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Abstract. Due to a large number of automatic auroral cam-
era systems on the ground, image data analysis requires more
efficiency than what human expert visual inspection can pro-
vide. Furthermore, there is no solid consensus on how many
different types or shapes exist in auroral displays. We report
the first attempt to classify auroral morphological forms by
an unsupervised learning method on an image set that con-
tains both nightside and dayside aurora. We used 6 months of
full-colour auroral all-sky images captured at a high-Arctic
observatory on Svalbard, Norway, in 2019–2020. The selec-
tion of images containing aurora was performed manually.
These images were then input into a convolutional neural
network called SimCLR for feature extraction. The clustered
and fused features resulted in 37 auroral morphological clus-
ters. In the clustering of auroral image data with two differ-
ent time resolutions, we found that the occurrence of 8 clus-
ters strongly increased when the image cadence was high
(24 s), while the occurrence of 14 clusters experienced lit-
tle or no change with changes in input image cadence. We
therefore investigated the temporal evolution of a group of
eight “active aurora” clusters. Time periods for which this ac-
tive aurora persisted for longer than two consecutive images
with a maximum cadence of 6 min coincided with ground-
magnetic deflections, and their occurrence was found to max-
imize around magnetic midnight. The active aurora onsets
typically included vortical auroral structures and equivalent
current patterns typical for substorms. Our findings therefore
suggest that our unsupervised image clustering method can
be used to detect auroral breakups in ground-based image

datasets with a temporal accuracy determined by the image
cadence.

1 Introduction

Auroral displays exhibit a vast range of different morpholo-
gies and dynamics. Despite decades of research and an early
morphological “template” for auroral evolution during sub-
storms (Akasofu, 1964), there are still many unexplained
structures and periods of evolution, as pointed out by Knud-
sen et al. (2021) in a recent review. With the fast develop-
ment of observational capabilities, recent observations have
also revealed new auroral (or similar) forms (e.g. Lumikot
– McKay et al., 2019, Fragments – Dreyer et al., 2021, or
STEVE – MacDonald et al., 2018), which emphasizes how
we still lack knowledge and understanding of auroral struc-
tures and, in particular, their relation to each other.

One of the first automatic image classification attempts by
Syrjäsuo and Donovan (2004) detected “arcs”, “patches” and
omega bands. They stated that, for less than 10 % of all the
auroral structures, the form is “known” and can be named.
This obviously hampers our skills in performing morpholog-
ical classification of aurora in a statistical sense and by means
of supervised learning. The (known) structures typically in-
cluded in supervised learning as the ground truth are arcs,
patchy or diffuse, discrete, Moon and clouds (e.g. Clausen et
al., 2018; Kvammen et al., 2020; Sado et al., 2022). These
automatic classification results are good within about a 90 %
success rate, but some of the commonly used auroral classes
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are very broad, with arcs and patches being the only spe-
cific shape and the rest of the auroral morphology being
grouped into “discrete” and “diffuse” aurora. Furthermore,
as about 50 % of the image data do not contain aurora (but
rather clear skies, clouds or the Moon), classifying a com-
bination of auroral and non-auroral classes makes the mor-
phological part of the classification inefficient. To overcome
the problem of classifying largely unknown auroral features,
an auroral arciness index was introduced to include all im-
ages containing aurora (Partamies et al., 2014). This method
recognizes all auroral structures and gives them an index-like
number between 0.4 and 1 based on the distribution and clus-
tering of the brightest pixels in the images. This method has
been used to characterize the temporal evolution of selected
known structures (e.g. poleward-moving auroral forms of the
dayside aurora by Goertz et al., 2022).

An unsupervised learning attempt of the dayside auroral
structures by Yang et al. (2021) clustered auroral forms into
two categories based on 4000 randomly selected images over
five auroral (northern winter) seasons. The number of clus-
ters chosen by the authors was based on visualization of the
feature vectors. As daytime aurora has previously been di-
vided into four categories by human experts (e.g. Hu et al.,
2009), the new unsupervised clustering results reopen the
discussion on the unknown number of true clusters. In their
study, the first cluster contained variable morphological fea-
tures, such as arcs, patches and spots with high brightness
and primarily afternoon occurrence, while the second clus-
ter consisted of a corona-type aurora of lower brightness and
high occurrence rate around magnetic noon.

To the best of our knowledge, we report the first attempt
on unsupervised learning on auroral image data that includes
both daytime and nighttime aurora. Our practical application
is to automatically identify auroral breakups in the image
data. This is particularly important for locations like the Sval-
bard archipelago. Surrounded by a highly conductive ocean,
the ground-magnetic measurements are typically contami-
nated by the magnetic contribution of ground-induced cur-
rents by about 50 %–70 % (Juusola et al., 2020), making the
traditional substorm onset detection methods on magnetic
data less reliable.

