes and
consequent significant fluctuations in radio signals.

3.2 Investigating the state of the ionosphere over the
propagation paths of the VLF signals

Here, we study the state of the ionosphere over the two VLF
propagation paths using the virtual heights (h’E, h’F1 and
h’F2) and critical frequencies (foE, foF1 and foF2) of the E
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Figure 9. Dst deviation and 2 d mean variations of MDP, MBSR, MASS, SRT and SST signals before, during and after each event for the
GQD-A118 and DHO-A118 propagation paths.

and F regions obtained from two ionosonde stations near the
GQD and DHO transmitters. Although we made an effort to
obtain data from stations near each transmitter/receiver and
at the mid-point, we found no ionosonde station at the mid-
point, and the nearest station to the receiver (Tortosa) has no
data for the period/intervals under study. However, to make
up for this dearth of data, we will complement the analysis
with the results in the extended study that utilised the GNSS
data in the region (e.g. Nwankwo et al., 2022). Details of
the ionosonde stations used in this study are provided in Ta-

ble 4. We treat Chilton station as nearest to the GQD trans-
mitter and Juliusruh station as nearest to the DHO transmit-
ter. Tortosa station is closest to the A118 transmitter but has
no data for the intervals. We obtained and calculated the day-
time (08:00–15:00) mean values and standard deviations (σ )
of the parameters and then analysed them for the storms of
interest (on 17 and 26 September and 1 November) within
the intervals 16–19 and 25–28 September and 29 October to
2 November 2011. We exclude analysis of the 25 October
storm because the data for this interval are inadequate.
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Table 3. Summary of trends in 2 d mean signal dipping following 15 geomagnetic storm cases in the DHO-A118 and GQD-A118 propagation
paths.

GQD-A118 propagation path DHO-A118 propagation path

Signal (dB) Available data No. of dips % dip Available data No. of dips % dip

MDP 12 7 58 15 10 67
MBSR 13 7 54 15 11 73
MASS 12 7 58 15 11 73
SRT 12 6 50 14 6 43
SST 12 3 25 15 6 40

Table 4. Ionosonde stations near the VLF transmitters and receiver and/or propagation paths.

Station Location Coordinate Nearest transmitter/ Approx. dist. from
receiver transmitter/receiver

Chilton United Kingdom 51.5696◦ N, 1.2997◦W GQD 394.15 km
Juliusruh Germany 54.6207◦ N, 13.3719◦ E DHO 415.71 km
Tortosa Spain 40.8126◦ N, 0.5214◦ E A118 301.87 km

Figure 10 shows the daily mean and standard deviation
(SD or σ ) of foF2, foF1, foEs, foE, h’F2, h’F, h’Es and
h’E from 16 to 17 September 2011 for Chilton and Julius-
ruh stations. We compared the pre-storm day (blue broken
line) values with the storm day (red broken line) values. At
Chilton station (near the GQD transmitter), results show sig-
nificant increase and/or fluctuation (increase in SD) in foF2
and a decrease (with significant fluctuation) in foF1 on the
storm day, 17 September. The height of the E and F regions
(h’F2, h’F, h’Es and h’E) significantly increased following
the storm. A similar pattern of variations was observed at
Juliusruh station. foF2 and foF1 increased (and/or fluctuated)
significantly, as well as h’F2, h’F, h’Es and h’E. Values of
foEs decreased, while foE remained unaffected in both sta-
tions. Also, there appear to be a sustained post-storm increase
and/or fluctuations of the parameters on 18 September, sug-
gesting a continuous driving of the ionosphere by the storm.

Figure 11 shows the daytime mean variations and SD
of foF2, foF1, foEs, foE, h’F2, h’F, h’Es and h’E from 25
to 28 September 2011 for Chilton and Juliusruh stations.
The storm during this interval (on 26 September) was well
developed (with Dst up to −101 nT) and larger than the
17 September event. The result of this analysis shows a slight
increase in foF2 and foF1 but a decrease in foEs and foE
for Chilton station. The height of F2 (h’F2) decreased (by
6.90 km), while those of F, Es and E increased on the storm
day, 26 September. Near the DHO transmitter (Juliusruh sta-
tion), there is an anti-correlated variation in the critical fre-
quencies of the E and F regions: a depression of foF2 and
foF1 but an increase in foEs and foE (when compared with
the scenario at Chilton station). The height of the F2, F and
E regions increased by 47.89, 16.08 and 9.14 km, respec-
tively (which are so far the largest increase in the parame-

ters), while the height of the Es region decreased by 0.16 km
(see Table 5).

