Articles | Volume 41, issue 1
https://doi.org/10.5194/angeo-41-209-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-41-209-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of the terdiurnal tide on the sporadic E (Es) layer development at low latitudes over the Brazilian sector
Pedro Alves Fontes
CORRESPONDING AUTHOR
Universidade do Vale do Paraíba – Univap, Institute of Research
and Development – IP&D, Av. Shishima Hifumi, 2911, Urbanova, São
José dos Campos – SP, 12.244-000, Brazil
Department of Physics Teaching, Instituto Federal do Maranhão – IFMA, Av. João Alberto, 1840,
Bacabal – MA, 65700-000, Brazil
Marcio Tadeu de Assis Honorato Muella
Universidade do Vale do Paraíba – Univap, Institute of Research
and Development – IP&D, Av. Shishima Hifumi, 2911, Urbanova, São
José dos Campos – SP, 12.244-000, Brazil
Laysa Cristina Araújo Resende
Divisão de Aeronomia, Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos
Astronautas, 1758, Jd. da granja, São José dos Campos – SP,
12.227-010, Brazil
State Key Laboratory of Space Weather, 100190, Beijing, China
Vânia Fátima Andrioli
Divisão de Aeronomia, Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos
Astronautas, 1758, Jd. da granja, São José dos Campos – SP,
12.227-010, Brazil
State Key Laboratory of Space Weather, 100190, Beijing, China
Paulo Roberto Fagundes
Universidade do Vale do Paraíba – Univap, Institute of Research
and Development – IP&D, Av. Shishima Hifumi, 2911, Urbanova, São
José dos Campos – SP, 12.244-000, Brazil
Valdir Gil Pillat
Universidade do Vale do Paraíba – Univap, Institute of Research
and Development – IP&D, Av. Shishima Hifumi, 2911, Urbanova, São
José dos Campos – SP, 12.244-000, Brazil
Paulo Prado Batista
Divisão de Aeronomia, Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos
Astronautas, 1758, Jd. da granja, São José dos Campos – SP,
12.227-010, Brazil
Alexander Jose Carrasco
Divisão de Aeronomia, Instituto Nacional de Pesquisas Espaciais – INPE, Av. dos
Astronautas, 1758, Jd. da granja, São José dos Campos – SP,
12.227-010, Brazil
Departamento de Física, Universidad de Los Andes, Mérida,
5101, Venezuela
Related authors
No articles found.
Igo Paulino, Paulo Roberto Fagundes, Ana Roberta Paulino, Maurício José Alves Bolzam, and Valdir Gil Pillat
EGUsphere, https://doi.org/10.5194/egusphere-2025-6570, https://doi.org/10.5194/egusphere-2025-6570, 2026
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
This study shows how the 2023 solar eclipse affected the ionosphere in Brazil. By tracking radio wave echoes, the results show that isoline for fixed-frequencies dropped significantly across the country as the sun was blocked. Even 1,500 km away from the main shadow, the ionosphere felt the impact. There was a 1.5-hour delay before the largest change occurred and the ionosphere in the equatorial region recovered faster than in low latitudes.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Xiao Liu, Jiyao Xu, Jia Yue, Yangkun Liu, and Vania F. Andrioli
Atmos. Chem. Phys., 24, 10143–10157, https://doi.org/10.5194/acp-24-10143-2024, https://doi.org/10.5194/acp-24-10143-2024, 2024
Short summary
Short summary
Disagreement in long-term trends in the high-latitude mesosphere temperature should be elucidated using one coherent measurement over a long period. Using SABER measurements at high latitudes and binning the data based on yaw cycle, we focus on long-term trends in the mean temperature and mesopause in the high-latitude mesosphere–lower-thermosphere region, which has been rarely studied via observations but is more sensitive to dynamic changes.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Xiao Liu, Jiyao Xu, Jia Yue, and Vania F. Andrioli
Atmos. Chem. Phys., 23, 6145–6167, https://doi.org/10.5194/acp-23-6145-2023, https://doi.org/10.5194/acp-23-6145-2023, 2023
Short summary
Short summary
Winds are important in characterizing atmospheric dynamics and coupling. However, it is difficult to directly measure the global winds from the stratosphere to the lower thermosphere. We developed a global zonal wind dataset according to the gradient wind theory and SABER and meteor radar observations. Using the dataset, we studied the intra-annual, inter-annual, and long-term variations. This is helpful to understand the variations and coupling of the stratosphere to the lower thermosphere.