2 Auroral image data

We use full-colour all-sky camera (ASC) data from Kjell
Henriksen Observatory (KHO, 78.25° N, 16.04° E) on Sval-
bard in Arctic Norway. Our ASC is a Sony α7s mirrorless
DSLR, which has been in operation since late 2015 but which
has also had comparable predecessors since 2008. The ASC
raw data have a high pixel resolution (2832× 2832). How-
ever, our analysis uses quicklook data with reduced pixel
and time resolution for faster processing. Nighttime images
with 4 s exposure time have been taken at a cadence of 12 s
throughout winter seasons, which on Svalbard extend from

the beginning of November until the end of February. Images
are captured when the Sun is below the horizon.

Daily summary plots of image data are automatically
published in the form of keograms (http://kho.unis.no/
Keograms/keograms.php, last access: 19 April 2024). These
are north–south slices of individual images stacked together
into daily time–latitude (or zenith-angle) plots. Keograms are
used later on in the study to validate the results of our auto-
matic classification.

In addition to the auroral image data, we use geomag-
netic index data and solar wind data from OMNIWeb (https:
//omniweb.gsfc.nasa.gov, last access: 19 April 2024) to pro-
vide an overview of the magnetic activity level as well as
a reference for comparisons between what we call “active”
and “quiet” auroral displays (for more detailed explanations,
see Sect. 4.1). Dst-index data from the World Data Center in
Kyoto (https://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html, last
access: 19 April 2024) are used as a storm indicator. The
Hp30 index (https://kp.gfz-potsdam.de/en/hp30-hp60, last
access: 19 April 2024) (Yamazaki et al., 2022) gives a 30 min
resolution version of the planetary Kp index, and the Super-
MAG electrojet index (SML, https://supermag.jhuapl.edu/
indices/, last access: 19 April 2024; Gjerloev, 2012) de-
scribes the auroral electrojet variability with a global cov-
erage of magnetometer stations at 1 min resolution.

3 Classification method

3.1 Preprocessing of the auroral images

Manual labelling was performed for all quicklook images
from the winter season 2019–2020 as well as for January and
February 2019; quicklook images have a reduced resolution
of 480× 480 pixels and about a 6 min cadence. The manual
labelling aimed to provide a ground truth for developing an
automatic classification routine to detect images which con-
tain auroral emission. This dataset contained approximately
37 000 labelled images. From this dataset, only those images
that contained auroral emission and that were not dominated
by clouds were further used in unsupervised learning. This
became approximately 12 000 images.

To prepare the images for unsupervised learning, each im-
age was first processed to remove features that could lead to
biases that are unrelated to the auroral morphology, such as
a caption indicating the camera type, observatory location,
date and time. After removing the caption, images with very
faint or barely detectable aurora were removed. In the quick-
look images, the colour of each pixel is represented by indi-
vidual intensities in red, green and blue colours. This is com-
monly known as the RGB colour space. However, for pro-
cessing based on brightness, we transform the RGB colours
into the HSV and L*a*b* colour spaces, where the bright-
ness and actual colour content are more clearly separated.
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In the HSV-colour space, the colours are expressed by the
hue (H) and saturation (S), while the brightness is contained
in the value (V) (Malacara, 2002). If V was less than 50 out
of 255 in more than 90 % of the pixels in the image, the image
was discarded as too faint. This left 10 300 images containing
sufficiently bright aurora.

The L*a*b*, or CIELAB colour space, aims to repre-
sent the colours as a human observer would perceive them
(Malacara, 2002). Here, L* denotes the lightness of the
colour, while a* and b* provide the colour information. Un-
like RGB and HSV, L*a*b* is a device-independent colour
space based on a standard human observer and standard out-
door illumination. Similarly to earlier work (e.g. Sado et
al., 2022; Clausen et al., 2018; Johnson et al., 2021), we
clipped the L* values to the range from the 0.5th to 99.5th
percentiles. To reduce the influence of the background sky
conditions on the auroral classes, the median values of the a*
and b* colour channels were used to provide a neutral white
balance for all the images. Next, the images were cropped to
400× 400 pixels around the center. This removes the biases
due to dark corners outside the circular field of view of the
all-sky images. This step also removes most of the auroral
emission at the lowest elevation angles, which is beneficial
as the morphology of the auroral forms near the horizon is
heavily distorted by the fish-eye optics and is therefore diffi-
cult to examine.