Figure 12 shows the daytime mean variation and SD of
foF2, foF1, foEs, foE, h’F2, h’F, h’Es and h’E from 29 Octo-
ber to 2 November 2011 for Chilton and Juliusruh stations.
This interval is of interest because of the fluctuation in geo-
physical parameters during the days preceding the storm.
We include this interval to investigate the coupling effect of
this extended period (30–31 October) of geomagnetic distur-
bances preceding the storm on 1 November. It appears that
energy began building up in the magnetosphere–ionosphere
system after the first significant spike in Vsw around 07:00 on
29 October (and subsequent increase on 30 October) and PD
around 10:00 on 30 October until around 10:00 on 1 Novem-
ber, when the storm was triggered following a sudden in-
crease in Vsw and southward turning of the Bz (Nwankwo
et al., 2020). Here, we compare the parameter level on the
relatively quiet day (29 October) with those of the storm day
(on 1 November), since the 2 days preceding the storm were
significantly disturbed. The result shows significant increases
in foF2 and foF1 at Chilton station. Like the 17 Septem-
ber storm scenario, values of foEs decreased, while foE re-
mained unaffected for this station. h’F2 decreased, while h’F,
h’Es and h’E showed significant increase. At Juliusruh sta-
tion only the critical frequency of the F2 region increases,
while those of F1, Es and E decreased. However, the in-
crease and/or fluctuation of the parameters were significant
(in most cases) during the disturbed days (30 and 31 Octo-
ber) preceding the storm, suggesting responses of the E and
F ionosphere regions (coupled to the D region) before the
storm commencement (as a result of increased geomagnetic
activity on the days). We present a summary of the storm day
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Figure 10. Daytime mean variations and standard deviation (SD) of foF2, foF1, foEs, foE, h’F2, h’F, h’Es and h’E from 16 to 17 Septem-
ber 2011 for Chilton and Juliusruh stations. The blue broken line represents the pre-storm day values, while the red broken line represents
the storm day values of the ionospheric parameters.

variations in h’F2, h’F, h’Es and h’E for the two stations in
Table 5.

In summary, foF2, foF1, h’F2, h’F, h’Es and h’E gen-
erally showed significant increases and/or fluctuations near
both transmitters (GQD and DHO) during the geomagnetic
storms, whereas foEs and foE mostly decreased (but slightly
increased in fewer cases) or remained unaffected. It appears
that the observed storm-induced increases and fluctuations
were largely sustained or further enhanced on the day (or
days) following the event (post storm day), suggesting a con-
tinuous driving of the ionosphere by the storms and/or a sub-
storm effect. Although the analysis for the 1 November storm
scenario showed weak correlation, variations of the parame-
ters reflected the coupled responses of the ionosphere to en-
ergy build-up ahead of storm commencement. Nwankwo and
Chakrabarti (2018) reported significant depression and fluc-
tuations of foF2 following significant geomagnetic distur-
bances and/or storms at high and mid latitudes and distortion
in the quasi-periodic pattern of the parameter. Their infer-
ence was, however, based on a preliminary analysis from the
result of a single ionosonde station. From this comparatively
detailed analysis, it is clear that the reported depression of
foF2 may occur during some (isolated) storms and locations,
and should, therefore, not be treated as a global response.
Negative storm effects (in which foF2 decreases) have also

been reported (e.g. Blanch et al., 2013; Kane, 2005). In this
analysis, the largest increase in h’F2, h’F, h’Es and h’E oc-
curred in Juliusruh near the DHO transmitter (see Table 5).
The ionosonde observations indicated that fluctuations in the
reference heights appeared to be the dominant response of
the E and F regions to geomagnetic storms, whereas atten-
uation of the VLF radio-wave signal strength was respon-
sive to the storm-induced dynamics in the ionospheric D re-
gion. This observation is instructive in that the observed large
ionosonde increase and the large amplitude decreases in the
DHO-A118 propagation path signal may be related to cou-
pled effects between the ionospheric regions but are also sug-
gestive of strong storm responses (more intense) around/n-
ear the DHO transmitter or DHO-A118 propagation path.
This result is in agreement with the recent findings reported
in Nwankwo et al. (2022). Their study combined observed
VLF amplitude variations with TEC/VTEC data obtained
from multiple GNSS stations, including Euskirchen in Ger-
many (EUSK), Hailsham in the UK (HERT), Paris in France
(OPMT) and Naut Aran in Spain (ESCO), to investigate the
ionospheric response to storms over some signal propaga-
tion paths during the same events. They showed and reported
a simultaneous decrease in VLF amplitude and enhance-
ment of electron density profiles near the DHO transmitter.
In Fig. 13 we show the daytime variation in VLF ampli-
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Figure 11. Daytime mean variation and SD of foF2, foF1, foEs, foE, h’F2, h’F, h’Es and h’E from 25 to 28 September 2011 for Chilton and
Juliusruh stations.

Figure 12. Daytime mean variation and SD of foF2, foF1, foEs, foE, h’F2, h’F, h’Es and h’E from 29 October to 2 November 2011 for
Chilton and Juliusruh stations.
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Figure 13. Daytime variation in VLF amplitude (red line plot) for the DHO-A118 propagation path, together with VTEC values obtained
from HERT (black line), EUSK (blue line), OPMT (green line) and ESCO (brown line) stations across some locations in Europe during
16–19 and 25–28 September, 24–27 October and 29 October–1 November 2011 (from Nwankwo et al., 2022).