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022, https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Short summary
In this work, we use the Disturbance Ionosphere indeX (DIX) to study equatorial plasma bubble (EPB) events over the Brazilian equatorial and low latitudes. Our results showed that the DIX detected EPB disturbances in terms of their intensity and occurrence times. Therefore, these responses agreed with the ionosphere behavior before, during, and after the studied EPBs. Finally, these disturbances tended to be higher (lower) in high (low) solar activity.
Laysa C. A. Resende, Yajun Zhu, Clezio M. Denardini, Sony S. Chen, Ronan A. J. Chagas, Lígia A. Da Silva, Carolina S. Carmo, Juliano Moro, Diego Barros, Paulo A. B. Nogueira, José P. Marchezi, Giorgio A. S. Picanço, Paulo Jauer, Régia P. Silva, Douglas Silva, José A. Carrasco, Chi Wang, and Zhengkuan Liu
Ann. Geophys., 40, 191–203, https://doi.org/10.5194/angeo-40-191-2022, https://doi.org/10.5194/angeo-40-191-2022, 2022
Short summary
Short summary
This study showed the ionospheric response over low-latitude regions in Brazil predicted by Martínez-Ledesma et al. (2020) for the solar eclipse event on 14 December 2020. We used a multi-instrumental and modeling analysis to observe the modifications in the E and F regions and the Es layers over Campo Grande and Cachoeira Paulista. The results showed that solar eclipses can cause significant ionosphere modifications even though they only partially reach the Brazilian low-latitude regions.
Xiao Liu, Jiyao Xu, Jia Yue, You Yu, Paulo P. Batista, Vania F. Andrioli, Zhengkuan Liu, Tao Yuan, Chi Wang, Ziming Zou, Guozhu Li, and James M. Russell III
Earth Syst. Sci. Data, 13, 5643–5661, https://doi.org/10.5194/essd-13-5643-2021, https://doi.org/10.5194/essd-13-5643-2021, 2021
Short summary
Short summary
Based on the gradient balance wind theory and the SABER observations, a dataset of monthly mean zonal wind has been developed at heights of 18–100 km and latitudes of 50° Sndash;50° N from 2002 to 2019. The dataset agrees with the zonal wind from models (MERRA2, UARP, HWM14) and observations by meteor radar and lidar at seven stations. The dataset can be used to study seasonal and interannual variations and can serve as a background for wave studies of tides and planetary waves.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Cited articles
Akmaev, R. A.: Seasonal variations of the terdiurnal tide in the mesosphere
and lower thermosphere: A model study, Geophys. Res. Lett., 28,
3817–3820, https://doi.org/10.1029/2001GL013002, 2001.
Andoh, S., Saito, A., Shinagawa, H., and Ejiri, M. K.: First simulations of
day-to-day variability of mid-latitude sporadic E layer structures, Earth
Planet. Space, 72, 1–9, https://doi.org/10.1186/s40623-020-01299-8, 2020.
Andrioli, V. F., Clemesha, B. R., Batista, P. P., and Schuch, N. J.:
Atmospheric tides and mean winds in the meteor region over Santa Maria
(29.7∘ S; 53.8∘ W), J. Atmos.
Sol.-Terr. Phys., 71, 1864–1876,
https://doi.org/10.1016/j.jastp.2009.07.005, 2009.
Arras, C., Jacobi, C., and Wickert, J.: Semidiurnal tidal signature in
sporadic E occurrence rates derived from GPS radio occultation measurements
at higher midlatitudes, Ann. Geophys., 27, 2555–2563,
https://doi.org/10.5194/angeo-27-2555-2009, 2009.
Bergsson, B. and Syndergaard, S.: Global Temporal and Spatial Variations of
Ionospheric Sporadic-E Derived from Radio Occultation Measurements, J. Geophys. Res.-Space, 127, 1–21,
https://doi.org/10.1029/2022JA030296, 2022.
Buriti, R. A., Hocking, W. K., Batista, P. P., Medeiros, A. F., and
Clemesha, B. R.: Observations of equatorial mesospheric winds over Cariri
(7.4∘ S) by a meteor radar and comparison with existing models,
Ann. Geophys., 26, 485–497,
https://doi.org/10.5194/angeo-26-485-2008, 2008.