To better take into account faint aurora, a contrast en-
hancement was performed on the images by equalizing the
histograms of the L* channel for each image. Furthermore,
a 5× 5 median filter was used to remove single bright pixels
due to stars, similarly to the 3× 3 filter used by Kvammen et
al. (2020). Finally, the images were resized to 224× 224 pix-
els and converted back to RGB, which is the expected format
for most feature extractors.

As an example of the effect of the preprocessing steps out-
lined above, Fig. 1 shows two original quicklook images (left
column) and the corresponding preprocessed images (right
column). The images demonstrate the impact of cropping,
where aurora close to the horizon is excluded, as well as the
effect of the colour enhancement and brightness normaliza-
tion.

The cadence of 6 min of the quicklook data favours quiet
aurora over active aurora. This happens because active au-
rora occurs in short highly dynamic bursts, which are poorly
sampled by a cadence of 6 min, while quiet aurora experi-
ences longer lifetimes. To study the influence of this bias
and to better represent the active auroral forms, a second
dataset was created. In this dataset, the cadence was reduced
to 24 s during selected periods of active aurora. This addi-
tional dataset is also referred to as a high-resolution dataset
in this work. These selected periods were visually identified
as the 19 brightest auroral displays with a large north–south
extent as seen in the keograms (sample keogram in Fig. 5a).

3.2 Classification of images

In contrast to supervised learning, where we know the cor-
rect answer to a classification question and can train a clas-
sifier accordingly, in unsupervised learning we do not know
the answer. The manual labelling of auroral images provided
us with a dataset of unknown auroral forms. We try to learn
the types of aurora in the data by using clustering algorithms.
Intuitively, similar auroral shapes in the images should be-
long to the same cluster.

The first step is to define a numerical measure of the image
content in the form of a feature vector. In the second step, the
images are clustered based on their feature vectors: here, the
true number of clusters is, of course, unverifiable. As clus-
tering is often based on similarity metrics, the results also
depend on how well the feature vectors represent the image
content. In his Master’s thesis, Teissier (2022) evaluated a
number of different feature vector extractors as well as clus-
tering approaches. The following provides a brief description
of the central concepts and choices of the methodology.

Classifiers based on convolutional neural networks
(CNNs) (LeCun et al., 2015) are becoming increasingly pop-
ular in image analysis. Training an artificial neural network
refers to the process of optimizing all parameters within the
network to minimize the classification error.

The analysis of auroral images in our dataset uses a pro-
cessing chain which includes a CNN architecture followed
by a smaller neural network. We start with the inclusion of
high-time-resolution data as they provide a better balance
between images of auroral displays during active and quiet
times. We use a variation of the SimCLR feature extractor
used by Johnson et al. (2021). This feature extractor builds
on the Resnet-50 neural network (He et al., 2016) architec-
ture. Random rotations and other image transformations are
often used in training image classifiers to both artificially in-
crease the number of “different” sample images and to obtain
invariance in orientation. In this study, we limit ourselves to
horizontal flipping (east–west in auroral images) and random
cropping (random parts of the sky with aurora) in the training
phase (Teissier, 2022).

We used the UMAP (uniform manifold approximation and
projection for dimension reduction) method to reduce the di-
mensionality of the feature vectors (McInnes et al., 2020).
This step was carried out to improve clustering (Steinbach et
al., 2004). In the UMAP reducer, there are two critical pa-
rameters: one impacting how much the algorithm focuses on
local versus global structures (N_neighbors) and another de-
termining the minimum allowed distance between the fea-
tures in the dimensionally reduced space (min_dist). Based
on the experiments by Teissier (2022), we used the values
N_neighbors= 20 and min_dist= 0.

Finally, a clustering algorithm was used to determine clus-
ters of the dimensionally reduced feature vectors. Two differ-
ent clustering algorithms were used: K-means (MacQueen,
1967) and hierarchical (Nielsen, 2016) clustering. These al-
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Figure 1. (a, c) Two quicklook images in their original format. (b, d) Corresponding images after the preprocessing steps of colour enhance-
ment, brightness normalization, cropping and scaling.

gorithms were used to divide images into 30 or 100 clus-
ters. Consequently, the four clustering results (two cluster-
ing algorithms and two numbers of clusters) were fused to-
gether to balance the weaknesses and biases of the individual
approaches. This also helps to identify outlier images that
are connected to different auroral features, depending on the
clustering algorithm that is used. The fusion was done by
using modified majority voting with a co-association matrix
algorithm (Fred, 2001). The original algorithm was modified
to have two tuneable parameters. The first parameter is the
majority threshold of the co-association matrix, above which
two samples are merged in the same cluster. The second pa-
rameter is the minimal cluster size, under which a cluster is
merged into a cluster of “outliers” to indicate hard-to-classify
images. The values of these parameters were determined by
changing them to minimize the loss function

