Articles | Volume 38, issue 2
https://doi.org/10.5194/angeo-38-309-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-309-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations
Guoqiang Wang
Institute of Space Science and Applied Technology, Harbin
Institute of Technology, Shenzhen, China
Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of
Sciences, Beijing, China
Tielong Zhang
CORRESPONDING AUTHOR
Institute of Space Science and Applied Technology, Harbin
Institute of Technology, Shenzhen, China
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Mingyu Wu
Institute of Space Science and Applied Technology, Harbin
Institute of Technology, Shenzhen, China
Daniel Schmid
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Yufei Hao
Key Laboratory of Planetary Sciences, Purple Mountain Observatory,
Chinese Academy of Sciences, Nanjing, China
Martin Volwerk
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Related authors
Xiaowen Hu, Guoqiang Wang, Zonghao Pan, and Tielong Zhang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-46, https://doi.org/10.5194/angeo-2021-46, 2021
Preprint withdrawn
Short summary
Short summary
We develop an automatic procedure based on the two criteria of the Wang-Pan method, and it consists of three parts: selection of the potentially high Alfvénic fluctuation events, evaluation of the OOLs, and determination of the zero offset. We test our automatic procedure by using three months of the partially calibrated data measured by VEX FGM, and find that our automatic procedure is successful to achieve as good results as the Davis-Smith method.
Geng Wang, Mingyu Wu, Guoqiang Wang, Sudong Xiao, Irina Zhelavskaya, Yuri Shprits, Yuanqiang Chen, Zhengyang Zou, Zhonglei Gao, Wen Yi, and Tielong Zhang
Ann. Geophys., 39, 613–625, https://doi.org/10.5194/angeo-39-613-2021, https://doi.org/10.5194/angeo-39-613-2021, 2021
Short summary
Short summary
We investigate the reflection of magnetosonic (MS) waves at the local two-ion cutoff frequency in the outer plasmasphere, which is rarely reported. The observed wave signals demonstrate the reflection at the local two-ion cutoff frequency. From simulations, the waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly before reflection. These results may help to predict the global distribution of MS waves.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, and Yoshifumi Futaana
Ann. Geophys., 42, 419–429, https://doi.org/10.5194/angeo-42-419-2024, https://doi.org/10.5194/angeo-42-419-2024, 2024
Short summary
Short summary
The Sun ejects a stream of charged particles into space that have to flow around planets like Venus. We quantify how this flow varies with spatial location using spacecraft measurements of the particles and magnetic field taken over several years. We find that this flow is connected to interactions with the heavier charged particles that originate from Venus’ upper atmosphere. These interactions are not unique to Venus, so we compare our results to similar studies at Mars.
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024, https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
Short summary
The magnetosheath is a transition layer surrounding the planetary magnetosphere. We develop an algorithm to compute the plasma flow velocity and magnetic field for a more general shape of magnetosheath using the concept of potential field and suitable coordinate transformation. Application to the empirical Earth magnetosheath region is shown in the paper. The developed algorithm is useful when interpreting the spacecraft data or simulation of the planetary magnetosheath region.
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Daniel Schmid and Yasuhito Narita
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-30, https://doi.org/10.5194/angeo-2022-30, 2023
Revised manuscript not accepted
Short summary
Short summary
Here we present a useful tool to diagnose the bow shock condition around planets on basis of magnetic field observations. From the upstream and downstream shock normal angle of the magnetic field, it is possible to approximate the relation between compression ratio, Alfvenic Mach number and the solar wind plasma beta. The tool is particularly helpful to study the solar wind conditions and bow shock characteristics during the planetary flybys of the ongoing BepiColombo mission.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Xiaowen Hu, Guoqiang Wang, Zonghao Pan, and Tielong Zhang
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-46, https://doi.org/10.5194/angeo-2021-46, 2021
Preprint withdrawn
Short summary
Short summary
We develop an automatic procedure based on the two criteria of the Wang-Pan method, and it consists of three parts: selection of the potentially high Alfvénic fluctuation events, evaluation of the OOLs, and determination of the zero offset. We test our automatic procedure by using three months of the partially calibrated data measured by VEX FGM, and find that our automatic procedure is successful to achieve as good results as the Davis-Smith method.
