Articles | Volume 39, issue 1
https://doi.org/10.5194/angeo-39-189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models
Minna Palmroth
CORRESPONDING AUTHOR
Department of Physics, University of Helsinki, Helsinki, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Maxime Grandin
Department of Physics, University of Helsinki, Helsinki, Finland
Theodoros Sarris
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Eelco Doornbos
Royal Netherlands Meteorological Institute KNMI, Utrecht, the Netherlands
Stelios Tourgaidis
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Space Programmes Unit, Athena Research & Innovation Centre, Athens, Greece
Anita Aikio
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Stephan Buchert
Swedish Institute of Space Physics (IRF), Uppsala, Sweden
Mark A. Clilverd
British Antarctic Survey (UKRI-NERC), Cambridge, UK
Iannis Dandouras
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, Toulouse, France
Roderick Heelis
Center for Space Sciences, University of Texas at Dallas, Dallas, USA
Alex Hoffmann
European Space Research and Technology Centre, European Space Agency, Noordwijk, the Netherlands
Nickolay Ivchenko
Division of Space and Plasma Physics, Royal Institute of Technology KTH, Stockholm, Sweden
Guram Kervalishvili
GFZ Potsdam, German Research Centre for Geosciences, Potsdam, Germany
David J. Knudsen
Department of Physics and Astronomy, University of Calgary, Calgary, Canada
Anna Kotova
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, Toulouse, France
Han-Li Liu
National Center for Atmospheric Research, Boulder, USA
David M. Malaspina
Astrophysical and Planetary Sciences Department, University of Colorado, Boulder, USA
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, USA
Günther March
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Aurélie Marchaudon
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, Toulouse, France
Octav Marghitu
Institute for Space Sciences, Bucharest, Romania
Tomoko Matsuo
Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, USA
Wojciech J. Miloch
Department of Physics, University of Oslo, Oslo, Norway
Therese Moretto-Jørgensen
University of Bergen, Institute of Physics and Technology, Bergen, Norway
Dimitris Mpaloukidis
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Nils Olsen
DTU Space, Technical University of Denmark, Copenhagen, Denmark
Konstantinos Papadakis
Department of Physics, University of Helsinki, Helsinki, Finland
Robert Pfaff
Heliophysics Science Division, NASA/Goddard Space Flight Center, Greenbelt, USA
Panagiotis Pirnaris
Department of Electrical and Computer Engineering, Democritus University of Thrace, Xanthi, Greece
Christian Siemes
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Claudia Stolle
GFZ Potsdam, German Research Centre for Geosciences, Potsdam, Germany
Faculty of Science, University of Potsdam, Potsdam, Germany
Jonas Suni
Department of Physics, University of Helsinki, Helsinki, Finland
Jose van den IJssel
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Pekka T. Verronen
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Sodankylä Geophysical Observatory, University of Oulu, Sodankylä, Finland
Pieter Visser
Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands
Masatoshi Yamauchi
Swedish Institute of Space Physics (IRF), Kiruna, Sweden
Related authors
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Preprint under review for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
This article is included in the Encyclopedia of Geosciences
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
This article is included in the Encyclopedia of Geosciences
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
This article is included in the Encyclopedia of Geosciences
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
This article is included in the Encyclopedia of Geosciences
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
This article is included in the Encyclopedia of Geosciences
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
This article is included in the Encyclopedia of Geosciences
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
This article is included in the Encyclopedia of Geosciences
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
This article is included in the Encyclopedia of Geosciences
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
This article is included in the Encyclopedia of Geosciences
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
This article is included in the Encyclopedia of Geosciences
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
This article is included in the Encyclopedia of Geosciences
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
This article is included in the Encyclopedia of Geosciences
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
This article is included in the Encyclopedia of Geosciences
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
This article is included in the Encyclopedia of Geosciences
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
This article is included in the Encyclopedia of Geosciences
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
This article is included in the Encyclopedia of Geosciences
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
This article is included in the Encyclopedia of Geosciences
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
This article is included in the Encyclopedia of Geosciences
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
This article is included in the Encyclopedia of Geosciences
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
This article is included in the Encyclopedia of Geosciences
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
This article is included in the Encyclopedia of Geosciences
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
This article is included in the Encyclopedia of Geosciences
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
This article is included in the Encyclopedia of Geosciences
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
This article is included in the Encyclopedia of Geosciences
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
This article is included in the Encyclopedia of Geosciences
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
This article is included in the Encyclopedia of Geosciences
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
Marc Hansen, Daniela Banyś, Mark Clilverd, David Wenzel, Tero Raita, and Mohammed Mainul Hoque
Ann. Geophys., 43, 55–65, https://doi.org/10.5194/angeo-43-55-2025, https://doi.org/10.5194/angeo-43-55-2025, 2025
Short summary
Short summary
The amplitude of subionospheric very low-frequency (VLF) radio signals does not show a symmetrical behavior over the year, which would be expected from its dependency on the solar position. The VLF amplitude rather shows a distinctive sharp decrease around October, which is hence called the "October effect". This study is the first to systematically investigate this October effect, which shows a clear latitudinal dependency.
This article is included in the Encyclopedia of Geosciences
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
This article is included in the Encyclopedia of Geosciences
Guochun Shi, Hanli Liu, Masaki Tsutsumi, Njål Gulbrandsen, Alexander Kozlovsky, Dimitry Pokhotelov, Mark Lester, Kun Wu, and Gunter Stober
EGUsphere, https://doi.org/10.5194/egusphere-2024-3749, https://doi.org/10.5194/egusphere-2024-3749, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
People are increasingly concerned about climate change due to its widespread impacts, including rising temperatures, extreme weather events, and ecosystem disruptions. Addressing these challenges requires urgent global action to reduce greenhouse gas emissions and adapt to a rapidly changing environment.
This article is included in the Encyclopedia of Geosciences
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Preprint under review for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
This article is included in the Encyclopedia of Geosciences
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669, https://doi.org/10.5194/egusphere-2024-3669, 2024
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to STEVE with white, pale pink or mauve coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
This article is included in the Encyclopedia of Geosciences
Sota Nanjo, Masatoshi Yamauchi, Magnar Gullikstad Johnsen, Yoshihiro Yokoyama, Urban Brändström, Yasunobu Ogawa, Anna Naemi Willer, and Keisuke Hosokawa
EGUsphere, https://doi.org/10.5194/egusphere-2024-3277, https://doi.org/10.5194/egusphere-2024-3277, 2024
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Our research explored the "shock aurora," caused by the impact of solar wind particles on Earth's magnetic field. On February 26, 2023, we observed this rare event on the nightside, where such observations are difficult. Ground-based cameras revealed new structural features, including undulating and jumping patterns. These results provide fresh insights into the complex interactions between the solar wind and Earth's magnetosphere, enhancing our understanding of space weather effects.
This article is included in the Encyclopedia of Geosciences
Markus Kunze, Christoph Zülicke, Tarique Adnan Siddiqui, Claudia Christine Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-191, https://doi.org/10.5194/gmd-2024-191, 2024
Preprint under review for GMD
Short summary
Short summary
We present the Icosahedral Nonhydrostatic (ICON) general circulation model with upper atmosphere extension with the physics package for numerical weather prediction (UA-ICON(NWP)). The parameters for the gravity wave parameterizations were optimized, and realistic modelling of the thermal and dynamic state of the mesopause regions was achieved. UA-ICON(NWP) now shows a realistic frequency of major sudden stratospheric warmings and well-represented solar tides in temperature.