L=
1
nc

N∑
k=0
|nk − n

k
0| +

ne

nc
with nk0 =

N

nc
if k < nc,

otherwise nk0 = 0, (1)

where N is the total number of samples, nk the number of
samples in cluster k and ne the number of outlier samples.
Parameter nc is used to influence the number of clusters re-
sulting from the fusion and was set to 25. The fusion resulted
in 37 clusters with numbers ranging from −1 to 35, where
the −1 cluster is for the outlier images not belonging to any
of the other clusters.

Using a basic desktop computer (in 2022), the preprocess-
ing, training and clustering required roughly 1 d of computer
time. Predicting clusters for additional images takes less than
1 s per image. Table 1 summarizes the numbers of images at
each stage of the data processing.

4 Results

4.1 Differences between active and quiet aurora

The CNN analysis was run on the quicklook images with a
6 min cadence alone as well as on the full dataset with the in-
clusion of higher-resolution images with a 24 s cadence. As a
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Table 1. Summary of numbers of images in our datasets throughout the process.

Dataset Number of images Notes

Raw data 37 000 All labelled images, 6 min cadence
Aurora only 12 000 Images with no aurora and clouds removed
High-time-resolution events 5500 Additional bright auroral events with a 24 s cadence
Clustered aurora 9200 Auroral images grouped by their morphology

Figure 2. Occurrence rate difference of all 37 clusters between
quicklook and high-resolution data in percentage with respect to
the total occurrence rate of each cluster. Clusters with a maximum
change of about 20 % are called quiet aurora, and clusters with at
least about 80 % change are called active aurora. Threshold occur-
rence changes for quiet and active aurora are marked by the blue
and red vertical lines, respectively. Cluster number −1 is an outlier
cluster. Figure according to Dol (2023).

result, we found that the occurrence of some morphological
clusters increased greatly with the increasing temporal res-
olution, while the occurrence rate of the other clusters was
nearly unaffected.

The high sensitivity to the increased temporal resolution
in the image data (at least about an 80 % change, red verti-
cal line in Fig. 2) suggests that these clusters primarily de-
scribe the morphology of active auroral displays. These are
the cluster numbers 0, 13, 26, 8, 21, 7, 14 and 35. The oc-
currence change of the individual clusters is illustrated by
Fig. 2. It shows the occurrence rate difference of all 37 clus-
ters between quicklook and high-resolution data in percent-
age with respect to the total occurrence rate of each cluster.
The clusters, for which the occurrence showed little or no
change (maximum of about 20 % change, blue vertical line in
Fig. 2) with the increasing temporal resolution (cluster num-
bers 20, 4, 9, 17, 34, 22, 32, 10, 3, 18, 25, 1 and 29), are

Figure 3. Ten random images from each individual cluster included
in the category of “quiet aurora” (Dol, 2023).

likely to contain auroral structures mainly related to quiet au-
roral displays. By quiet auroral displays, we refer to images
of structures which are relatively simple, are dim and evolve
slowly in time. A typical example of this is an auroral arc,
or a multiple arc, which changes little between consecutive
images with a higher temporal resolution of 24 s. A set of 10
randomly selected images from each of the individual clus-
ters included in quiet aurora is shown in Fig. 3. In addition
to the simple green auroral structures, daytime and afternoon
overhead aurora with a notable red emission contribution be-
longs to this category.

Active auroral displays, in turn, refer to images with one
or multiple more complex auroral structures, which evolve
significantly between consecutive images in our higher-
temporal-resolution dataset and have little resemblance be-
tween consecutive images at quicklook time resolution
(6 min).

A random selection of images in each individual cluster
included in active aurora is displayed in Fig. 4. These active
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Figure 4. Ten random images from each individual cluster included
in the category of “active aurora” (Dol, 2023).

auroral displays typically include bright emissions in vorti-
cal, rayed and small-scale structures. The threshold values
for the occurrence rate changes for quiet and active aurora
(∼ 20 % and ∼ 80 %, respectively) are based on visual in-
spection of the cluster occurrence rate histogram in Fig. 2
and are therefore somewhat arbitrary. Note that cluster num-
ber 1 is included in the quiet aurora, although its change rate
is just over 20 %. Similarly, cluster number 8 is included in
the active aurora, although its change rate is just under 80 %.
These choices were made with the idea that a large percent-
age difference is a conservative choice as long as it results in
several clusters in each extreme.