Geng Wang, Mingyu Wu, Guoqiang Wang, Sudong Xiao, Irina Zhelavskaya, Yuri Shprits, Yuanqiang Chen, Zhengyang Zou, Zhonglei Gao, Wen Yi, and Tielong Zhang
Ann. Geophys., 39, 613–625, https://doi.org/10.5194/angeo-39-613-2021, https://doi.org/10.5194/angeo-39-613-2021, 2021
Short summary
Short summary
We investigate the reflection of magnetosonic (MS) waves at the local two-ion cutoff frequency in the outer plasmasphere, which is rarely reported. The observed wave signals demonstrate the reflection at the local two-ion cutoff frequency. From simulations, the waves with small incident angles are more likely to penetrate the thin layer where the group velocity reduces significantly before reflection. These results may help to predict the global distribution of MS waves.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Martin Volwerk
Ann. Geophys., 36, 831–839, https://doi.org/10.5194/angeo-36-831-2018, https://doi.org/10.5194/angeo-36-831-2018, 2018
Short summary
Short summary
Using Voyager 1 observations of Jupiter's Io plasma torus, we have determined the location of maximum brightness depending on longitude and the location of Jupiter’s moon Io. We obtain a third viewing direction of the torus (after Voyager 2 and ground observations) and thus two locations, left and right of Jupiter, which are important for the correct modeling of this structure. We also find that a narrow ribbon-like structure only appears when the brightness of the torus exceeds a certain value.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
Ingo Richter, Hans-Ulrich Auster, Gerhard Berghofer, Chris Carr, Emanuele Cupido, Karl-Heinz Fornaçon, Charlotte Goetz, Philip Heinisch, Christoph Koenders, Bernd Stoll, Bruce T. Tsurutani, Claire Vallat, Martin Volwerk, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, https://doi.org/10.5194/angeo-34-609-2016, 2016
Short summary
Short summary
We have analysed the magnetic field measurements performed on the ROSETTA orbiter and the lander PHILAE during PHILAE's descent to comet 67P/Churyumov-Gerasimenko on 12 November 2014. We observed a new type of low-frequency wave with amplitudes of ~ 3 nT, frequencies of 20–50 mHz, wavelengths of ~ 300 km, and propagation velocities of ~ 6 km s−1. The waves are generated in a ~ 100 km region around the comet a show a highly correlated behaviour, which could only be determined by two-point observations.
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
M. Volwerk, K.-H. Glassmeier, M. Delva, D. Schmid, C. Koenders, I. Richter, and K. Szegö
Ann. Geophys., 32, 1441–1453, https://doi.org/10.5194/angeo-32-1441-2014, https://doi.org/10.5194/angeo-32-1441-2014, 2014
Short summary
Short summary
We discuss three flybys (within an 8-day time span) of comet 1P/Halley by VEGA 1, 2 and Giotto. Looking at two different plasma phenomena: mirror mode waves and field line draping; we study the differences in SW--comet interaction between these three flybys. We find that on this time scale (comparable to Rosetta's orbits) there is a significant difference, both caused by changing outgassing rate of the comet and changes in the solar wind. We discuss implications for Rosetta RPC observations.