Carrasco, A. J., Batista, I. S., and Abdu, M. A.: Simulation of the sporadic
E layer response to prereversal associated evening vertical electric field
enhancement near dip equator, J. Geophys. Res.-Space, 112, 1–10, https://doi.org/10.1029/2006JA012143, 2007.
Carter, L. N. and Forbes, J. M.: Global transport and localized layering of
metallic ions in the upper atmosphere, Ann. Geophys., 17, 190–209,
https://doi.org/10.1007/s00585-999-0190-6, 1999.
Chang, L. C., Palo, S. E., and Liu, H.-L.: Short-term variability in the
migrating diurnal tide caused by interactions with the quasi 2 day wave,
J. Geophys. Res., 116, 1–18,
https://doi.org/10.1029/2010JD014996, 2011.
Chang, L. C., Lin, C.-H., Yue, J., Liu, J.-Y., and Lin, J.-T.: Stationary
planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and
wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations, J.
Geophys. Res.-Space, 118, 6651–6665,
https://doi.org/10.1002/jgra.50583, 2013.
Chen, W. M. and Harris, R. D.: An ionospheric E-region nighttime model,
J. Atmos. Terr. Phys., 33, 1193–1207,
https://doi.org/10.1016/0021-9169(71)90107-3, 1971.
Conceição-Santos, F., Muella, M. T. A. H., Resende, L. C. A.,
Fagundes, P. R., Andrioli, V. F., Batista, P. P., Pillat, V. G., and
Carrasco, A. J.: Occurrence and Modeling Examination of Sporadic-E Layers
in the Region of the South America (Atlantic) Magnetic Anomaly, J.
Geophys. Res.-Space, 124, 9676–9694,
https://doi.org/10.1029/2018JA026397, 2019.
Conceição-Santos, F., Muella, M. T. A. H., Resende, L. C. A.,
Fagundes, P. R., Andrioli, V. F., Batista, P. P., and Carrasco, A. J.: On
the role of tidal winds in the descending of the high type of sporadic layer
(Es), Adv. Space Res., 65, 2131–2147,
https://doi.org/10.1016/j.asr.2019.11.024, 2020.
Du, J. and Ward, W. E.: Terdiurnal tide in the extended Canadian Middle
Atmospheric Model (CMAM), J. Geophys. Res.-Atmos., 115,
1–21, https://doi.org/10.1029/2010JD014479, 2010.
Fontes, P. A., Muella, M. T. A. H., Resende, L. C. A., Andrioli, V. F., Fagundes, P. R., Pillat, V. G., Batista, P. P., and Carrasco, A. J.: CADI Ionosonde Data – Palmas (2008–2009), Zenodo [data set], https://doi.org/10.5281/zenodo.7826805, 2023a.
Fontes, P. A., Muella, M. T. A. H., Resende, L. C. A., Andrioli, V. F., Fagundes, P. R., Pillat, V. G., Batista, P. P., and Carrasco, A. J.: SkiYMET meteor radar data at OLAP (2008–2009), Zenodo [data set], https://doi.org/10.5281/zenodo.7826565, 2023b.
Forbes, J. M. and Garrett, H. B.: Theoretical studies of atmospheric tides,
Rev. Geophys., 17, 1951–1981,
https://doi.org/10.1029/RG017i008p01951, 1979.
Forbes, J. M. and Wu, D.: Solar Tides as Revealed by Measurements of
Mesosphere Temperature by the MLS Experiment on UARS, J.
Atmos. Sci., 63, 1776–1797, https://doi.org/10.1175/JAS3724.1,
2006.
Forbes, J. M., Zhang, X., and Bruinsma, S. L.: New perspectives on
thermosphere tides: 2. Penetration to the upper thermosphere, Earth Planet. Space, 66, 1–11, https://doi.org/10.1186/1880-5981-66-122, 2014.
Forbes, J. M., Zhang, X., Palo, S., Russell, J., Mertens, C. J., and
Mlynczak, M.: Tidal variability in the ionospheric dynamo region, J.
Geophys. Res.-Space, 113, 1–17,
https://doi.org/10.1029/2007JA012737, 2008.