From image samples in Figs. 3 and 4 it is obvious that a
detailed description of the type of aurora in each individual
cluster is difficult to determine. Simple properties, such as
the brightness, contrast, colour, alignment or location of the
aurora in the image, seem to play a role in the numerical
clustering. For both the quiet and active aurora categories, the
images containing the Moon have been collected in the same
clusters. Any more detailed interpretation of the individual
clusters will require more analysis.

An example of the time evolution of auroral all-sky im-
age data with the detected active and quiet auroral displays
is provided by Fig. 5a, which is a full keogram of 25 Jan-
uary 2019, and Fig. 5b, which shows the time evolution of
individual images of active (red dots) and quiet (blue dots)
auroral displays. The images of active and quiet aurora are
most frequent in the time periods of clear skies and aurora,
because our preprocessing excludes clear skies with no au-
rora and images with clouds. Active aurora coincides with
the brightest aurora in the keograms, as expected. Figure 5b
shows ground-magnetic data (X component) from the Sval-
bard magnetometer stations in Hornsund (HOR, 77.00°Glat),
Longyearbyen (LYR, 78.20°Glat) and Ny-Ålesund (NAL,
78.92°Glat). These stations are part of the IMAGE magne-
tometer network (https://space.fmi.fi/image/www/index.php,
last access: 19 April 2024) (Tanskanen, 2009). The mag-
netic variations are measured and plotted at 10 s time reso-

Table 2. Median values of event durations, geomagnetic indices and
solar wind speeds for periods of active and quiet aurora, respec-
tively.

Parameter Active aurora Quiet aurora

1. Number of events 28 222
2. Duration (min) 37 42
3. Start time (MLT) 00:00 10:00
4. Dst index (nT) −7.0 −4.0
5. SML index (nT) −180 −50
6. Hp30 index 2.0 1.33
7. Solar wind speed (km s−1) 416 367

lution. The three periods of active aurora correspond to small
(∼ 100 nT) to moderate (∼ 400 nT) magnetic deflections in
the north–south component. They could all be interpreted as
substorms, the first of which expands towards Svalbard from
further south, while the latter two events occur more directly
overhead. The visual correspondence between the periods of
active aurora and the magnetic deflections during the latter
two substorms appears particularly good.

To further investigate these different morphological clus-
ter groups of “active” and “quiet” aurora, we selected time
periods of active or quiet aurora that included three or more
consecutive images with a maximum cadence of 6 min. For
a sequence longer than three consecutive images, one single
quiet-class image would be allowed within an active aurora
period, or the other way round. This procedure resulted in 28
active aurora events and 222 quiet aurora events in the time
frame of all our labelled data in 2019–2020.

Table 2 gives an overview of the typical parameters for pe-
riods of active and quiet aurora. The duration of the active
aurora events varied from 60 s to 5 h, while that of the quiet
events ranged from 2 min to 25 h. The median values (row
2 in the table), however, do not differ much. The active au-
rora events typically started at magnetic midnight (row 3),
while the quiet aurora events were spread more evenly over
the magnetic local time (MLT) hours, which is illustrated by
Fig. 6. The median start time is therefore not a good indicator
of quiet aurora, which experiences three occurrence maxima
in 24 h: right after midnight, at about 06:00–09:00 MLT and
at about 15:00–19:00 MLT.

The geomagnetic indices with coarser spatial resolution (a
low number of stations, which provide the data) are not dra-
matically different between the periods of active and quiet
aurora. These are the Dst index (row 4) and the Hp30 index
(row 6). Neither of these indices with low spatial resolution
includes high-latitude magnetic field data, and therefore they
do not reflect the high-latitude magnetic deflections, which
may have different timings compared to the corresponding
deflections at lower latitudes. However, the SML electrojet
index (row 5), which has good spatial coverage of magnetic
data from a range of different latitudes, shows a difference
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Figure 5. (a) Sample keogram of colour ASC data on 25 January 2019. At 00:00–01:00 UT in the southern sky (at scan angles 160–180°),
the moon is visible and illuminates the clouds in the field of view. At 03:00–08:00 UT a faint morning sector aurora is seen, first as green
and later also as red. At 08:00–15:00 UT the daylight increases the illumination of the sky, although the Sun is below the horizon. Due to
the increased light level, the exposure time changes, and this is seen as vertical colour changes at about 09:00 and 13:30 UT. From 15:00 UT
onwards the sky is dark and a green aurora appears in three northward expansions. (b) Time series of active (red dots) and quiet (blue dots)
aurora for the sample day. (c) Evolution of ground-magnetic X-component deflections at the stations of NAL (yellow), LYR (red) and HOR
(blue). LYR data are missing until 14:00 UT but exist during the active auroral displays.

of more than 100 nT between active and quiet aurora. Simi-
larly to the low-resolution magnetic indices, the median solar
wind speed (row 7) is more enhanced during active aurora
than quiet aurora, but only by some tens of kilometers per
second, which is not significant.