D. Schmid, M. Volwerk, F. Plaschke, Z. Vörös, T. L. Zhang, W. Baumjohann, and Y. Narita
Ann. Geophys., 32, 651–657, https://doi.org/10.5194/angeo-32-651-2014, https://doi.org/10.5194/angeo-32-651-2014, 2014
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
H. Aryan, M. A. Balikhin, A. Taktakishvili, and T. L. Zhang
Ann. Geophys., 32, 223–230, https://doi.org/10.5194/angeo-32-223-2014, https://doi.org/10.5194/angeo-32-223-2014, 2014
M. Volwerk, C. Koenders, M. Delva, I. Richter, K. Schwingenschuh, M. S. Bentley, and K.-H. Glassmeier
Ann. Geophys., 31, 2201–2206, https://doi.org/10.5194/angeo-31-2201-2013, https://doi.org/10.5194/angeo-31-2201-2013, 2013
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
M. Volwerk, X. Jia, C. Paranicas, W. S. Kurth, M. G. Kivelson, and K. K. Khurana
Ann. Geophys., 31, 45–59, https://doi.org/10.5194/angeo-31-45-2013, https://doi.org/10.5194/angeo-31-45-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetotail
Dynamics of variable dusk–dawn flow associated with magnetotail current sheet flapping
Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results
Acceleration of protons and heavy ions to suprathermal energies during dipolarizations in the near-Earth magnetotail
Quasi-separatrix layers induced by ballooning instability in the near-Earth magnetotail
Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows
Turbulent processes in the Earth's magnetotail: spectral and statistical research
A possible source mechanism for magnetotail current sheet flapping
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
James H. Lane, Adrian Grocott, Nathan A. Case, and Maria-Theresia Walach
Ann. Geophys., 39, 1037–1053, https://doi.org/10.5194/angeo-39-1037-2021, https://doi.org/10.5194/angeo-39-1037-2021, 2021
Short summary
Short summary
The Sun's magnetic field is carried across space by the solar wind – a hot plasma
streamof ions and electrons – forming the interplanetary magnetic field (IMF). The IMF can introduce asymmetries in the Earth's magnetic field, giving plasma flowing within it a direction dependent on IMF orientation. Electric currents in near-Earth space can also influence these plasma flows. We investigate these two competing mechanisms and find that the currents can prevent the IMF from controlling the flow.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Ping Zhu, Zechen Wang, Jun Chen, Xingting Yan, and Rui Liu
Ann. Geophys., 37, 325–335, https://doi.org/10.5194/angeo-37-325-2019, https://doi.org/10.5194/angeo-37-325-2019, 2019
Short summary
Short summary
Our research explores a new method for identifying where and when the magnetic field lines in Earth's magnetotail may change its topology through the reconnection process, during which a sudden release of magnetic energy can lead to the brightening of aurora, a process called substorm. Traditionally, the magnetic reconnection was often interpreted using a two-dimensional model, which however does not capture the intrinsically three-dimensional nature of reconnection physics, as we have revealed.
Xiaoying Sun, Weining William Liu, and Suping Duan
Ann. Geophys., 37, 289–297, https://doi.org/10.5194/angeo-37-289-2019, https://doi.org/10.5194/angeo-37-289-2019, 2019
Liudmyla V. Kozak, Bohdan A. Petrenko, Anthony T. Y. Lui, Elena A. Kronberg, Elena E. Grigorenko, and Andrew S. Prokhorenkov
Ann. Geophys., 36, 1303–1318, https://doi.org/10.5194/angeo-36-1303-2018, https://doi.org/10.5194/angeo-36-1303-2018, 2018
Short summary
Short summary
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field dipolarization and compared them with known models. We used spectral and statistical methods for analysis measurements from the Cluster-II mission. We have obtained a significant difference for turbulent processes depending on observed scales. Our results can be interesting for classification of the turbulent processes in both hydrodynamics and magnetohydrodynamics environments.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Daniil B. Korovinskiy, Darya I. Kubyshkina, Vladimir S. Semenov, Marina V. Kubyshkina, Nikolai V. Erkaev, and Stefan A. Kiehas
Ann. Geophys., 36, 641–653, https://doi.org/10.5194/angeo-36-641-2018, https://doi.org/10.5194/angeo-36-641-2018, 2018
Short summary
Short summary
The Harris–Fadeev–Kan–Manankova family of exact two-dimensional equilibria is generalized to reproduce the slow decrease of the normal magnetic component in the tailward direction, and the magnetotail current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The analytical solution is found to fit the empirical T96 model, especially, at distances beyond 10–15 Earth radii at high levels of magnetospheric activity.
Cited articles
Balikhin, M. A., Sagdeev, R. Z., Walker, S. N., Pokhotelov, O. A., Sibeck,
D. G., Beloff, N., and Dudnikova, G.: THEMIS observations of mirror
structures: Magnetic holes and instability threshold, Geophys. Res. Lett.,
36, L03105, https://doi.org/10.1029/2008GL036923, 2009.
Baumjohann, W. and Treumann, R. A.: Basic Space Plasma Physics, Imperial
Coll. Press, London, 147–149, 1997.
Birn, J., Runov, A., and Hesse, M.: Energetic ions in dipolarization events,
J. Geophys. Res.-Space, 120, 7698–7717, https://doi.org/10.1002/2015JA021372, 2015.
Büchner, J. and Zelenyi, L. M.: Regular and chaotic charged particle
motion in magnetotail like field reversals, J. Geophys. Res., 94,
11821–11842, https://doi.org/10.1029/JA094iA09p11821, 1989.