This article is included in the Encyclopedia of Geosciences
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
This article is included in the Encyclopedia of Geosciences
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
This article is included in the Encyclopedia of Geosciences
Miriam Sinnhuber, Christina Arras, Stefan Bender, Bernd Funke, Hanli Liu, Daniel R. Marsh, Thomas Reddmann, Eugene Rozanov, Timofei Sukhodolov, Monika E. Szelag, and Jan Maik Wissing
EGUsphere, https://doi.org/10.5194/egusphere-2024-2256, https://doi.org/10.5194/egusphere-2024-2256, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Formation of nitric oxide NO in the upper atmosphere varies with solar activity. Observations show that it starts a chain of processes in the entire atmosphere affecting the ozone layer and climate system. This is often underestimated in models. We compare five models which show large differences in simulated NO. Analysis of results point out problems related to the oxygen balance, and to the impact of atmospheric waves on dynamics. Both must be modeled well to reproduce the downward coupling.
This article is included in the Encyclopedia of Geosciences
Qinzeng Li, Jiyao Xu, Aditya Riadi Gusman, Hanli Liu, Wei Yuan, Weijun Liu, Yajun Zhu, and Xiao Liu
Atmos. Chem. Phys., 24, 8343–8361, https://doi.org/10.5194/acp-24-8343-2024, https://doi.org/10.5194/acp-24-8343-2024, 2024
Short summary
Short summary
The 2022 Hunga Tonga–Hunga Ha’apai (HTHH) volcanic eruption not only triggered broad-spectrum atmospheric waves but also generated unusual tsunamis which can generate atmospheric gravity waves (AGWs). Multiple strong atmospheric waves were observed in the far-field area of the 2022 HTHH volcano eruption in the upper atmosphere by a ground-based airglow imager network. AGWs caused by tsunamis can propagate to the mesopause region; there is a good match between atmospheric waves and tsunamis.
This article is included in the Encyclopedia of Geosciences
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
This article is included in the Encyclopedia of Geosciences
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Preprint under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
This article is included in the Encyclopedia of Geosciences
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
This article is included in the Encyclopedia of Geosciences
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
This article is included in the Encyclopedia of Geosciences
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
This article is included in the Encyclopedia of Geosciences
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
This article is included in the Encyclopedia of Geosciences
Panagiotis Pirnaris and Theodoros Sarris
Ann. Geophys., 41, 339–354, https://doi.org/10.5194/angeo-41-339-2023, https://doi.org/10.5194/angeo-41-339-2023, 2023
Short summary
Short summary
The relation between electron, ion and neutral temperatures in the lower thermosphere–ionosphere (LTI) is key to understanding the energy balance and transfer between species. However, their simultaneous measurement is rare in the LTI. Based on data from the AE-C, AE-D, AE-E and DE-2 satellites of the 1970s and 1980s, a large number of events where neutrals are hotter than ions are identified and statistically analyzed. Potential mechanisms that could trigger these events are proposed.
This article is included in the Encyclopedia of Geosciences
Masatoshi Yamauchi and Urban Brändström
Geosci. Instrum. Method. Data Syst., 12, 71–90, https://doi.org/10.5194/gi-12-71-2023, https://doi.org/10.5194/gi-12-71-2023, 2023
Short summary
Short summary
Potential users of all-sky aurora images even include power companies, tourists, and aurora enthusiasts. However, these potential users are normally not familiar with interpreting these images. To make them comprehensive for more users, we developed an automatic evaluation system of auroral activity level. The method involves two steps: first making a simple set of numbers that describes the auroral activity and then further simplifying them into several levels (Level 6 is an auroral explosion).
This article is included in the Encyclopedia of Geosciences
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
This article is included in the Encyclopedia of Geosciences
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
This article is included in the Encyclopedia of Geosciences
Qinzeng Li, Jiyao Xu, Hanli Liu, Xiao Liu, and Wei Yuan
Atmos. Chem. Phys., 22, 12077–12091, https://doi.org/10.5194/acp-22-12077-2022, https://doi.org/10.5194/acp-22-12077-2022, 2022
Short summary
Short summary
We use ground-based airglow network observations, reanalysis data, and satellite observations to explore the propagation process of concentric gravity waves (CGWs) excited by a typhoon between the troposphere, stratosphere, mesosphere, and thermosphere. We find that CGWs in the mesosphere are generated directly by the typhoon but the CGW observed in the thermosphere may be excited by CGW dissipation in the mesosphere, rather than directly excited by a typhoon and propagated to the thermosphere.
This article is included in the Encyclopedia of Geosciences
Carsten Baumann, Antti Kero, Shikha Raizada, Markus Rapp, Michael P. Sulzer, Pekka T. Verronen, and Juha Vierinen
Ann. Geophys., 40, 519–530, https://doi.org/10.5194/angeo-40-519-2022, https://doi.org/10.5194/angeo-40-519-2022, 2022
Short summary
Short summary
The Arecibo radar was used to probe free electrons of the ionized atmosphere between 70 and 100 km altitude. This is also the altitude region were meteors evaporate and form secondary particulate matter, the so-called meteor smoke particles (MSPs). Free electrons attach to these MSPs when the sun is below the horizon and cause a drop in the number of free electrons, which are the subject of these measurements. We also identified a different number of free electrons during sunset and sunrise.
This article is included in the Encyclopedia of Geosciences
Irina Mironova, Miriam Sinnhuber, Galina Bazilevskaya, Mark Clilverd, Bernd Funke, Vladimir Makhmutov, Eugene Rozanov, Michelle L. Santee, Timofei Sukhodolov, and Thomas Ulich
Atmos. Chem. Phys., 22, 6703–6716, https://doi.org/10.5194/acp-22-6703-2022, https://doi.org/10.5194/acp-22-6703-2022, 2022
Short summary
Short summary
From balloon measurements, we detected unprecedented, extremely powerful, electron precipitation over the middle latitudes. The robustness of this event is confirmed by satellite observations of electron fluxes and chemical composition, as well as by ground-based observations of the radio signal propagation. The applied chemistry–climate model shows the almost complete destruction of ozone in the mesosphere over the region where high-energy electrons were observed.
This article is included in the Encyclopedia of Geosciences
David A. Newnham, Mark A. Clilverd, William D. J. Clark, Michael Kosch, Pekka T. Verronen, and Alan E. E. Rogers
Atmos. Meas. Tech., 15, 2361–2376, https://doi.org/10.5194/amt-15-2361-2022, https://doi.org/10.5194/amt-15-2361-2022, 2022
Short summary
Short summary
Ozone (O3) is an important trace gas in the mesosphere and lower thermosphere (MLT), affecting heating rates and chemistry. O3 profiles measured by the Ny-Ålesund Ozone in the Mesosphere Instrument agree with Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) for winter night-time, but autumn twilight SABER abundances are up to 50 % higher. O3 abundances in the MLT from two different SABER channels also show significant differences for both autumn twilight and summer daytime.
This article is included in the Encyclopedia of Geosciences
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
This article is included in the Encyclopedia of Geosciences
Daniel K. Whiter, Hanna Sundberg, Betty S. Lanchester, Joshua Dreyer, Noora Partamies, Nickolay Ivchenko, Marco Zaccaria Di Fraia, Rosie Oliver, Amanda Serpell-Stevens, Tiffany Shaw-Diaz, and Thomas Braunersreuther
Ann. Geophys., 39, 975–989, https://doi.org/10.5194/angeo-39-975-2021, https://doi.org/10.5194/angeo-39-975-2021, 2021
Short summary
Short summary
This paper presents an analysis of high-resolution optical and radar observations of a phenomenon called fragmented aurora-like emissions (FAEs) observed close to aurora in the high Arctic. The observations suggest that FAEs are not caused by high-energy electrons or protons entering the atmosphere along Earth's magnetic field and are, therefore, not aurora. The speeds of the FAEs and their internal dynamics were measured and used to evaluate theories for how the FAEs are produced.