4.2 Are the active aurora periods auroral breakups?

We performed a visual inspection of what the active aurora
periods correspond to by using keograms (as in Fig. 5a). The
main mission of the validation procedure was to find out what
the detected events looked like, whether they corresponded
to magnetic substorm activity, whether keogram inspection
could reveal missed auroral activations, and, if yes, what kind
of events they would be. Keograms were therefore viewed for
each day from January 2019 until March 2020. We inspected
all detected active aurora events as well as each keogram for
any additional auroral brightening, which was not detected.

Most active aurora periods were auroral brightenings for
which the bright emission extended over the full (or nearly
full) field of view of the all-sky image, as illustrated by the
keogram in Fig. 5a. Most of the active aurora periods also co-
incided with a small to moderate deflection of the local mag-
netic north–south (X) component, which indicates substorm
activity. The maximum magnetic deflections for the active
aurora events ranged from about 50 nT up to about 400 nT,
with a median value of 100–200 nT. Cluster numbers of indi-
vidual images were also investigated during the active aurora
periods, but no consistent time evolution or preferential order
was found among the individual active aurora clusters.

Taking the auroral breakup overhead as a benchmark, five
false-positive events were identified in the visual inspection.
Three of our false-positive cases were morning sector auroral
events (see the lonely blue bars in Fig. 6). These consisted
of transient brightenings in the morning sector diffuse and
pulsating aurora. Two of these events are from the shortest
end of the duration spectrum containing only two consec-
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Figure 6. Distribution of the start times of active (blue) and quiet
auroral displays (orange) (MLT). Midnight in magnetic local time
is about 21:00 UT on Svalbard.

utive images. This type of event could be filtered out sim-
ply by increasing the minimum duration of the active aurora
events in order to produce a cleaner auroral breakup list. Two
of the other events we call false-positive cases were clearly
substorm-like aurora which extended about halfway in the
sky towards the local zenith, such as the first active aurora
event in Fig. 5. These types of events are not exactly wrongly
detected but are rather a milder category compared to the rest
of the cases. They may include substorms, which inherently
do not take place at high latitudes but rather expand towards
Svalbard from further south, where the strongest magnetic
disturbances take place.

As for false negatives, i.e. any additional auroral brighten-
ings that the active aurora periods did not cover, no events
were found. Based on keograms, we visually identified some
auroral brightenings that nearly extended across the full sky
but that were not automatically identified as active aurora.
These included (1) events where the sky was fully or partly
cloudy, so that the auroral structures were obscured; (2)
events where the image was contaminated by moonlight, so
that the auroral brightness (and therefore the structure) was
not very visible; and (3) events which were substorm-like au-
roral activations that did not even reach halfway toward the
local zenith. Images in the first two categories would have
been excluded from the data fed to the classifier due to the
clouds or the moonlight. In the last category, the largest mag-
netic deflections occurred typically further south of Svalbard,
which was confirmed by visual examination of the IMAGE
magnetometer data.

Figure 7 shows snapshots of the ionospheric equivalent
currents, derived from 10 s IMAGE magnetometer data (Van-
hamäki and Juusola, 2020), on 25 January 2019 around a
period of active aurora in Fig. 5. The plots show an equiv-

alent current pattern typical for the westward traveling surge
(WTS) (e.g. Vanhamäki et al., 2005) sweeping past LYR
from southeast to northwest. Two minutes before the pe-
riod of active aurora (18:36:45 UT), the U-shaped head of
the surge pattern was still located south and east of the LYR
field of view (indicated by the black circle). The surge head
appears to reach LYR at the time the active aurora started
(18:38:45 UT) and to disappear around the time the active
aurora ended (19:19:27 UT). A similar sequence of equiva-
lent current dynamics (not shown) can be seen around the
next interval of active aurora (Fig. 5) between 20:18:14 and
20:41:04 UT. We have also examined several other active
aurora events and found similar equivalent current develop-
ment. This indicates that periods of active aurora may be as-
sociated with a WTS which originated earlier at a substorm
onset location just east and south of LYR and which traveled
westward and northward past LYR.

