Articles | Volume 42, issue 1
https://doi.org/10.5194/angeo-42-103-2024
https://doi.org/10.5194/angeo-42-103-2024
Regular paper
 | 
25 Apr 2024
Regular paper |  | 25 Apr 2024

Auroral breakup detection in all-sky images by unsupervised learning

Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders

Related authors

Statistical comparison of electron precipitation during auroral breakups occurring either near the open–closed field line boundary or in the central part of the auroral oval
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024,https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
The geomagnetic superstorm of 10 May 2024: Citizen science observations
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-2174,https://doi.org/10.5194/egusphere-2024-2174, 2024
Short summary
Magnetic local time (MLT) dependence of auroral peak emission height and morphology
Noora Partamies, Daniel Whiter, Kirsti Kauristie, and Stefano Massetti
Ann. Geophys., 40, 605–618, https://doi.org/10.5194/angeo-40-605-2022,https://doi.org/10.5194/angeo-40-605-2022, 2022
Short summary
Simulated seasonal impact on middle atmospheric ozone from high-energy electron precipitation related to pulsating aurorae
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021,https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021,https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Auroral ionosphere
Application of generalized aurora computed tomography to the EISCAT_3D project
Yoshimasa Tanaka, Yasunobu Ogawa, Akira Kadokura, Takehiko Aso, Björn Gustavsson, Urban Brändström, Tima Sergienko, Genta Ueno, and Satoko Saita
Ann. Geophys., 42, 179–190, https://doi.org/10.5194/angeo-42-179-2024,https://doi.org/10.5194/angeo-42-179-2024, 2024
Short summary
Three-dimensional ionospheric conductivity associated with pulsating auroral patches: reconstruction from ground-based optical observations
Mizuki Fukizawa, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Tero Raita, and Kirsti Kauristie
Ann. Geophys., 41, 511–528, https://doi.org/10.5194/angeo-41-511-2023,https://doi.org/10.5194/angeo-41-511-2023, 2023
Short summary
The altitude of green OI 557.7 nm and blue N2+ 427.8 nm aurora
Daniel K. Whiter, Noora Partamies, Björn Gustavsson, and Kirsti Kauristie
Ann. Geophys., 41, 1–12, https://doi.org/10.5194/angeo-41-1-2023,https://doi.org/10.5194/angeo-41-1-2023, 2023
Short summary
Reconstruction of precipitating electrons and three-dimensional structure of a pulsating auroral patch from monochromatic auroral images obtained from multiple observation points
Mizuki Fukizawa, Takeshi Sakanoi, Yoshimasa Tanaka, Yasunobu Ogawa, Keisuke Hosokawa, Björn Gustavsson, Kirsti Kauristie, Alexander Kozlovsky, Tero Raita, Urban Brändström, and Tima Sergienko
Ann. Geophys., 40, 475–484, https://doi.org/10.5194/angeo-40-475-2022,https://doi.org/10.5194/angeo-40-475-2022, 2022
Short summary
Spatio-temporal development of large-scale auroral electrojet currents relative to substorm onsets
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022,https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary

Cited articles

Akasofu, S.-I.: The development of the auroral substorm, Planet. Space Sci., 4, 273–282, https://doi.org/10.1016/0032-0633(64)90151-5, 1964. a
Clausen, L. B. N. and Nickisch, H.: Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning, J. Geophys. Res.-Space, 123, 5640–5647, https://doi.org/10.1029/2018JA025274, 2018. a, b
Cresswell-Moorcock, K., Rodger, C. J., Kero, A., Collier, A. B., Clilverd, M. A., Häggström, I., and Pitkänen, T.: A reexamination of latitudinal limits of substorm-produced energetic electron precipitation, J. Geophys. Res.-Space, 118, 6694–6705, https://doi.org/10.1002/jgra.50598, 2013. a
Dol, B.: Viability of using images classified by an unsupervised AI for determining patterns in the evolution of auroral morphology, Internship report at The University Centre in Svalbard, Norway, Eindhoven University of Technology, the Netherlands, https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=BIBSYS_ILS71681826100002201&vid=UNIS&search_scope=default_scope&tab=default_tab&lang=en_US&context=L (last access: 19 April 2024), 2023. a, b, c
Dreyer, J., Partamies, N., Whiter, D., Ellingsen, P. G., Baddeley, L., and Buchert, S. C.: Characteristics of fragmented aurora-like emissions (FAEs) observed on Svalbard, Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, 2021. a
Download
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.