Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-479-2021
https://doi.org/10.5194/angeo-39-479-2021
ANGEO Communicates
 | 
09 Jun 2021
ANGEO Communicates |  | 09 Jun 2021

Whistler waves produced by monochromatic currents in the low nighttime ionosphere

Vera G. Mizonova and Peter A. Bespalov

Related authors

Propagation of a whistler wave incident from above on the lower nighttime ionosphere
Peter Bespalov and Vera Mizonova
Ann. Geophys., 35, 671–675, https://doi.org/10.5194/angeo-35-671-2017,https://doi.org/10.5194/angeo-35-671-2017, 2017
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Ionosphere–magnetosphere interactions
Multi-instrument observations of polar cap patches and traveling ionospheric disturbances generated by solar wind Alfvén waves coupling to the dayside magnetosphere
Paul Prikryl, Robert G. Gillies, David R. Themens, James M. Weygand, Evan G. Thomas, and Shibaji Chakraborty
Ann. Geophys., 40, 619–639, https://doi.org/10.5194/angeo-40-619-2022,https://doi.org/10.5194/angeo-40-619-2022, 2022
Short summary
A comparison of Jason-2 plasmasphere electron content measurements to ground-based measurements
Andrew J. Mazzella Jr. and Endawoke Yizengaw
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-25,https://doi.org/10.5194/angeo-2022-25, 2022
Revised manuscript accepted for ANGEO
Short summary
Responses of intermediate layers to geomagnetic activity during the 2009 deep solar minimum over the Brazilian low-latitude sector
Ângela M. Santos, Christiano G. M. Brum, Inez S. Batista, José H. A. Sobral, Mangalathayil A. Abdu, and Jonas R. Souza
Ann. Geophys., 40, 259–269, https://doi.org/10.5194/angeo-40-259-2022,https://doi.org/10.5194/angeo-40-259-2022, 2022
Short summary
Ionospheric control of space weather
Osuke Saka
Ann. Geophys., 39, 455–460, https://doi.org/10.5194/angeo-39-455-2021,https://doi.org/10.5194/angeo-39-455-2021, 2021
Short summary
Swarm field-aligned currents during a severe magnetic storm of September 2017
Renata Lukianova
Ann. Geophys., 38, 191–206, https://doi.org/10.5194/angeo-38-191-2020,https://doi.org/10.5194/angeo-38-191-2020, 2020
Short summary

Cited articles

Bespalov, P. A. and Mizonova, V.: Propagation of a whistler wave incident from above on the lower nighttime ionosphere, Ann. Geophys., 35, 671–675, https://doi.org/10.5194/angeo-35-671-2017, 2017. 
Bespalov, P. A. and Trakhtengerts, V. Y.: Cyclotron instability of the Earth radiation belts, Rev. Plasma Phys., 10, 155–292, 1986. 
Bespalov, P. A., Mizonova V. G., and Savina, O. N.: Reflection from and transmission through the ionosphere of VLF electromagnetic waves incident from the mid-latitude magnetosphere, J. Atmos. Sol.-Terr. Phys., 175, 40–48, https://doi.org/10.1016/j.jastp.2018.04.018, 2018. 
Bilitza, D. and Reinisch, B.: International reference ionosphere: improvements and new parameters, J. Adv. Space Res., 42, 599–609, https://doi.org/10.1029/2007SW000359, 2007. 
Bossy, L.: Wave propagation in stratified anisotropic media, J. Geophys., 46, 1–14, 1979. 
Download
Short summary
The paper discusses the excitation of monochromatic ELF/VLF electromagnetic waves produced by HF heating facility currents in the nighttime ionosphere. The ground-based magnetic field is predominantly located under the source, and the wave has right-hand polarization typical for a whistler but left-hand polarization at large distances from the source. About half of the source energy propagates upward, and approximately 20 % propagates to the Earth–ionosphere waveguide.