Figure 8 shows the ASC image of the surge head aurora
as it comes into the ASC field of view, which corresponds to
the strongest ionospheric equivalent currents at 18:59:20 UT
(Fig. 7). Here the image is plotted onto geographic coor-
dinates to make it more comparable to the coordinates of
the equivalent current maps (grey grid). Characteristics of
the WTS aurora are the intense auroral emission and vorti-
cal structures located within the region of an upward field-
aligned current (blue colour, negative external jZ). The au-
roral evolution leading to this included poleward expansion
from the southern edge of the field of view as well as more
localized brightenings propagating from east to west along
the poleward boundary of the surge aurora. This evolution is
in agreement with that of the equivalent currents as described
above.

5 Discussion

Results from our newly developed method for morphological
clustering of auroral images have been used to detect auroral
activations over Svalbard. While the method produced 37 in-
dividual clusters, which we cannot describe in detail, our fur-
ther analysis suggests that the occurrences of eight of those
clusters are associated with active auroral displays. Similarly,
14 clusters are prominently present during quiet auroral dis-
plays. A particularly interesting finding is that longer peri-
ods of active auroral displays practically include all full-sky
auroral events in our all-sky field of view. These events co-
incide with ground-magnetic deflections and enhanced west-
ward ionospheric electrojet currents, which are signatures of
magnetospheric substorms. At high latitudes and close to the
polar cap boundary, such as at Svalbard (78°Glat), auroral
breakups overhead do not happen often. It is therefore prac-
tical to have a way of automatically identifying them in the
image data in such a way that no events are missed, even
when this means detection of some additional false positive
cases (10 %–15 %).
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Figure 7. Ionospheric equivalent currents (Vanhamäki and Juusola, 2020) (arrows) and the Z component of their curl (colour) that can be
interpreted as an estimate of field-aligned current jZ on 25 January 2019, 2 min before a period of active aurora started (18:36:50 UT), at
the start of the period of active aurora (18:38:45 UT), during the period of active aurora (18:59:20 UT) and at the end of the period of active
aurora (19:19:27 UT). The IMAGE magnetometer stations used to construct the equivalent currents are shown by black rectangles and the
LYR field of view by a circle. Magnetic apex coordinates (Richmond, 1995; Emmert et al., 2010; Laundal et al., 2022) are indicated by the
blue grid.

The MLT distribution of quiet aurora in Fig. 6 has three
maxima: one around midnight, one in the afternoon at 15:00–
17:00 MLT and one in the morning at 06:00–09:00 MLT. This
is in very good agreement with an MLT distribution of auro-
ral structures for Svalbard in quiet geomagnetic conditions
(Partamies et al., 2022). In their 13-year long data series, the
auroral morphology was investigated in terms of simple au-

roral structures called auroral arcs versus other more compli-
cated structures. Both classes undergo a similar MLT occur-
rence rate when geomagnetic conditions are quiet (the auro-
ral electrojet AL index is larger than −100 nT). These quiet
conditions correspond to the magnetic disturbance level for
our quiet aurora. Similarly, for their active conditions (AL
smaller than−300 nT), the MLT occurrence of both arcs and
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Figure 8. An image of the surge head taken at 18:59:21 UT plotted
into geographic coordinates for easier comparison with the corre-
sponding distribution of equivalent currents in Fig. 7. The assumed
emission peak height for the mapping was 110 km.

more complex auroral structures maximize between 21:00
and 02:00 MLT. This agrees with the occurrence of our active
aurora, even though our active aurora events generally take
place in less disturbed conditions (SML median of−180 nT).

An earlier study by Signh et al. (2012) analysed magnetic
signatures of high-latitude substorms poleward of the cen-
tral auroral oval. They concluded that the substorms occur
primarily close to the MLT midnight, at 21:00–02:00 MLT
during low or moderate solar wind streams, which is in very
good agreement with the occurrence conditions of our events.
In a more recent high-latitude substorm study, Cresswell-
Moorcock et al. (2013) identified 112 events of energetic
electron precipitation (EEP) in 12 months of electron den-
sity profiles from EISCAT Svalbard radar (ESR) measure-
ments. This is a much larger number than what we collected
in our study, but since our optical approach requires both dark
and clear skies (possible for only 3 months a year), the event
numbers seem comparable. Our events were collected from
a total of 6 months of data, and statistically about half of the
auroral images are cloudy. Our events of active aurora show
a very similar occurrence around magnetic midnight, as do
the EEP events detected in radar data (their Fig. 3a). Our au-
roral breakups occurred in less active magnetic conditions as
compared to the EEP events from the radar data (the Kp or
Hp index is 2 for ours and 3 for theirs) and during average
solar wind speed, while the EEP events were reported to take
place during fast solar wind. It is very likely that our auroral
breakups will therefore not fulfill the EEP criterion of strong
D-region ionization.