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric
multiscale overview and science objectives, Space Sci. Rev., 199, 5–21,
2015.
Constantinescu, O. D.: Self-consistent model for mirror structures, J.
Atmos. Sol.-Terr. Phys, 64, 645–649, 2002.
Constantinescu, O. D., Glassmeier, K. H., Treumann, R., and Fornacon, K. H.:
Magnetic mirror structures observed by Cluster in the magnetosheath,
Geophys. Res. Lett., 30, 1802, https://doi.org/10.1029/2003GL017313, 2003.
Dunlop, M. W., Balogh, A., Glassmeier, K.-H., and Robert, P.: Four-point
cluster application of magnetic field analysis tools: The curlometer, J.
Geophys. Res., 107, 1384, https://doi.org/10.1029/2001JA005088, 2002.
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., and Huang, S.
Y.: Occurrence rate of earthward-propagating dipolarization fronts, Geophys.
Res. Lett., 39, L10101, https://doi.org/10.1029/2012GL051784, 2012a.
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., Sergeev, V. A.,
Huang, S. Y., Kronberg, E. A., and Daly, P. W.: Pitch angle distribution of
suprathermal electrons behind dipolarization fronts: A statistical overview,
J. Geophys. Res., 117, A12221, https://doi.org/10.1029/2012JA018141, 2012b.
Harvey, C. C.: Spatial gradients and the volumetric tensor, in: Analysis
Methods for Multi-Spacecraft Data, ISSI Sci. Rep. SR-001, edited by:
Paschmann, G. and Daly, P. W., Int. Space Sci. Inst., Bern, 307–322, 1998.
Hasegawa, A.: Drift mirror instability in the magnetosphere, Phys. Fluids,
12, 2642–2650, 1969.
Huang, S. Y., Zhou, M., Deng, X. H., Yuan, Z. G., Pang, Y., Wei, Q., Su, W., Li, H. M., and Wang, Q. Q.: Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster, Ann. Geophys., 30, 97–107, https://doi.org/10.5194/angeo-30-97-2012, 2012.
Huang, S. Y., Fu, H. S., Vaivads, A., Yuan, Z. G., Pang, Y., Zhou, M.,
Khotyaintsev, Yuri V., Deng, X. H., André, M., Zhang, L., Fu, S., Li, H.
M., and Wang, D. D.: Dawn-dusk scale of dipolarization front in the earth's
magnetotail: multi-cases study, Astrophys. Space Sci., 357, 1–7,
https://doi.org/10.1007/s10509-015-2298-3, 2015a.
Huang, S. Y., Fu, H. S., Yuan, Z. G., Zhou, M., Fu, S., Deng, X. H., Sun, W. J., Pang, Y., Wang, D. D., Li, H. M., Li, H. M., and Yu, X. D.: Electromagnetic energy conversion at dipolarization
fronts: Multispacecraft results, J. Geophys. Res.-Space, 120, 4496–4502,
https://doi.org/10.1002/2015JA021083, 2015b.
Huang, S. Y., Du, J. W., Sahraoui, F., Yuan, Z. G., He, J. S., Zhao, J. S., Le Contel, O., Breuillard, H., Wang, D. D., Yu, X. D., Deng, X. H., Fu, H. S., Zhou, M., Pollock, C. J., Torbert, R. B., Russell, C. T., and Burch, J. L.: A statistical study of kinetic-size magnetic holes in
turbulent magnetosheath: MMS observations, J. Geophys. Res.-Space, 122,
8577–8588, https://doi.org/10.1002/2017JA024415, 2017.
Huang, S. Y., Sahraoui, F., Yuan, Z. G., Le Contel, O., Breuillard, H., He,
J. S., Zhao, J. S., Fu, H. S., Zhou, M., Deng, X. H., Wang, X. Y., Du, J.
W., Yu, X. D., Wang, D. D., Pollock, C. J., Torbert, R. B., and Burch, J. L.:
Observations of Whistler Waves Correlated with Electron-scale Coherent
Structures in the Magnetosheath Turbulent Plasma, Astrophys. J.,
861, https://doi.org/10.3847/1538-4357/aac831, 2018.
Huang, S. Y., He, L. H., Yuan, Z. G., Sahraoui, F., Le Contel, O., Deng, X.