Table 5. Observed increase (or decrease) in h’F2, h’F, h’Es and h’E during the storms on 17 and 25 September and 1 November 2011.

17 September storm 26 September storm 1 November storm

Parameter Chilton Juliusruh Chilton Juliusruh Chilton Juliusruh

h’F2 6.46 km 16.57 km −6.90 km 47.89 km −2.00 km −2.18 km
h’F 8.92 km 9.42 km 4.92 km 16.08 km 17.65 km 16.04 km
h’Es 4.04 km 7.25 km −0.88 km −0.16 km 1.25 km 4.41 km
h’E 4.78 km 1.18 km 1.29 km 9.14 km 2.71 km 4.82 km

tude (red line plot) for the DHO-A118 propagation path, to-
gether with VTEC values obtained from HERT (black line),
EUSK (blue line), OPMT (green line) and ESCO (brown
line) stations across some locations in Europe during 16–
19 and 25–28 September, 24–27 October and 29 October–
1 November 2011. HERT is closest to the GQD transmitter
(about 508.12 km), EUSK is closest to the DHO transmit-
ter (about 279.99 km), while ESCO is nearest to the receiver
(about 90.47 km).

One clear observation (from Fig. 13) is the strong dip-
ping (or reduction) of the daytime VLF amplitude and the
simultaneous increase in VTEC values on the storm days
in the DHO-A118 propagation path. We note the large in-
crease in VTEC values for ESCO station located near DHO,
especially during the 17 September and 25 October storms.
This feature is in agreement with the findings of Choudhury
et al. (2015), who reported that the receiver position elec-
tron density is the main factor influencing the VLF signal at

ionospheric sunrise time during long-duration geomagnetic
storms. It is also worth noting that the ancillary information
of the timing, classification and location of associated solar
flares, CMEs, SPEs, and timings for the SSCs showed that
the strong storm intervals during which large dipping or de-
crease in DHO signal level occurred were associated with
SPEs (see Table 5 in Nwankwo et al., 2022). The results of
this effort that combined the diagnostics of the D, E and F re-
gions (to probe the geostorm effects in the lower ionosphere)
demonstrate that, despite the tenuousness of the coupling be-
tween the dayside upper- and lower-ionospheric regions, the
adjoining regions of E and F play significant roles in driv-
ing the storm-induced dynamics of the D region and the as-
sociated observed responses of VLF radio waves within the
context of solar–terrestrial coupling.
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4 Conclusions

In this work we performed a diagnostic study of geomag-
netic storm-induced disturbances that were coupled to the
lower ionosphere in the mid-latitude D region using propa-
gation characteristics of VLF radio signals. We characterised
the diurnal signal into five metrics (i.e. MBSR, MDP, MASS,
SRT and SST) and monitored the trend in variations of the
signal metrics for up to 20 storms between September 2011
and October 2012. The goal of the analysis was to under-
stand deviations in the signal that were attributable to the
storms. Up to five (5) storms and their effects on the sig-
nals were studied in detail, followed by statistical analysis of
15 other cases. Our results showed that the MDP exhibited
characteristic dipping in about 67 % and 80 % of the cases in
the GQD-A118 and DHO-A118 propagation paths, respec-
tively. The MBSR showed respective dipping of about 77 %
and 60 %, while the MASS dipped by 58 % and 67 %. Con-
versely, the SRT and SST showed respective dipping of 25 %
and 33 % and 42 % and 47 %, favouring the rise of the sig-
nals following storms. The MDP consistently showed strong
responses to the storms than the other metrics (followed by
the MBSR and the MASS). Among other possible reasons
outlined in this paper, we speculate that the responses were
related to positive storm effects, resulting in an attenuation of
the VLF radio waves. Of the two propagation paths examined
in this study, we observed stronger dipping of the VLF ampli-
tude of the DHO-A118 propagation path during the storms.
To understand the state of the ionosphere over the propaga-
tion paths and examine how the upper ionosphere (E and F
regions) might have affected VLF transmissions within the
EIWG, we further analysed virtual heights (h’E, h’F1 and
h’F2) and critical frequencies (foE, foF1 and foF2) of the E
and F regions (from ionosonde stations near the GQD and
DHO transmitters). The results of this analysis showed a sig-
nificant increase and/or fluctuation in the height of the E and
F regions (h’F2, h’F, h’Es and h’E) near both transmitters
during the geomagnetic storms, with the largest increase oc-
curring in Juliusruh (Germany) station near the DHO trans-
mitter. This scenario suggest a strong storm response over
the region, possibly leading to the large dipping of VLF am-
plitude for the DHO-A118 propagation path. The ionosonde
observations show that fluctuations in the reference heights
appear to be the dominant responses of the E and F regions
to geomagnetic storms, whereas dipping of the VLF radio
waves reflects storm-induced dynamics in the ionospheric D
region. Our findings demonstrate that ionospheric E and F re-
gions play significant roles in driving the storm-induced dy-
namics of the D region and the associated observed responses
of VLF radio waves despite the tenuousness of the coupling
between the dayside upper- and lower-ionospheric regions.
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