An automated method which would most closely com-
pare to our approach is a new study on pixel-level classifi-
cation that has empirically implemented thresholds for de-
tecting auroral intensifications by Yamauchi et al. (2023).
This method includes auroral breakups among other bright-
enings. What the authors call a local-arc brightening is not
validated strictly as substorm activity, because brightenings
take place at all local times. The pixel-level classification
of a full-resolution ASC image requires a lot more manual
work than manual labelling of full images, but since the au-
thors used data from the same camera model as ours, a cross-
validation of our results can be performed in the future.

ASC image data have been used to detect auroral breakups
before. Murphy et al. (2014) developed a method which uti-
lized the temporal evolution of the auroral image brightness
as a proxy for auroral breakups. Three independently studied
substorms were identified with good accuracy. Furthermore,
50 % of 240 independently listed substorm onsets were de-
tected within the uncertainty of their method.

Currently, the only operational image classification
method that runs on real-time image data is described by
Nanjo et al. (2022). They use unpruned auroral colour images
from Tromsø and Skibotn in northern Norway and Kiruna
in northern Sweden (https://tromsoe-ai.cei.uec.ac.jp/, last ac-
cess: 19 April 2024). The closest aspect of auroral breakup
detection in that approach is the beginning of an extended
period of the class called discrete aurora. The class itself
contains much more than just the auroral breakups, but with
some further analysis those results may also become a help-
ful cross-validation dataset for our method in the future.

While the results presented here are very promising, fur-
ther research is needed to assess how efficiently this method
works on unseen image data from different winter seasons.
This essentially depends on how well the originally man-
ually labelled image data from 2019 to 2020 represent all
the different sky conditions and the variety of auroral mor-
phology at and around the polar cap boundary. Also worth
testing is whether the current results are sensitive to the use
of brightness normalization in the preprocessing of the im-
ages. Specifically, one should investigate whether the bright-
ness normalization leads to an unnecessary bias towards faint
auroral structures. Future studies will also include testing
of the method on other similar ASCs at different locations.
This may require re-evaluation of the categories of active and
quiet aurora, as individual instruments have slightly differ-
ent colour balances, which may affect the clustering results.
Furthermore, aurora at lower latitudes consists of different
structures to some extent and will be limited to the nightside
aurora with different emission balances and different back-
ground sky conditions as compared to the dayside aurora.
All these factors may affect the occurrence of the morpho-
logical clusters and must therefore be investigated. The tra-
ditional way of detecting substorms is to use measurements
of a ground-magnetic field. Because the magnetic data are
not sensitive to weather or daylight conditions, the magne-
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tometer station density is high and the data are available in
long time series at high temporal resolution, the magnetic
approach has been widely used for statistical studies (e.g.
Forsyth et al., 2015; Partamies et al., 2013; Juusola et al.,
2011). However, the recently documented ground-induction
contribution in the magnetic measurements suggests that the
magnetic substorm detection may be biased (Juusola et al.,
2020). Furthermore, for some studies it is essential to in-
clude information on the auroral morphology, which makes
the availability of the image data a key element.

6 Conclusions

This study has explored a newly developed prototype method
for automatic clustering of auroral all-sky images in an un-
supervised way. We used manually labelled data that were
known to contain aurora, which means that in order for this
approach to work, a classification of raw images into classes
of “aurora” and “no aurora” is needed. Our method produced
37 clusters. Our results showed that an occurrence of a group
of clusters was strongly increased with an increasing tempo-
ral resolution of input images taken during bright auroral dis-
plays. This indicates that a time sequence of these morpho-
logical clusters mainly describes auroral activations. This re-
sult was further used to detect the start times of periods with
continuous auroral activity in our labelled data. Examination
of the detected auroral activations showed that these are in-
deed local auroral breakups that carry substorm-like proper-
ties to the extent that high-latitude substorm events are ex-
pected to. An essential skill of our method is that no major
events were missed by the detection. These are promising re-
sults that may help in identifying optical auroral breakups
in the future after being tested on unseen data and cross-
validated with other methods.

Code availability. The auroral image clustering method by
Vincent Teissier is available at https://github.com/Tadlai/
auroral-classification. The Master’s thesis on unsupervised image
classification by Vincent Teissier is available at https://github.com/
Tadlai/auroral-classification/blob/main/master_thesis-final.pdf
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