Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-479-2021
https://doi.org/10.5194/angeo-39-479-2021
ANGEO Communicates
 | 
09 Jun 2021
ANGEO Communicates |  | 09 Jun 2021

Whistler waves produced by monochromatic currents in the low nighttime ionosphere

Vera G. Mizonova and Peter A. Bespalov

Related authors

Propagation of a whistler wave incident from above on the lower nighttime ionosphere
Peter Bespalov and Vera Mizonova
Ann. Geophys., 35, 671–675, https://doi.org/10.5194/angeo-35-671-2017,https://doi.org/10.5194/angeo-35-671-2017, 2017
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–magnetosphere interactions
Ionospheric upwelling and the level of associated noise at solar minimum
Timothy Wemimo David, Chizurumoke Michael Michael, Darren Wright, Adetoro Temitope Talabi, and Abayomi Ekundayo Ajetunmobi
Ann. Geophys., 42, 349–354, https://doi.org/10.5194/angeo-42-349-2024,https://doi.org/10.5194/angeo-42-349-2024, 2024
Short summary
Three principal components describe the spatiotemporal development of mesoscale ionospheric equivalent currents around substorm onsets
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023,https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Parallel electric fields produced by ionospheric injection
Osuke Saka
Ann. Geophys., 41, 369–373, https://doi.org/10.5194/angeo-41-369-2023,https://doi.org/10.5194/angeo-41-369-2023, 2023
Short summary
A comparison of Jason-2 plasmasphere electron content measurements with ground-based measurements
Andrew J. Mazzella Jr. and Endawoke Yizengaw
Ann. Geophys., 41, 269–280, https://doi.org/10.5194/angeo-41-269-2023,https://doi.org/10.5194/angeo-41-269-2023, 2023
Short summary
Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022,https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary

Cited articles

Bespalov, P. A. and Mizonova, V.: Propagation of a whistler wave incident from above on the lower nighttime ionosphere, Ann. Geophys., 35, 671–675, https://doi.org/10.5194/angeo-35-671-2017, 2017. 
Bespalov, P. A. and Trakhtengerts, V. Y.: Cyclotron instability of the Earth radiation belts, Rev. Plasma Phys., 10, 155–292, 1986. 
Bespalov, P. A., Mizonova V. G., and Savina, O. N.: Reflection from and transmission through the ionosphere of VLF electromagnetic waves incident from the mid-latitude magnetosphere, J. Atmos. Sol.-Terr. Phys., 175, 40–48, https://doi.org/10.1016/j.jastp.2018.04.018, 2018. 
Bilitza, D. and Reinisch, B.: International reference ionosphere: improvements and new parameters, J. Adv. Space Res., 42, 599–609, https://doi.org/10.1029/2007SW000359, 2007. 
Bossy, L.: Wave propagation in stratified anisotropic media, J. Geophys., 46, 1–14, 1979. 
Download
Short summary
The paper discusses the excitation of monochromatic ELF/VLF electromagnetic waves produced by HF heating facility currents in the nighttime ionosphere. The ground-based magnetic field is predominantly located under the source, and the wave has right-hand polarization typical for a whistler but left-hand polarization at large distances from the source. About half of the source energy propagates upward, and approximately 20 % propagates to the Earth–ionosphere waveguide.