H., Zhou, M., Fu, H. S., Jiang, K., Yu, X. D., Li, H. M., Deng, D., Pollock,
C. J., Torbert, R. B., and Burch, J. L.: MMS Observations of Kinetic-size
Magnetic Holes in the Terrestrial Magnetotail Plasma Sheet,
Astrophys. J., 875,
https://doi.org/10.3847/1538-4357/ab0f2f, 2019.
Horbury, T. S. and Lucek, E. A.: Size, shape, and orientation of
magnetosheath mirror mode structures, J. Geophys. Res., 114, A05217,
https://doi.org/10.1029/2009JA014068, 2009.
Ge, Y. S., McFadden, J. P., Raeder, J., Angelopoulos, V., Larson, D., and
Constantinescu, O. D.: Case studies of mirror-mode structures observed by
THEMIS in the near-Earth tail during substorms, J. Geophys. Res., 116, A01209,
https://doi.org/10.1029/2010JA015546, 2011.
Ge, Y. S., Zhou, X. Z., Liang, J., Raeder, J., Gilson, M. L., Donovan, E.,
Angelopoulos, V., and Runov, A.: Dipolarization fronts and associated
auroral activities: 1. Conjugate observations and perspectives from global
MHD simulations, J. Geophys. Res., 117, A10226,
https://doi.org/10.1029/2012JA017676, 2012.
Glassmeier, K., Motschmann, U., Mazelle, C., Neubauer, F., Sauer, K.,
Fuselier, S., and Acua, M.: Mirror modes and fast magnetoacoustic waves near
the magnetic pileup boundary of comet P/Halley, J. Geophys. Res., 98,
20955–20964, https://doi.org/10.1029/93JA02582, 1993.
Kivelson, M. G. and Southwood, D. J.: Mirror instability: 2. The mechanism
of nonlinear saturation, J. Geophys. Res., 101, 17365–17371,
https://doi.org/10.1029/96JA01407, 1996.
Kuznetsov, E. A., Passot, T., and Sulem, P. L.: Dynamical Model for
Nonlinear Mirror Modes near Threshold, Phys. Rev. Lett., 98, 235003,
https://doi.org/10.1103/PhysRevLett.98.235003, 2007.
Lepping, R. P. and Behannon, K. W.: Magnetic field directional
discontinuities: 1. Minimum variance errors, J. Geophys. Res., 85,
4695–4703, https://doi.org/10.1029/JA085iA09p04695, 1980.
Li, H., Zhou, M., Deng, X., Yuan, Z., and Huang, S.: Electron dynamics and
wave activities associated with mirror mode structures in the near-Earth
magnetotail, Sci. China-Technol. Sci., 57, 1541–1551,
https://doi.org/10.1007/s11431-014-5574-5, 2014.
Liu, J., Angelopoulos, V., Zhou, X. Z., Runov, A., and Yao, Z. H.: On the
role of pressure and flow perturbations around dipolarizing flux bundles, J.
Geophys. Res.-Space, 118, 7104–7118, https://doi.org/10.1002/2013JA019256,
2013.
MMS: Science Data Center, available at: https://lasp.colorado.edu/mms/sdc/public/, last access: 9 March 2020.
Pokhotelov, O. A., Sandberg, I., Sagdeev, R. Z., Treumann, R. A.,
Onishchenko, O. G., Balikhin, M. A., and Pavlenko, V. P.: Slow drift mirror
modes in finite electron-temperature plasma: Hydrodynamic and kinetic drift
mirror instabilities, J. Geophys. Res., 108, 1098,
https://doi.org/10.1029/2002JA009651, 2003.
Rae, I. J., Mann, I. R., Watt, C. E. J., Kistler, L. M., and Baumjohann, W.:
Equator-S observations of drift mirror mode waves in the dawnside
magnetosphere, J. Geophys. Res., 112, A11203, https://doi.org/10.1029/2006JA012064,
2007.
Russell, C. T., Blanco-Cano, X., Jian, L. K., and Luhmann, J. G.:
Mirror-mode storms: STEREO observations of protracted generation of small
amplitude waves, Geophys. Res. Lett., 36, L05106, https://doi.org/10.1029/2008GL037113, 2009.
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., Magnes, W., Means, J. D., Moldwin, M. B., Nakamura, R., Pierce, D., Plaschke, F., Rowe, K. M., Slavin, J. A., Strangeway, R. J., Torbert, R., Hagen, C., Jernej, I., Valavanoglou, A., and Richter, I.: The
magnetospheric multiscale magnetometers, Space Sci. Rev., 199, 189–256,
2016.