This article is included in the Encyclopedia of Geosciences
Clayton Cantrall and Tomoko Matsuo
Atmos. Meas. Tech., 14, 6917–6928, https://doi.org/10.5194/amt-14-6917-2021, https://doi.org/10.5194/amt-14-6917-2021, 2021
Short summary
Short summary
This paper presents a new technique to determine temperature in the thermosphere from observations of far ultraviolet radiation emitted by molecular nitrogen. The technique utilizes a ratio of two far ultraviolet spectral channels to capture the thermosphere temperature signal. Applying the technique to NASA GOLD observations results in temperatures that agree well with other thermosphere observations during a geomagnetic disturbance.
This article is included in the Encyclopedia of Geosciences
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
This article is included in the Encyclopedia of Geosciences
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
This article is included in the Encyclopedia of Geosciences
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
This article is included in the Encyclopedia of Geosciences
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
This article is included in the Encyclopedia of Geosciences
Florine Enengl, Noora Partamies, Nickolay Ivchenko, and Lisa Baddeley
Ann. Geophys., 39, 795–809, https://doi.org/10.5194/angeo-39-795-2021, https://doi.org/10.5194/angeo-39-795-2021, 2021
Short summary
Short summary
Energetic particle precipitation has the potential to change the neutral atmospheric temperature at the bottom of the ionosphere. We have searched for events and investigated a possible correlation between lower-ionosphere electron density enhancements and simultaneous neutral temperature changes. Six of the 10 analysed events are associated with a temperature decrease of 10–20K. The events change the chemical composition in the mesosphere, and the temperatures are probed at lower altitudes.
This article is included in the Encyclopedia of Geosciences
Vladimir B. Belakhovsky, Yaqi Jin, and Wojciech J. Miloch
Ann. Geophys., 39, 687–700, https://doi.org/10.5194/angeo-39-687-2021, https://doi.org/10.5194/angeo-39-687-2021, 2021
Short summary
Short summary
The high-latitude ionosphere has a very dynamic structure and causes a negative influence via radio wave propagation on, for example, global positioning system (GPS) signals and satellite communication. In this study, we have determined which type of high-latitude ionosphere disturbance has a stronger influence on GPS signals using a GPS receiver on Svalbard. It is shown that a substorm ionosphere disturbance leads to stronger GPS signal fluctuations than other types of ionosphere disturbances.
This article is included in the Encyclopedia of Geosciences
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
This article is included in the Encyclopedia of Geosciences
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
This article is included in the Encyclopedia of Geosciences
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
This article is included in the Encyclopedia of Geosciences
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Tong Dang, Binzheng Zhang, Jiuhou Lei, Wenbin Wang, Alan Burns, Han-li Liu, Kevin Pham, and Kareem A. Sorathia
Geosci. Model Dev., 14, 859–873, https://doi.org/10.5194/gmd-14-859-2021, https://doi.org/10.5194/gmd-14-859-2021, 2021
Short summary
Short summary
This paper describes a numerical treatment (ring average) to relax the time step in finite-difference schemes when using spherical and cylindrical coordinates with axis singularities. The ring average is used to develop a high-resolution thermosphere–ionosphere coupled community model. The technique is a significant improvement in space weather modeling capability, and it can also be adapted to more general finite-difference solvers for hyperbolic equations in spherical and polar geometries.
This article is included in the Encyclopedia of Geosciences
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
This article is included in the Encyclopedia of Geosciences
Tuomas Häkkilä, Pekka T. Verronen, Luis Millán, Monika E. Szeląg, Niilo Kalakoski, and Antti Kero
Ann. Geophys., 38, 1299–1312, https://doi.org/10.5194/angeo-38-1299-2020, https://doi.org/10.5194/angeo-38-1299-2020, 2020
Short summary
Short summary
The atmospheric impacts of energetic particle precipitation (EPP) can be useful in understanding the uncertainties of measuring the precipitation. Hence, information on how strong of an EPP flux has observable atmospheric impacts is needed. In this study, we find such threshold flux values using odd hydrogen concentrations from both satellite observations and model simulations. We consider the effects of solar proton events and radiation belt electron precipitation in the middle atmosphere.
This article is included in the Encyclopedia of Geosciences
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
This article is included in the Encyclopedia of Geosciences
Jia Jia, Antti Kero, Niilo Kalakoski, Monika E. Szeląg, and Pekka T. Verronen
Atmos. Chem. Phys., 20, 14969–14982, https://doi.org/10.5194/acp-20-14969-2020, https://doi.org/10.5194/acp-20-14969-2020, 2020
Short summary
Short summary
Recent studies have reported up to a 10 % average decrease of lower stratospheric ozone at 20 km altitude following solar proton events (SPEs). Our study uses 49 events that occurred after the launch of Aura MLS (July 2004–now) and 177 events that occurred in the WACCM-D simulation period (Jan 1989–Dec 2012) to evaluate ozone changes following SPEs. The statistical and case-by-case studies show no solid evidence of SPE's direct impact on the lower stratospheric ozone.
This article is included in the Encyclopedia of Geosciences
Xiao Liu, Jiyao Xu, Jia Yue, and Hanli Liu
Atmos. Chem. Phys., 20, 14437–14456, https://doi.org/10.5194/acp-20-14437-2020, https://doi.org/10.5194/acp-20-14437-2020, 2020
Short summary
Short summary
Large wind shears in the mesosphere and lower thermosphere are recognized as a common phenomenon. Simulation and ground-based observations show that the main contributor of large wind shears is gravity waves. We present a method of deriving wind shears induced by gravity waves according to the linear theory and using the global temperature observations by SABER (Sounding of the Atmosphere using Broadband Emission Radiometry). Our results agree well with observations and model simulations.
This article is included in the Encyclopedia of Geosciences
Patrick Mungufeni, Sripathi Samireddipalle, Yenca Migoya-Orué, and Yong Ha Kim
Ann. Geophys., 38, 1203–1215, https://doi.org/10.5194/angeo-38-1203-2020, https://doi.org/10.5194/angeo-38-1203-2020, 2020
Short summary
Short summary
This study developed a model of total electron content (TEC) over the African region. The TEC data were derived from radio occultation measurements done by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. Data during geomagnetically quiet time for the years 2008–2011 and 2013–2017 were binned according to local time, seasons, solar flux level, geographic longitude, and dip latitude. Cubic B splines were used to fit the data for the model.
This article is included in the Encyclopedia of Geosciences
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020, https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Short summary
The paper reports a new finding on space weather effects at around 70–75 ° geographic latitudes. We found that X flares cause an unexpectedly strong ionospheric current driven by solar flares. The effect is as large as a substorm that is known to cause strong auroras and may enhance ongoing substorms. However, it has been overlooked in the past due to the narrow latitudinal range at high latitudes. Since severe magnetic storms often occur with X flares, this may cause geomagnetic hazards.
This article is included in the Encyclopedia of Geosciences
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
This article is included in the Encyclopedia of Geosciences
Sharon Aol, Stephan Buchert, Edward Jurua, and Marco Milla
Ann. Geophys., 38, 1063–1080, https://doi.org/10.5194/angeo-38-1063-2020, https://doi.org/10.5194/angeo-38-1063-2020, 2020
Short summary
Short summary
Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. In this paper, we compared simultaneous observations of plasma plumes by the JULIA radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory, and irregularities observed in situ by Swarm to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground.
