Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-103-2024
https://doi.org/10.5194/angeo-42-103-2024
Regular paper
 | 
25 Apr 2024
Regular paper |  | 25 Apr 2024

Auroral breakup detection in all-sky images by unsupervised learning

Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders

Related authors

Establishing a European Heliophysics Community (EHC)
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814,https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
First observations of continuum emission in dayside aurora
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent E. Ledvina
Ann. Geophys., 43, 349–367, https://doi.org/10.5194/angeo-43-349-2025,https://doi.org/10.5194/angeo-43-349-2025, 2025
Short summary
The Gannon Storm: citizen science observations during the geomagnetic superstorm of 10 May 2024
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024,https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Statistical comparison of electron precipitation during auroral breakups occurring either near the open–closed field line boundary or in the central part of the auroral oval
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024,https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Magnetic local time (MLT) dependence of auroral peak emission height and morphology
Noora Partamies, Daniel Whiter, Kirsti Kauristie, and Stefano Massetti
Ann. Geophys., 40, 605–618, https://doi.org/10.5194/angeo-40-605-2022,https://doi.org/10.5194/angeo-40-605-2022, 2022
Short summary

Cited articles

Akasofu, S.-I.: The development of the auroral substorm, Planet. Space Sci., 4, 273–282, https://doi.org/10.1016/0032-0633(64)90151-5, 1964. a
Clausen, L. B. N. and Nickisch, H.: Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning, J. Geophys. Res.-Space, 123, 5640–5647, https://doi.org/10.1029/2018JA025274, 2018. a, b
Cresswell-Moorcock, K., Rodger, C. J., Kero, A., Collier, A. B., Clilverd, M. A., Häggström, I., and Pitkänen, T.: A reexamination of latitudinal limits of substorm-produced energetic electron precipitation, J. Geophys. Res.-Space, 118, 6694–6705, https://doi.org/10.1002/jgra.50598, 2013. a
Dol, B.: Viability of using images classified by an unsupervised AI for determining patterns in the evolution of auroral morphology, Internship report at The University Centre in Svalbard, Norway, Eindhoven University of Technology, the Netherlands, https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=BIBSYS_ILS71681826100002201&vid=UNIS&search_scope=default_scope&tab=default_tab&lang=en_US&context=L (last access: 19 April 2024), 2023. a, b, c
Dreyer, J., Partamies, N., Whiter, D., Ellingsen, P. G., Baddeley, L., and Buchert, S. C.: Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard, Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, 2021. a
Download
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Share