Fuller-Rowell, T., Wang, H., Akmaev, R., Wu, F., Fang, T. W., Iredell, M.,
and Richmond, A.: Forecasting the dynamic and electrodynamic response to the
January 2009 sudden stratospheric warming, Geophys. Res. Lett., 38,
1–6, https://doi.org/10.1029/2011GL047732, 2011.
Fytterer, T., Arras, C., and Jacobi, C.: Terdiurnal signatures in sporadic
layers at midlatitudes, Adv. Radio Sci., 11, 333–339,
https://doi.org/10.5194/ars-11-333-2013, 2013.
Fytterer, T., Arras, C., Hoffmann, P., and Jacobi, C.: Global distribution
of the migrating terdiurnal tide seen in sporadic e occurrence frequencies
obtained from GPS radio occultations, Earth Planet. Space, 66, 1–9,
https://doi.org/10.1186/1880-5981-66-79, 2014.
Gao, S. and MacDougall, J. W.: A dynamic ionosonde design using pulse
coding, Can. J. Phys., 69, 1184–1189,
https://doi.org/10.1139/p91-179, 1991.
Gu, S., Lei, J., Dou, X., Xue, X., Huang, F., and Jia, M.: The Modulation of
the Quasi-Two-Day Wave on Total Electron Content as Revealed by BeiDou GEO
and Meteor Radar Observations Over Central China, J. Geophys.
Res.-Space, 122, 10651–10657,
https://doi.org/10.1002/2017JA024349, 2017.
Guharay, A., Batista, P. P., Clemesha, B. R., Sarkhel, S., and Buriti, R.
A.: On the variability of the terdiurnal tide over a Brazilian equatorial
station using meteor radar observations, J. Atmos.
Sol.-Terr. Phys., 104, 87–95,
https://doi.org/10.1016/j.jastp.2013.08.021, 2013.
Haldoupis, C.: Midlatitude Sporadic E, A Typical Paradigm of
Atmosphere-Ionosphere Coupling, Space Sci. Rev., 168, 441–461,
https://doi.org/10.1007/s11214-011-9786-8, 2012.
Haldoupis, C.: A Tutorial Review on Sporadic E Layers, in: Aeronomy of the Earth's Atmosphere and Ionosphere, edited by: Abdu, M. and
Pancheva, D., IAGA
Special Sopron Book Series, Vol. 2, Springer, Dordrecht,
https://doi.org/10.1007/978-94-007-0326-1_29, 2011.
Haldoupis, C. and Pancheva, D.: Terdiurnal tidelike variability in sporadic
E layers, J. Geophys. Res., 111, 1–10,
https://doi.org/10.1029/2005JA011522, 2006.
Haldoupis, C., Pancheva, D., and Mitchell, N. J.: A study of tidal and
planetary wave periodicities present in midlatitude sporadic E layers,
J. Geophys. Res.-Space, 109, 1–12,
https://doi.org/10.1029/2003JA010253, 2004.
Haldoupis, C., Meek, C., Christakis, N., Pancheva, D., and Bourdillon, A.:
Ionogram height–time–intensity observations of descending sporadic E
layers at mid-latitude, J. Atmos. Sol.-Terr.
Phys., 68, 539–557, https://doi.org/10.1016/j.jastp.2005.03.020, 2006.
Hocking, W. K.: Radar meteor decay rate variability and atmospheric
consequences, Ann. Geophys., 22, 3805–3814,
https://doi.org/10.5194/angeo-22-3805-2004, 2004.
Huang, C. M., Zhang, S. D., and Yi, F.: A numerical study on amplitude
characteristics of the terdiurnal tide excited by nonlinear interaction
between the diurnal and semidiurnal tides, Earth Planet. Space, 59,
183–191, https://doi.org/10.1186/BF03353094, 2007.
Huang, J. and MacDougall, J. W.: Legendre coding for digital ionosondes,
Radio Sci., 40, 1–11, https://doi.org/10.1029/2004RS003123, 2005.
Jacobi, C. and Arras, C.: Tidal wind shear observed by meteor radar and
comparison with sporadic E occurrence rates based on GPS radio occultation
observations, Adv. Radio Sci., 17, 213–224,
https://doi.org/10.5194/ars-17-213-2019, 2019.