This article is included in the Encyclopedia of Geosciences
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
This article is included in the Encyclopedia of Geosciences
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
This article is included in the Encyclopedia of Geosciences
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
This article is included in the Encyclopedia of Geosciences
Niilo Kalakoski, Pekka T. Verronen, Annika Seppälä, Monika E. Szeląg, Antti Kero, and Daniel R. Marsh
Atmos. Chem. Phys., 20, 8923–8938, https://doi.org/10.5194/acp-20-8923-2020, https://doi.org/10.5194/acp-20-8923-2020, 2020
Short summary
Short summary
Effects of solar proton events (SPEs) on middle atmosphere chemistry were studied using the WACCM-D chemistry–climate model, including an improved representation of lower ionosphere ion chemistry. This study includes 66 events in the years 1989–2012 and uses a statistical approach to determine the impact of the improved chemistry scheme. The differences shown highlight the importance of ion chemistry in models used to study energetic particle precipitation.
This article is included in the Encyclopedia of Geosciences
Sam Tuttle, Betty Lanchester, Björn Gustavsson, Daniel Whiter, Nickolay Ivchenko, Robert Fear, and Mark Lester
Ann. Geophys., 38, 845–859, https://doi.org/10.5194/angeo-38-845-2020, https://doi.org/10.5194/angeo-38-845-2020, 2020
Short summary
Short summary
Electric fields in the atmosphere near dynamic aurora are important in the physics of the electric circuit within the Earth's magnetic field. Oxygen ions emit light as they move under the influence of these electric fields; the flow of this emission is used to find the electric field at high temporal resolution. The solution needs two other simultaneous measurements of auroral emissions to give key parameters such as the auroral energy. The electric fields increase with brightness of the aurora.
This article is included in the Encyclopedia of Geosciences
Pekka T. Verronen, Daniel R. Marsh, Monika E. Szeląg, and Niilo Kalakoski
Ann. Geophys., 38, 833–844, https://doi.org/10.5194/angeo-38-833-2020, https://doi.org/10.5194/angeo-38-833-2020, 2020
Short summary
Short summary
This paper is the first to study how the representation of the magnetic-local-time (MLT) dependency of electron precipitation impacts middle-atmospheric-ozone response on monthly timescales. We use a state-of-the-art chemistry–climate model with detailed lower-ionospheric chemistry for an advanced representation of atmospheric impacts of electron forcing. We find that the use of daily zonal-mean electron forcing will provide an accurate ozone response in long-term climate simulations.
This article is included in the Encyclopedia of Geosciences
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020, https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary
Short summary
Although not the primary mission of the Swarm three-satellite constellation, the sensors on these satellites are accurate enough to measure the melting and accumulation of Earth’s ice reservoirs, precipitation cycles, floods, and droughts, amongst others. Swarm sees these changes well compared to the dedicated GRACE satellites at spatial scales of roughly 1500 km. Swarm confirms most GRACE observations, such as the large ice melting in Greenland and the wet and dry seasons in the Amazon.
This article is included in the Encyclopedia of Geosciences
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
This article is included in the Encyclopedia of Geosciences
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
This article is included in the Encyclopedia of Geosciences
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
This article is included in the Encyclopedia of Geosciences
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
This article is included in the Encyclopedia of Geosciences
Sharon Aol, Stephan Buchert, and Edward Jurua
Ann. Geophys., 38, 243–261, https://doi.org/10.5194/angeo-38-243-2020, https://doi.org/10.5194/angeo-38-243-2020, 2020
Short summary
Short summary
During the night, in the F region, equatorial ionospheric irregularities manifest as plasma depletions observed by satellites and may cause radio signals to fluctuate. We checked the distribution traits of ionospheric F-region irregularities in the low latitudes using 16 Hz electron density observations made by the faceplate onboard Swarm satellites. Using the high-resolution faceplate data, we were able to identify ionospheric irregularities of scales of only a few hundred metres.
This article is included in the Encyclopedia of Geosciences
Masatoshi Yamauchi
Ann. Geophys., 37, 1197–1222, https://doi.org/10.5194/angeo-37-1197-2019, https://doi.org/10.5194/angeo-37-1197-2019, 2019
Short summary
Short summary
Terrestrial ion transport and total escape are synthesized, with stress on the high-latitude polar region and the inner magnetosphere where Custer significantly improved knowledge. After estimating the outflow flux and destinations, complicated ion dynamics in the inner magnetosphere was classified and summarized, through which more than half the O+ is finally lost to space. Together with direct escapes, total O+ escape is high enough to influence the evolution of the biosphere.
This article is included in the Encyclopedia of Geosciences
Anasuya Aruliah, Matthias Förster, Rosie Hood, Ian McWhirter, and Eelco Doornbos
Ann. Geophys., 37, 1095–1120, https://doi.org/10.5194/angeo-37-1095-2019, https://doi.org/10.5194/angeo-37-1095-2019, 2019
Short summary
Short summary
Winds near the top of the atmosphere are expected to be the same at all heights for a given location by assuming high viscosity in rarefied gases. However, wind measurements from satellite drag at 350–400 km altitude were found to be up to 2 times larger than optical measurements at ∼240 km. Satellites provide global measurements, and ground-based FPIs provide long-term monitoring at single sites. So we must understand this inconsistency to model and predict atmospheric behaviour correctly.
This article is included in the Encyclopedia of Geosciences
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
This article is included in the Encyclopedia of Geosciences
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
This article is included in the Encyclopedia of Geosciences
Costel Bunescu, Joachim Vogt, Octav Marghitu, and Adrian Blagau
Ann. Geophys., 37, 347–373, https://doi.org/10.5194/angeo-37-347-2019, https://doi.org/10.5194/angeo-37-347-2019, 2019
David A. Newnham, Mark A. Clilverd, Michael Kosch, Annika Seppälä, and Pekka T. Verronen
Atmos. Meas. Tech., 12, 1375–1392, https://doi.org/10.5194/amt-12-1375-2019, https://doi.org/10.5194/amt-12-1375-2019, 2019
Short summary
Short summary
A simulation study has been carried out to investigate the potential for observing ozone and hydroxyl radical abundances in the mesosphere and lower thermosphere using ground-based passive microwave radiometry. In the polar middle atmosphere these chemical species respond strongly to geomagnetic activity associated with space weather. The results show that measuring diurnal variations in ozone and hydroxyl from high-latitude Northern Hemisphere and Antarctic locations would be possible.
This article is included in the Encyclopedia of Geosciences
Xinhua Wei, Chunlin Cai, Henri Rème, Iannis Dandouras, and George Parks
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-124, https://doi.org/10.5194/angeo-2018-124, 2018
Revised manuscript not accepted
Short summary
Short summary
Observations of flapping current sheet in the magnetotail are presented to reveal their intrinsic excitation mechanism induced by alternating north-south asymmetric ion populations in the sheet center. The results suggest that nonadiabatic ions play a substantial role to determine current sheet dynamics, both its bulk mechanical instability and current profiles.
This article is included in the Encyclopedia of Geosciences
Tarique A. Siddiqui, Astrid Maute, Nick Pedatella, Yosuke Yamazaki, Hermann Lühr, and Claudia Stolle
Ann. Geophys., 36, 1545–1562, https://doi.org/10.5194/angeo-36-1545-2018, https://doi.org/10.5194/angeo-36-1545-2018, 2018
Short summary
Short summary
Extreme meteorological events such as SSWs induce variabilities in the ionosphere by modulating the atmospheric tides, and these variabilities can be comparable to a moderate geomagnetic storm. The equatorial electrojet (EEJ) is a narrow ribbon of current flowing over the dip equator in the ionosphere and is particularly sensitive to tidal changes. In this study, we use ground-magnetic measurements to investigate the semidiurnal solar and lunar tidal variabilities of the EEJ during SSWs.