Schmid, D., Volwerk, M., Nakamura, R., Baumjohann, W., and Heyn, M.: A
statistical and event study of magnetotail depolarization fronts, Ann.
Geophys., 29, 1537–1547, https://doi.org/10.5194/angeo-29-1537-2011,
2011.
Schmid, D., Volwerk, M., Plaschke, F., Vörös, Z., Zhang, T. L., Baumjohann, W., and Narita, Y.: Mirror mode structures near Venus and Comet P/Halley, Ann. Geophys., 32, 651–657, https://doi.org/10.5194/angeo-32-651-2014, 2014.
Schmid, D., Nakamura, R., Volwerk, M., Plaschke, F., Narita, Y., Baumjohann,
W., Magnes, W., Fischer, D., Eichelberger, H. U., Torbert, R. B., Russell,
C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R.,
Anderson, B. J., Slavin, J. A., and Kepko, E. L.: A comparative study of
dipolarization fronts at MMS and Cluster, Geophys. Res. Lett., 43,
6012–6019, https://doi.org/10.1002/2016GL069520, 2016.
Schmid, D., Volwerk, M., Plaschke, F., Nakamura, R., Baumjohann, W., Wang, G.
Q., Wu, M. Y., and Zhang, T. L.: Dipolarization fronts: tangential
discontinuities? On the spatial range of validity of the MHD jump
conditions, J. Geophys. Res.-Space, 124, 9963–9975,
https://doi.org/10.1029/2019JA027189, 2019.
Shen, C., Rong, Z. J., Li, X., Dunlop, M., Liu, Z. X., Malova, H. V., Lucek, E., and Carr, C.: Magnetic configurations of the tilted current sheets in magnetotail, Ann. Geophys., 26, 3525–3543, https://doi.org/10.5194/angeo-26-3525-2008, 2008.
Sonnerup, B. U. Ö., and Scheible, M.: Minimum and maximum variance
analysis, ISSI Sci. Rep. Ser., 1, 185–220, 1998.
Soucek, J., Lucek, E., and Dandouras, I.: Properties of magnetosheath mirror
modes observed by Cluster and their response to changes in plasma
parameters, J. Geophys. Res., 113, A04203, https://doi.org/10.1029/2007JA012649,
2008.
Southwood, D. J. and Kivelson, M. G.: Mirror instability: 1. The physical
mechanism of linear instability, J. Geophys. Res., 98, 9181–9187, 1993.
Tsurutani, B. T., Smith, E. J., Anderson, R. R., Ogilvie, K. W., Scudder, J.
D., Baker, D. N., and Bame, S. J.: Lion roars and nonoscillatory drift
mirror waves in the magnetosheath, J. Geophys. Res., 87, 6060–6072,
https://doi.org/10.1029/JA087iA08p06060, 1982.
Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E.,
Guarnieri, F. L., Narita, Y., and Constantinescu, D. O.: Magnetosheath and
heliosheath mirror mode structures, interplanetary magnetic decreases, and
linear magnetic decreases: Differences and distinguishing features, J.
Geophys. Res., 116, A02103, https://doi.org/10.1029/2010JA015913, 2011.
Vaivads, A., Baumjohann, W., Haerendel, G., Nakamura, R., Kucharek, H., Klecker, B., Lessard, M. R., Kistler, L. M., Mukai, T., and Nishida, A.: Compressional Pc5 type pulsations in the morningside plasma sheet, Ann. Geophys., 19, 311–320, https://doi.org/10.5194/angeo-19-311-2001, 2001.
Volwerk, M.: Multi-satellite observations of ULF waves, in: Magnetospheric
ULF Waves: Synthesis and New Directions, edited by: Takahashi, K., Chi, P. J., Denton, R. E., and Lysak, R. L.,
AGU, Washington, DC, 109–135, 2006.
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and
Glassmeier, K.-H.: Mirror-mode-like structures in Venus' induced
magnetosphere, J. Geophys. Res., 113, E00B16, https://doi.org/10.1029/2008JE003154,
2008.