Jacobi, C., Krug, A., and Merzlyakov, E.: Radar observations of the
quarterdiurnal tide at midlatitudes: Seasonal and long-term variations,
J. Atmos. Sol.-Terr. Phys., 163, 70–77,
https://doi.org/10.1016/j.jastp.2017.05.014, 2017.
Jiang, G., Xu, J., and Franke, S. J.: The 8-h tide in the mesosphere and
lower thermosphere over Maui (20.75∘ N, 156.43∘ W),
Ann. Geophys., 27, 1989–1999,
https://doi.org/10.5194/angeo-27-1989-2009, 2009.
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and
Shinagawa, H.: Response of migrating tides to the stratospheric sudden
warming in 2009 and their effects on the ionosphere studied by a whole
atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations,
J. Geophys. Res.-Space, 117, 1–20,
https://doi.org/10.1029/2012JA017650, 2012.
Kirkwood, S. and Nilsson, H.: High-latitude sporadic-e and other thin
layers – the role of magnetospheric electric fields, Space Sci. Rev.,
91, 579–613, https://doi.org/10.1023/A:1005241931650, 2000.
Lieberman, R. S., Oberheide, J., and Talaat, E. R.: Nonmigrating diurnal
tides observed in global thermospheric winds, J. Geophys.
Res.-Space, 118, 7384–7397,
https://doi.org/10.1002/2013JA018975, 2013.
Lilienthal, F. and Jacobi, C.: Nonlinear forcing mechanisms of the
migrating terdiurnal solar tide and their impact on the zonal mean
circulation, Ann. Geophys., 37, 943–953,
https://doi.org/10.5194/angeo-37-943-2019, 2019.
Lilienthal, F., Jacobi, C., and Geißler, C.: Forcing mechanisms of the
terdiurnal tide, Atmos. Chem. Phys., 18, 15725–15742,
https://doi.org/10.5194/acp-18-15725-2018, 2018.
Lima, L. M., Alves, E. O., Batista, P. P., Clemesha, B. R., Medeiros, A. F.,
and Buriti, R. A.: Sudden stratospheric warming effects on the mesospheric
tides and 2-day wave dynamics at 7∘ S, J. Atmos.
Sol.-Terr. Phys., 79, 99–107,
https://doi.org/10.1016/j.jastp.2011.02.013, 2012.
Lin, J. T., Lin, C. H., Chang, L. C., Huang, H. H., Liu, J. Y., Chen, A. B.,
Chen, C. H., and Liu, C. H.: Observational evidence of ionospheric migrating
tide modification during the 2009 stratospheric sudden warming, Geophys.
Res. Lett., 39, 2–7, https://doi.org/10.1029/2011GL050248, 2012.
Lindzen, R. S. and Chapman, S.: Atmospheric tides, Space Sci. Rev.,
10, 1415–1422, https://doi.org/10.1007/BF00171584, 1969.
Liu, H. L. and Roble, R. G.: A study of a self-generated stratospheric
sudden warming and its mesospheric-lower thermospheric impacts using the
coupled TIME-GCM/CCM3, J. Geophys. Res.-Atmos., 107,
1–18, https://doi.org/10.1029/2001JD001533, 2002.
Lomb, N. R.: Least-squares frequency analysis of unequally spaced data,
Astrophys. Space Sci., 39, 447–462,
https://doi.org/10.1007/BF00648343, 1976.
Manson, A. H., Meek, C. E., Gregory, J. B., and Chakrabarty, D. K.:
Fluctuations in tidal (24-, 12-h) characteristics and oscillations (8-h-5-d)
in the mesosphere and lower thermosphere (70–110 km): Saskatoon
(52∘ N, 107∘ W), 1979–1981, Planet. Space
Sci., 30, 1283–1294, https://doi.org/10.1016/0032-0633(82)90102-7, 1982.
McLandress, C.: The Seasonal Variation of the Propagating Diurnal Tide in
the Mesosphere and Lower Thermosphere, Part I: The Role of Gravity Waves and
Planetary Waves, J. Atmos. Sci., 59, 893–906,
https://doi.org/10.1175/1520-0469(2002)059<0893:TSVOTP>2.0.CO;2, 2002a.