This article is included in the Encyclopedia of Geosciences
Gabriel Giono, Boris Strelnikov, Heiner Asmus, Tristan Staszak, Nickolay Ivchenko, and Franz-Josef Lübken
Atmos. Meas. Tech., 11, 5299–5314, https://doi.org/10.5194/amt-11-5299-2018, https://doi.org/10.5194/amt-11-5299-2018, 2018
Short summary
Short summary
Energetic photons, such as ultraviolet light, are able to eject electrons from a material surface, thus creating an electrical current, also called a photocurrent. A proper estimation of this photocurrent can be crucial for space- or rocket-borne particle detectors, as it can dominate over the currents that are of scientific interest (induced by charged particles, for example). This article outlines the design for photocurrent modelling and for experimental confirmation in a laboratory.
This article is included in the Encyclopedia of Geosciences
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
This article is included in the Encyclopedia of Geosciences
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
This article is included in the Encyclopedia of Geosciences
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
This article is included in the Encyclopedia of Geosciences
Chao Xiong, Claudia Stolle, and Jaeheung Park
Ann. Geophys., 36, 679–693, https://doi.org/10.5194/angeo-36-679-2018, https://doi.org/10.5194/angeo-36-679-2018, 2018
Erkki Kyrölä, Monika E. Andersson, Pekka T. Verronen, Marko Laine, Simo Tukiainen, and Daniel R. Marsh
Atmos. Chem. Phys., 18, 5001–5019, https://doi.org/10.5194/acp-18-5001-2018, https://doi.org/10.5194/acp-18-5001-2018, 2018
Short summary
Short summary
In this work we compare three key constituents of the middle atmosphere (ozone, NO2, and NO3) from the GOMOS satellite instrument with the WACCM model. We find that in the stratosphere (below 50 km) ozone differences are very small, but in the mesosphere large deviations are found. GOMOS and WACCM NO2 agree reasonably well except in the polar areas. These differences can be connected to the solar particle storms. For NO3, WACCM results agree with GOMOS with a very high correlation.
This article is included in the Encyclopedia of Geosciences
Libin Weng, Jiuhou Lei, Eelco Doornbos, Hanxian Fang, and Xiankang Dou
Ann. Geophys., 36, 489–496, https://doi.org/10.5194/angeo-36-489-2018, https://doi.org/10.5194/angeo-36-489-2018, 2018
Short summary
Short summary
Thermospheric mass density from the GOCE satellite for Sun-synchronous orbits between 83.5° S and 83.5° N normalized to 270 km during 2009–2013 has been used to develop our GOCE model at dawn/dusk local solar time sectors based on the empirical orthogonal function (EOF) method. We find that both amplitude and phase of the seasonal variations have strong latitudinal and solar activity dependences, and the annual asymmetry and effect of the Sun–Earth distance vary with latitude and solar activity.
This article is included in the Encyclopedia of Geosciences
Quang Thai Trinh, Manfred Ern, Eelco Doornbos, Peter Preusse, and Martin Riese
Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, https://doi.org/10.5194/angeo-36-425-2018, 2018
Masatoshi Yamauchi and Rikard Slapak
Ann. Geophys., 36, 1–12, https://doi.org/10.5194/angeo-36-1-2018, https://doi.org/10.5194/angeo-36-1-2018, 2018
Short summary
Short summary
Extraction of the solar wind kinetic energy (∆K) by mass loading of escaping O+ is modelled in the exterior cusp and plasma mantle of the Earth. We found ∆K proportional to mass flux of escaping ions and square of solar wind velocity, but independent to the other parameters. The amount is sufficient to power the cusp field-aligned currents, further enhancing ion escape through Joule heating of the ionospheric ions, completing positive feedback to enhance escape with geomagnetic activities.
This article is included in the Encyclopedia of Geosciences
Audrey Schillings, Hans Nilsson, Rikard Slapak, Masatoshi Yamauchi, and Lars-Göran Westerberg
Ann. Geophys., 35, 1341–1352, https://doi.org/10.5194/angeo-35-1341-2017, https://doi.org/10.5194/angeo-35-1341-2017, 2017
Short summary
Short summary
The Earth's atmosphere is constantly losing ions and in particular oxygen ions. This phenomenon is important to understand the atmospheric evolution on a large timescale. In this study, the O+ outflow is estimated during six extreme geomagnetic storms using the European Cluster mission data. These estimations are compared with average magnetospheric conditions and show that during those six extreme storms, the O+ outflow is approximately 2 orders of magnitude higher.
This article is included in the Encyclopedia of Geosciences
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
This article is included in the Encyclopedia of Geosciences
Nickolay Ivchenko, Nicola M. Schlatter, Hanna Dahlgren, Yasunobu Ogawa, Yuka Sato, and Ingemar Häggström
Ann. Geophys., 35, 1143–1149, https://doi.org/10.5194/angeo-35-1143-2017, https://doi.org/10.5194/angeo-35-1143-2017, 2017
Short summary
Short summary
Photo-electrons and secondary electrons from particle precipitation enhance the incoherent scatter plasma line to levels sufficient for detection. A plasma line gives an accurate measure of the electron density and can be used to estimate electron temperature. The occurrence of plasma line enhancements in the EISCAT Svalbard Radar data was investigated. During summer daytime hours the plasma line is detectable in up to 90 % of the data. In winter time the occurrence is a few percent.
This article is included in the Encyclopedia of Geosciences
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
This article is included in the Encyclopedia of Geosciences
Rikard Slapak, Maria Hamrin, Timo Pitkänen, Masatoshi Yamauchi, Hans Nilsson, Tomas Karlsson, and Audrey Schillings
Ann. Geophys., 35, 869–877, https://doi.org/10.5194/angeo-35-869-2017, https://doi.org/10.5194/angeo-35-869-2017, 2017
Short summary
Short summary
The ion total transports in the near-Earth plasma sheet have been investigated and quantified. Specifically, the net O+ transport is about 1024 s−1 in the earthward direction, which is 1 order of magnitude smaller than the typical O+ ionospheric outflows, strongly indicating that most outflow will eventually escape, leading to significant atmospheric loss. The study also shows that low-velocity flows (< 100 km s−1) dominate the mass transport in the near-Earth plasma sheet.
This article is included in the Encyclopedia of Geosciences
Katja Matthes, Bernd Funke, Monika E. Andersson, Luke Barnard, Jürg Beer, Paul Charbonneau, Mark A. Clilverd, Thierry Dudok de Wit, Margit Haberreiter, Aaron Hendry, Charles H. Jackman, Matthieu Kretzschmar, Tim Kruschke, Markus Kunze, Ulrike Langematz, Daniel R. Marsh, Amanda C. Maycock, Stergios Misios, Craig J. Rodger, Adam A. Scaife, Annika Seppälä, Ming Shangguan, Miriam Sinnhuber, Kleareti Tourpali, Ilya Usoskin, Max van de Kamp, Pekka T. Verronen, and Stefan Versick
Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, https://doi.org/10.5194/gmd-10-2247-2017, 2017
Short summary
Short summary
The solar forcing dataset for climate model experiments performed for the upcoming IPCC report is described. This dataset provides the radiative and particle input of solar variability on a daily basis from 1850 through to 2300. With this dataset a better representation of natural climate variability with respect to the output of the Sun is provided which provides the most sophisticated and comprehensive respresentation of solar variability that has been used in climate model simulations so far.
This article is included in the Encyclopedia of Geosciences
Rikard Slapak, Audrey Schillings, Hans Nilsson, Masatoshi Yamauchi, Lars-Göran Westerberg, and Iannis Dandouras
Ann. Geophys., 35, 721–731, https://doi.org/10.5194/angeo-35-721-2017, https://doi.org/10.5194/angeo-35-721-2017, 2017
Short summary
Short summary
In this study, we have used Cluster satellite data to quantify the ionospheric oxygen ion (O+) escape into the solar wind and its dependence on geomagnetic activity. During times of high activity, the escape may be 2 orders of magnitude higher than under quiet conditions, strongly suggesting that the escape rate was much higher when the Sun was young. The results are important for future studies regarding atmospheric loss over geological timescales.