Volwerk, M., Richter, I., Tsurutani, B., Götz, C., Altwegg, K., Broiles, T., Burch, J., Carr, C., Cupido, E., Delva, M., Dósa, M., Edberg, N. J. T., Eriksson, A., Henri, P., Koenders, C., Lebreton, J.-P., Mandt, K. E., Nilsson, H., Opitz, A., Rubin, M., Schwingenschuh, K., Stenberg Wieser, G., Szegö, K., Vallat, C., Vallieres, X., and Glassmeier, K.-H.: Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko, Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, 2016.
Wang, G. Q., Volwerk, M., Nakamura, R., Boakes, P., Zhang, T. L., Yoshikawa,
A., and Baishev, D. G.: Flapping current sheet with superposed waves seen in
space and on the ground, J. Geophys. Res.-Space, 119, 10078–10091,
https://doi.org/10.1002/2014JA020526, 2014.
Wang, G. Q., Zhang, T. L., Volwerk, M., Schmid, D., Baumjohann, W.,
Nakamura, R., and Pan, Z. H.: Mirror mode structures ahead of dipolarization
front near the neutral sheet observed by Cluster, Geophys. Res. Lett., 43, 8853–8858,
https://doi.org/10.1002/2016GL070382, 2016.
Wang, G. Q., Volwerk, M., Zhang, T. L., Schmid, D., and Yoshikawa, A.:
High-latitude Pi2 pulsations associated with kink-like neutral sheet
oscillations, J. Geophys. Res.-Space, 122, 2889–2899,
https://doi.org/10.1002/2016JA023370, 2017.
Wang, G. Q., Zhang, T. L., Wu, M. Y., Schmid, D., Cao, J. B., and Volwerk,
M.: Solar wind directional change triggering flapping motions of the current
sheet: MMS observations, Geophys. Res. Lett., 46, 64–70,
https://doi.org/10.1029/2018GL080023, 2019.
Xiao, S., Zhang, T., Wang, G., Volwerk, M., Ge, Y., Schmid, D., Nakamura, R., Baumjohann, W., and Plaschke, F.: Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations, Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, 2017.
Yao, S. T., Wang, X. G., Shi, Q. Q., Pitkanen, T., Hamrin, M., Yao, Z. H., Li, Z. Y., Ji, X. F., De Spiegeleer, A., Xiao, Y. C., Tian, A. M., Pu, Z. Y., Zong, Q. G., Xiao, C. J., Fu, S. Y., Zhang, H., Russell, C. T., Giles, B. L., Guo, R. L., Sun, W. J., Li, W. Y., Zhou, X. Z., Huang, S. Y., Vaverka, J., Nowada, M., Bai, S. C., Wang, M. M., and Liu, J.: Observations of kinetic-size magnetic holes in the
magnetosheath, J. Geophys. Res.-Space, 122, 1990–2000,
https://doi.org/10.1002/2016JA023858, 2017.
Zhang, T. L., Russell, C. T., Baumjohann, W., Jian, L. K., Balikhin, M. A.,
Cao, J. B., Wang, C., Blanco-Cano, X., Glassmeier, K. H., Zambelli, W.,
Volwerk, M., Delva, M., and Vörös, Z.: Characteristic size and shape of
the mirror mode structures in the solar wind at 0.72 AU, Geophys. Res.
Lett., 35, L10106, https://doi.org/10.1029/2008GL033793, 2008.
Zhang, T. L., Baumjohann, W., Russell, C. T., Jian, L. K., Wang, C., Cao, J.
B., Balikhin, M., Blanco-Cano, X., Delva, M., and Volwerk, M.: Mirror mode
structures in the solar wind at 0.72 AU, J. Geophys. Res., 114, A10107,
https://doi.org/10.1029/2009JA014103, 2009.
Zhang, L., He, J. S., Zhao, J. S., Yao, S., and Feng, X. S.: Nature of
magnetic holes above ion scales: a mixture of stable slow magnetosonic and
unstable mirror modes in a double – polytropic scenario?, Astrophys. J.,
864, 35, https://doi.org/10.3847/1538-4357/aad4aa, 2018.
Zieger, B., Retinò, A., Nakamura, R., Baumjohann, W., Vaivads, A., and
Khotyaintsev, Y.: Jet front-driven mirror modes and shocklets in the
near-Earth flow-braking region, Geophys. Res. Lett., 38, L22103,
https://doi.org/10.1029/2011GL049746, 2011.
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Currents are believed to exist in mirror-mode structures and to be self-consistent with the...