McLandress, C.: The Seasonal Variation of the Propagating Diurnal Tide in
the Mesosphere and Lower Thermosphere, Part II: The Role of Tidal Heating
and Zonal Mean Winds, J. Atmos. Sci., 59, 907–922,
https://doi.org/10.1175/1520-0469(2002)059<0907:TSVOTP>2.0.CO;2, 2002b.
Moudden, Y. and Forbes, J. M.: A decade-long climatology of terdiurnal
tides using TIMED/SABER observations, J. Geophys. Res.-Space, 118, 4534–4550, https://doi.org/10.1002/jgra.50273, 2013.
Oikonomou, C., Haralambous, H., Haldoupis, C., and Meek, C.: Sporadic E
tidal variabilities and characteristics observed with the Cyprus Digisonde,
J. Atmos. Sol.-Terr. Phys., 119, 173–183,
https://doi.org/10.1016/j.jastp.2014.07.014, 2014.
Pancheva, D.: Evidence for nonlinear coupling of planetary waves and tides
in the lower thermosphere over Bulgaria, J. Atmos.
Sol.-Terr. Phys., 62, 115–132,
https://doi.org/10.1016/S1364-6826(99)00032-2, 2000.
Pancheva, D., Mukhtarov, P., and Smith, A. K.: Climatology of the migrating
terdiurnal tide (TW3) in SABER/TIMED temperatures, J. Geophys.
Res.-Space, 118, 1755–1767,
https://doi.org/10.1002/jgra.50207, 2013.
Piggott, W. R. and Rawer, K.: U.R.S.I. handbook of ionogram interpretation
and reduction. In World Data Center A for Solar-Terrestrial Physics, WDC-A
report UAG-23, NOAA, https://repository.library.noaa.gov/view/noaa/10404 (last access: 20 March 2022),
1972.
Pillat, V. G., Guimarães, L. N. F., Fagundes, P. R., and da Silva, J. D.
S.: A computational tool for ionosonde CADI's ionogram analysis, Comput. Geosci., 52, 372–378, https://doi.org/10.1016/j.cageo.2012.11.009,
2013.
Plane, J. M. C.: Atmospheric Chemistry of Meteoric Metals, Chem. Rev.,
103, 4963–4984, https://doi.org/10.1021/cr0205309, 2003.
Plane, J. M. C., Feng, W., and Dawkins, E. C. M.: The Mesosphere and Metals:
Chemistry and Changes, Chem. Rev., 115, 4497–4541,
https://doi.org/10.1021/cr500501m, 2015.
Resende, L. C. A., Batista, I. S., Denardini, C. M., Batista, P. P.,
Carrasco, A. J., Andrioli, V. F., and Moro, J.: The influence of tidal winds
in the formation of blanketing sporadic e-layer over equatorial Brazilian
region, J. Atmos. Sol.-Terr. Phys., 171, 64–71,
https://doi.org/10.1016/j.jastp.2017.06.009, 2017a.
Resende, L. C. A., Batista, I. S., Denardini, C. M., Batista, P. P.,
Carrasco, A. J., Andrioli, V. de F., and Moro, J.: Simulations of blanketing
sporadic E-layer over the Brazilian sector driven by tidal winds, J.
Atmos. Sol.-Terr. Phys., 154, 104–114,
https://doi.org/10.1016/j.jastp.2016.12.012, 2017b.
Resende, L. C. A., Batista, I. S., Denardini, C. M., Carrasco, A. J., de
Fátima Andrioli, V., Moro, J., Batista, P. P., and Chen, S. S.:
Competition between winds and electric fields in the formation of blanketing
sporadic E layers at equatorial regions, Earth Planet. Space, 68,
1–14, https://doi.org/10.1186/s40623-016-0577-z, 2016.
Scargle, J. D.: Studies in astronomical time series analysis, II –
Statistical aspects of spectral analysis of unevenly spaced data,
Astrophys. J., 263, 835–853, https://doi.org/10.1086/160554, 1982.
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33,
1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012.
Smith, A. K. and Ortland, D. A.: Modeling and Analysis of the Structure and
Generation of the Terdiurnal Tide, J. Atmos. Sci., 58,
3116–3134, https://doi.org/10.1175/1520-0469(2001)058<3116:MAAOTS>2.0.CO;2, 2001.