This article is included in the Encyclopedia of Geosciences
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 35, 629–638, https://doi.org/10.5194/angeo-35-629-2017, https://doi.org/10.5194/angeo-35-629-2017, 2017
Short summary
Short summary
In this paper we describe a novel way to approximate the decomposition of magnetospheric ultra low-frequency (ULF) wave power in key azimuthal wavenumbers m, which is a parameter describing the number of azimuthal wavelengths that fit within a particle drift orbit. This is a critical parameter that is required in estimates of the rates of radial diffusion, and we show for the first time that there is a local time and geomagnetic activity dependence in the distribution of power in wavenumbers m.
This article is included in the Encyclopedia of Geosciences
Yunxia Yuan, Nickolay Ivchenko, Gunnar Tibert, Marin Stanev, Jonas Hedin, and Jörg Gumbel
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-91, https://doi.org/10.5194/amt-2017-91, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The paper presents a method to determine altitude profile of atmospheric density, temperature and wind by means of analysing the reconstructed trajectory of a rigid falling sphere released from a sounding rocket. The trajectory reconstruction is achieved by post-flight analysis of GPS raw data gathered in the sphere. A comparison of the results with independent measurements is presented, with good agreement of the falling sphere results with other sources in the stratosphere.
This article is included in the Encyclopedia of Geosciences
Hanna Dahlgren, Betty S. Lanchester, Nickolay Ivchenko, and Daniel K. Whiter
Ann. Geophys., 35, 493–503, https://doi.org/10.5194/angeo-35-493-2017, https://doi.org/10.5194/angeo-35-493-2017, 2017
Short summary
Short summary
Pulsating aurora are ubiquitous events that constitute a large amount of energy transfer to the ionosphere. Still there are unsolved issues regarding their formation. Using high-resolution optical and radar data, we find that it is the flux of high-energy electrons that get reduced during the OFF period of the pulsations. We also report on dips in brightness at the transition between ON and OFF, and asymmetric rise and fall times, which may have implications for understanding the pulsations.
This article is included in the Encyclopedia of Geosciences
Hanna Dahlgren, Nicola M. Schlatter, Nickolay Ivchenko, Lorenz Roth, and Alexander Karlsson
Ann. Geophys., 35, 475–479, https://doi.org/10.5194/angeo-35-475-2017, https://doi.org/10.5194/angeo-35-475-2017, 2017
Short summary
Short summary
Anomalous strong echoes with three frequency peaks are occasionally seen with incoherent scatter radars in the ionosphere near 200 km altitude at high latitudes. We investigate how they relate to electron precipitation, by finding the resulting peak electron density and the height of the peak, respectively. We find that occurrence rate increases with density and decreases with height, indicating a correlation between the echoes and precipitating electrons with high energy and energy flux.
This article is included in the Encyclopedia of Geosciences
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
This article is included in the Encyclopedia of Geosciences
Xuguang Cai, Tao Yuan, and Han-Li Liu
Ann. Geophys., 35, 181–188, https://doi.org/10.5194/angeo-35-181-2017, https://doi.org/10.5194/angeo-35-181-2017, 2017
Short summary
Short summary
Atmospheric gravity waves play highly important roles in the dynamic and chemical processes in the upper atmosphere. To assess their magnitude, continuous full diurnal cycle measurements of temperature perturbations are necessary. In this paper we have calculated the large-scale gravity wave modulations between 85 and 99 km altitude based on the measurements by a unique Na lidar at Utah State University in the month of September from 2011 to 2015. The waves with period of 3–5 h dominate.
This article is included in the Encyclopedia of Geosciences
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
This article is included in the Encyclopedia of Geosciences
Hermann Lühr, Tao Huang, Simon Wing, Guram Kervalishvili, Jan Rauberg, and Haje Korth
Ann. Geophys., 34, 901–915, https://doi.org/10.5194/angeo-34-901-2016, https://doi.org/10.5194/angeo-34-901-2016, 2016
Short summary
Short summary
ESA's constellation mission Swarm makes it possible for the first time to determine field-aligned currents (FACs) reliably in the ionosphere. FACs are able to transport energy from the solar wind to the Earth and heat the upper atmosphere. Here we investigate FAC structures that have been missed by previous satellite missions. Most of them are found poleward of the northern light zone. The energy sources seem to be located on the nightside of Earth about 100 000 km away.
This article is included in the Encyclopedia of Geosciences
Tamás Kovács, John M. C. Plane, Wuhu Feng, Tibor Nagy, Martyn P. Chipperfield, Pekka T. Verronen, Monika E. Andersson, David A. Newnham, Mark A. Clilverd, and Daniel R. Marsh
Geosci. Model Dev., 9, 3123–3136, https://doi.org/10.5194/gmd-9-3123-2016, https://doi.org/10.5194/gmd-9-3123-2016, 2016
Short summary
Short summary
This study was completed on D-region atmospheric model development. The sophisticated 3-D Whole Atmosphere Community Climate Model (WACCM) and the 1-D Sodynkalä Ion and Neutral Chemistry Model (SIC) were combined in order to provide a detailed, accurate model (WACCM-SIC) that considers the processes taking place in solar proton events. The original SIC model was reduced by mechanism reduction, which provided an accurate sub-mechanism (rSIC, WACCM-rSIC) of the original model.
This article is included in the Encyclopedia of Geosciences
Davide Masutti, Günther March, Aaron J. Ridley, and Jan Thoemel
Ann. Geophys., 34, 725–736, https://doi.org/10.5194/angeo-34-725-2016, https://doi.org/10.5194/angeo-34-725-2016, 2016
Short summary
Short summary
The Global Ionosphere Thermosphere Model has been validated against flight data. The validation shows a linear dependency of the neutral density values with respect to the solar activity. In particular, the thermosphere model shows an over-predicting or under-predicting behaviour under high or low solar activity respectively. The reasons for such behaviour can be attributed to an erroneous implementation of the chemical processes or the gas transport properties in the model.
This article is included in the Encyclopedia of Geosciences
Theodore E. Sarris and Xinlin Li
Ann. Geophys., 34, 565–571, https://doi.org/10.5194/angeo-34-565-2016, https://doi.org/10.5194/angeo-34-565-2016, 2016
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
This article is included in the Encyclopedia of Geosciences
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
This article is included in the Encyclopedia of Geosciences
E. Lee, G. K. Parks, S. Y. Fu, M. Fillingim, Y. B. Cui, J. Hong, I. Dandouras, and H. Rème
Ann. Geophys., 33, 1263–1269, https://doi.org/10.5194/angeo-33-1263-2015, https://doi.org/10.5194/angeo-33-1263-2015, 2015
K. Konstantinidis and T. Sarris
Geosci. Model Dev., 8, 2967–2975, https://doi.org/10.5194/gmd-8-2967-2015, https://doi.org/10.5194/gmd-8-2967-2015, 2015
Short summary
Short summary
The 2nd & 3rd adiabatic invariants (in particular their proxies I & L*) are commonly used to characterize charged particle motion in a magnetic field. However care should be taken when calculating them, as the assumption of their conservation is not valid everywhere in the Earth’s magnetosphere. In this paper we compare calculations of I and L* using LANLstar, SPENVIS, IRBEM and a 3D particle tracer, and we map the areas in the Earth’s magnetosphere where I & L* can be assumed to be conserved.
This article is included in the Encyclopedia of Geosciences
N. M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, and T. Grydeland
Ann. Geophys., 33, 837–844, https://doi.org/10.5194/angeo-33-837-2015, https://doi.org/10.5194/angeo-33-837-2015, 2015
Short summary
Short summary
The high-latitude ionosphere is a dynamic region where particle precipitation leads to various phenomena including wave instability and turbulence. Anomalous echoes related to aurora are observed in ground-based radar observations of the ionosphere. These echoes indicate enhanced ion acoustic fluctuations. In this article, we show that the origin of the echo is located in or close to the region of particle precipitation and that the echo region itself is limited to hundreds of meters.
This article is included in the Encyclopedia of Geosciences
J. Park, H. Lühr, C. Stolle, G. Malhotra, J. B. H. Baker, S. Buchert, and R. Gill
Ann. Geophys., 33, 829–835, https://doi.org/10.5194/angeo-33-829-2015, https://doi.org/10.5194/angeo-33-829-2015, 2015
Short summary
Short summary
Though high-latitude plasma convection has been monitored with a number of methods, more independent measurements are still warranted. In this study we introduce an automatic method to estimate along-track plasma drift velocity in the high-latitude ionosphere using the Swarm constellation. The obtained velocity is in qualitative agreement with Super Dual Auroral Radar Network (SuperDARN) data. The method can be generalized to any satellite constellations in pearls-on-a-string configurations.
This article is included in the Encyclopedia of Geosciences
T. Živković, S. Buchert, P. Ritter, L. Palin, and H. Opgenoorth
Ann. Geophys., 33, 623–635, https://doi.org/10.5194/angeo-33-623-2015, https://doi.org/10.5194/angeo-33-623-2015, 2015
Short summary
Short summary
In this paper we analyze 21 conjunctions between the Cluster and CHAMP satellites while they were passing magnetic cusp during relatively quiet solar activity. Only three of the conjunctions reveal field-aligned currents on both satellites as well as neutral density enhancement in the thermosphere. Poynting and electron energy fluxes (EEF) as well as Joule heating were computed and the conclusion is that for these weak events EEF has the strongest contribution to the observed density increase.
This article is included in the Encyclopedia of Geosciences
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
This article is included in the Encyclopedia of Geosciences
G. K. Parks, E. Lee, S. Y. Fu, M. Fillingim, I. Dandouras, Y. B. Cui, J. Hong, and H. Rème
Ann. Geophys., 33, 333–344, https://doi.org/10.5194/angeo-33-333-2015, https://doi.org/10.5194/angeo-33-333-2015, 2015
Short summary
Short summary
Ions from Earth's ionosphere continually escape into space. This article examines ions escaping the auroral oval, a region in the polar region of Earth where auroras occur. Previous works have shown that ionospheric ions escape during active auroras, and more as the intensity of the aurora increases. In contrast, we have examined times of no auroras and find that ions are still escaping the auroral ionosphere. These escaping ions are an important source of auroral ions in the magnetosphere.
This article is included in the Encyclopedia of Geosciences
T. A. Siddiqui, H. Lühr, C. Stolle, and J. Park
Ann. Geophys., 33, 235–243, https://doi.org/10.5194/angeo-33-235-2015, https://doi.org/10.5194/angeo-33-235-2015, 2015
Short summary
Short summary
This paper presents the long-term observations of lunar tidal signatures in the equatorial electrojet (EEJ) and their relation to stratospheric sudden warming (SSW) events. We propose an approach to estimate the occurrence of SSW events before their direct observations (before 1952) from the magnetic field observations at Huancayo.
This article is included in the Encyclopedia of Geosciences
A. Blagau, G. Paschmann, B. Klecker, and O. Marghitu
Ann. Geophys., 33, 79–91, https://doi.org/10.5194/angeo-33-79-2015, https://doi.org/10.5194/angeo-33-79-2015, 2015
Short summary
Short summary
Rotational discontinuities (RDs) in plasma allow a magnetic connection between different plasma regimes. One of their defining relations describes a balance between changes in plasma mass density and pressure anisotropy. The paper uses the high-time-resolution data from the Cluster satellites to directly test that relation at the terrestrial magnetopause, when standard analysis predicts that this boundary behaves like an RD. The experimental evidence shows that the said relation is not fulfilled
This article is included in the Encyclopedia of Geosciences
M. C. Kelley, F. S. Rodrigues, R. F. Pfaff, and J. Klenzing
Ann. Geophys., 32, 1169–1175, https://doi.org/10.5194/angeo-32-1169-2014, https://doi.org/10.5194/angeo-32-1169-2014, 2014
A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr
Ann. Geophys., 32, 1093–1117, https://doi.org/10.5194/angeo-32-1093-2014, https://doi.org/10.5194/angeo-32-1093-2014, 2014
E. S. Miller, H. Kil, J. J. Makela, R. A. Heelis, E. R. Talaat, and A. Gross
Ann. Geophys., 32, 959–965, https://doi.org/10.5194/angeo-32-959-2014, https://doi.org/10.5194/angeo-32-959-2014, 2014
X. Liu, J. Xu, H.-L. Liu, J. Yue, and W. Yuan
Ann. Geophys., 32, 543–552, https://doi.org/10.5194/angeo-32-543-2014, https://doi.org/10.5194/angeo-32-543-2014, 2014
A. Blagau, I. Dandouras, A. Barthe, S. Brunato, G. Facskó, and V. Constantinescu
Geosci. Instrum. Method. Data Syst., 3, 49–58, https://doi.org/10.5194/gi-3-49-2014, https://doi.org/10.5194/gi-3-49-2014, 2014
R. A. Stoneback and R. A. Heelis
Ann. Geophys., 32, 421–429, https://doi.org/10.5194/angeo-32-421-2014, https://doi.org/10.5194/angeo-32-421-2014, 2014
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 32, 249–261, https://doi.org/10.5194/angeo-32-249-2014, https://doi.org/10.5194/angeo-32-249-2014, 2014
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
W. R. Coley, R. A. Stoneback, R. A. Heelis, and M. R. Hairston
Ann. Geophys., 32, 69–75, https://doi.org/10.5194/angeo-32-69-2014, https://doi.org/10.5194/angeo-32-69-2014, 2014
M. E. Andersson, P. T. Verronen, C. J. Rodger, M. A. Clilverd, and S. Wang
Atmos. Chem. Phys., 14, 1095–1105, https://doi.org/10.5194/acp-14-1095-2014, https://doi.org/10.5194/acp-14-1095-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
P. Kajdič, X. Blanco-Cano, N. Omidi, K. Meziane, C. T. Russell, J.-A. Sauvaud, I. Dandouras, and B. Lavraud
Ann. Geophys., 31, 2163–2178, https://doi.org/10.5194/angeo-31-2163-2013, https://doi.org/10.5194/angeo-31-2163-2013, 2013
J. Klenzing, A. G. Burrell, R. A. Heelis, J. D. Huba, R. Pfaff, and F. Simões
Ann. Geophys., 31, 2147–2156, https://doi.org/10.5194/angeo-31-2147-2013, https://doi.org/10.5194/angeo-31-2147-2013, 2013