Tacza, J., Nicoll, K. A., and Macotela, E.: Periodicities in fair weather
potential gradient data from multiple stations at different latitudes,
Atmos. Res., 276, 1–17,
https://doi.org/10.1016/j.atmosres.2022.106250, 2022.
Tang, Q., Zhou, C., Liu, H., Du, Z., Liu, Y., Zhao, J., Yu, Z., Zhao, Z.,
and Feng, X.: Global Structure and Seasonal Variations of the Tidal
Amplitude in Sporadic-E Layer, J. Geophys. Res.-Space, 127, 1–14, https://doi.org/10.1029/2022JA030711, 2022.
Teitelbaum, H. and Vial, F.: On tidal variability induced by nonlinear
interaction with planetary waves, J. Geophys. Res.-Space, 96, 14169–14178, https://doi.org/10.1029/91JA01019, 1991.
Truskowski, A. O., Forbes, J. M., Zhang, X., and Palo, S. E.: New
perspectives on thermosphere tides: 1. Lower thermosphere spectra and
seasonal-latitudinal structures, Earth Planet. Space, 66, 1–17,
https://doi.org/10.1186/s40623-014-0136-4, 2014.
VanderPlas, J. T.: Understanding the Lomb–Scargle Periodogram,
Astrophys. J. Suppl. Ser., 236, 1–28,
https://doi.org/10.3847/1538-4365/aab766, 2018.
Venkateswara Rao, N., Tsuda, T., Gurubaran, S., Miyoshi, Y., and Fujiwara,
H.: On the occurrence and variability of the terdiurnal tide in the
equatorial mesosphere and lower thermosphere and a comparison with the
Kyushu-GCM, J. Geophys. Res., 116, 1–13,
https://doi.org/10.1029/2010JD014529, 2011.
Wang, H., Fuller-Rowell, T. J., Akmaev, R. A., Hu, M., Kleist, D. T., and
Iredell, M. D.: First simulations with a whole atmosphere data assimilation
and forecast system: The January 2009 major sudden stratospheric warming,
J. Geophys. Res.-Space, 116, 1–6,
https://doi.org/10.1029/2011JA017081, 2011.
Whitehead, J. D.: The formation of the sporadic-E layer in the temperate
zones, J. Atmos. Terr. Phys., 20, 49–58,
https://doi.org/10.1016/0021-9169(61)90097-6, 1961.
Whitehead, J. D.: Recent work on mid-latitude and equatorial sporadic-E,
J. Atmos. Terr. Phys., 51, 401–424,
https://doi.org/10.1016/0021-9169(89)90122-0, 1989.
Yu, B., Xue, X., Scott, C. J., Yue, X., and Dou, X.: An Empirical Model of
the Ionospheric Sporadic E Layer Based on GNSS Radio Occultation Data, Space
Weather, 20, 1–14, https://doi.org/10.1029/2022SW003113, 2022.
Yu, B., Xue, X., Yue, X., Yang, C., Yu, C., Dou, X., Ning, B., and Hu, L.:
The global climatology of the intensity of the ionospheric sporadic E layer,
Atmos. Chem. Phys., 19, 4139–4151,
https://doi.org/10.5194/acp-19-4139-2019, 2019.
Xu, J., Smith, A. K., Liu, M., Liu, X., Gao, H., Jiang, G., and Yuan, W.:
Evidence for nonmigrating tides produced by the interaction between tides
and stationary planetary waves in the stratosphere and lower mesosphere,
J. Geophys. Res.-Atmos., 119, 471–489,
https://doi.org/10.1002/2013JD020150, 2014.
Zhao, G., Liu, L., Ning, B., Wan, W., and Xiong, J.: The terdiurnal tide in
the mesosphere and lower thermosphere over Wuhan (30∘ N,
114∘ E), Earth Planet. Space, 57, 393–398,
https://doi.org/10.1186/BF03351823, 2005.
Short summary
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these layers are related to the action of atmospheric waves. These waves, also named tides, are due to the absorption of solar radiation in the atmosphere. We investigated the role of the tides with 8 h period in the formation of the sporadic layers. The study was conducted using ionosonde and meteor radar data, as well as computing simulations. The 8 h tides intensified the density of the sporadic layers.
In the terrestrial ionosphere, sporadic (metallic) layers are formed. The formation of these...
Special issue