N. M. Schlatter, N. Ivchenko, T. Sergienko, B. Gustavsson, and B. U. E. Brändström
Ann. Geophys., 31, 1681–1687, https://doi.org/10.5194/angeo-31-1681-2013, https://doi.org/10.5194/angeo-31-1681-2013, 2013
M. Yamauchi, I. Dandouras, H. Rème, R. Lundin, and L. M. Kistler
Ann. Geophys., 31, 1569–1578, https://doi.org/10.5194/angeo-31-1569-2013, https://doi.org/10.5194/angeo-31-1569-2013, 2013
I. Dandouras
Ann. Geophys., 31, 1143–1153, https://doi.org/10.5194/angeo-31-1143-2013, https://doi.org/10.5194/angeo-31-1143-2013, 2013
N. M. Schlatter, N. Ivchenko, B. Gustavsson, T. Leyser, and M. Rietveld
Ann. Geophys., 31, 1103–1108, https://doi.org/10.5194/angeo-31-1103-2013, https://doi.org/10.5194/angeo-31-1103-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
P. T. Verronen and R. Lehmann
Ann. Geophys., 31, 909–956, https://doi.org/10.5194/angeo-31-909-2013, https://doi.org/10.5194/angeo-31-909-2013, 2013
J. Markkanen, T. Nygrén, M. Markkanen, M. Voiculescu, and A. Aikio
Ann. Geophys., 31, 859–870, https://doi.org/10.5194/angeo-31-859-2013, https://doi.org/10.5194/angeo-31-859-2013, 2013
C. P. Escoubet, J. Berchem, K. J. Trattner, F. Pitout, R. Richard, M. G. G. T. Taylor, J. Soucek, B. Grison, H. Laakso, A. Masson, M. Dunlop, I. Dandouras, H. Reme, A. Fazakerley, and P. Daly
Ann. Geophys., 31, 713–723, https://doi.org/10.5194/angeo-31-713-2013, https://doi.org/10.5194/angeo-31-713-2013, 2013
G. N. Kervalishvili and H. Lühr
Ann. Geophys., 31, 541–554, https://doi.org/10.5194/angeo-31-541-2013, https://doi.org/10.5194/angeo-31-541-2013, 2013
W. Reid, P. Achtert, N. Ivchenko, P. Magnusson, T. Kuremyr, V. Shepenkov, and G. Tibert
Atmos. Meas. Tech., 6, 777–785, https://doi.org/10.5194/amt-6-777-2013, https://doi.org/10.5194/amt-6-777-2013, 2013
Y. L. Zhou, S. Y. Ma, R. S. Liu, H. Luehr, and E. Doornbos
Ann. Geophys., 31, 15–30, https://doi.org/10.5194/angeo-31-15-2013, https://doi.org/10.5194/angeo-31-15-2013, 2013
Cited articles
Aikio, A. T. and Selkälä, A.: Statistical properties of Joule heating rate, electric field and conductances at high latitudes, Ann. Geophys., 27, 2661–2673, https://doi.org/10.5194/angeo-27-2661-2009, 2009. a
Aikio, A. T., Lakkala, T., Kozlovsky, A., and Williams, P. J. S.: Electric
fields and currents of stable drifting auroral arcs in the evening sector,
J. Geophys. Res.-Space, 107, SIA 3–1–SIA 3–14,
https://doi.org/10.1029/2001JA009172, 2002. a
Aikio, A. T., Mursula, K., Buchert, S., Forme, F., Amm, O., Marklund, G., Dunlop, M., Fontaine, D., Vaivads, A., and Fazakerley, A.: Temporal evolution of two auroral arcs as measured by the Cluster satellite and coordinated ground-based instruments, Ann. Geophys., 22, 4089–4101, https://doi.org/10.5194/angeo-22-4089-2004, 2004. a
Aikio, A. T., Vanhamäki, H., Workayehu, A. B., Virtanen, I. I., Kauristie,
K., Juusola, L., Buchert, S., and Knudsen, D.: Swarm Satellite and EISCAT
Radar Observations of a Plasma Flow Channel in the Auroral Oval Near Magnetic
Midnight, J. Geophys. Res.-Space, 123, 5140–5158,
https://doi.org/10.1029/2018JA025409, 2018. a, b
Akasofu, S. I.: Energy coupling between the solar wind and the
magnetosphere., Space Sci. Rev., 28, 121–190,
https://doi.org/10.1007/BF00218810, 1981. a
Akmaev, R. A., Fuller-Rowell, T. J., Wu, F., Forbes, J. M., Zhang,
X., Anghel, A. F., Iredell, M. D., Moorthi, S., and Juang, H. M.:
Tidal variability in the lower thermosphere: Comparison of Whole Atmosphere Model (WAM) simulations with observations from TIMED, Geophys. Res. Lett., 35, L03810, https://doi.org/10.1029/2007GL032584, 2008. a
Aksnes, A., Stadsnes, J., Bjordal, J., Østgaard, N., Vondrak, R. R., Detrick, D. L., Rosenberg, T. J., Germany, G. A., and Chenette, D.: Instantaneous ionospheric global conductance maps during an isolated substorm, Ann. Geophys., 20, 1181–1191, https://doi.org/10.5194/angeo-20-1181-2002, 2002. a
Aksnes, A., Stadsnes, J., Lu, G., Østgaard, N., Vondrak, R. R., Detrick, D. L., Rosenberg, T. J., Germany, G. A., and Schulz, M.: Effects of energetic electrons on the electrodynamics in the ionosphere, Ann. Geophys., 22, 475–496, https://doi.org/10.5194/angeo-22-475-2004, 2004. a
Aksnes, A., Amm, O., Stadsnes, J., Østgaard, N., Germany, G. A., Vondrak, R. R., and Sillanpää, I.: Ionospheric conductances derived from satellite measurements of auroral UV and X-ray emissions, and ground-based electromagnetic data: a comparison, Ann. Geophys., 23, 343–358, https://doi.org/10.5194/angeo-23-343-2005, 2005. a
Albritton, D. L., Dotan, I., Lindinger, W., McFarland, M.,
Tellinghuisen, J., and Fehsenfeld, F. C.: Effects of ion speed
distributions in flow-drift tube studies of ion-neutral reactions, J. Chem. Phys., 66, 410–421, https://doi.org/10.1063/1.433986, 1977. a
Alken, P.: Observations and modeling of the ionospheric gravity and
diamagnetic current systems from CHAMP and Swarm measurements, J. Geophys.
Res., 121, 589–601, https://doi.org/10.1002/2015JA022163, 2016. a
Alken, P. and Maus, S.: Spatio-temporal characterization of the equatorial
electrojet from CHAMP, Orsted, and SAC-C satellite magnetic measurements,
J. Geophys. Res., 112, A09305, https://doi.org/10.1029/2007JA012524, 2007. a
Alken, P., Maute, A., and Richmond, A. D.: The F-Region Gravity and
Pressure Gradient Current Systems: A Review, Space Sci.
Rev., 206, 451–469, https://doi.org/10.1007/s11214-016-0266-z, 2017. a
Amm, O.: Ionospheric elementary current systems in spherical coordinates and
their applications, J. Geomagn. Geoelectr., 49, 947–955, 1997. a
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation
from the ground to the ionosphere using spherical elementary current systems,
Earth Planet. Space, 51, 431–440, https://doi.org/10.1186/BF03352247, 1999. a
Amm, O., Vanhamäki, H., Kauristie, K., Stolle, C., Christiansen, F., Haagmans, R., Masson, A., Taylor, M. G. G. T., Floberghagen, R., and Escoubet, C. P.:
A method to derive maps of ionospheric conductances, currents, and
convection from the Swarm multisatellite mission, J. Geophys.
Res.-Space, 120, 3263–3282, https://doi.org/10.1002/2014JA020154, 2015. a
Anderson, B. J., Korth, H., Waters, C. L., Green, D. L., Merkin, V. G., and
Dyrud, L. P.: Development of large-scale Birkeland currents determined from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, Geophys. Res. Lett., 41, 3017–3025,
https://doi.org/10.1002/2014GL059941, 2014. a
Anderson, J. D.: Fundamentals of aerodynamics, McGraw-Hill, fifth edition, McGraw-Hill Education, 2010. a
Anderson, P. C., Heelis, R. A., and Hanson, W. B.: The ionospheric
signatures of rapid subauroral ion drifts, J. Geophys. Res.-Space, 96, 5785–5792, https://doi.org/10.1029/90JA02651, 1991. a
Andersson, M. E., Verronen, P. T., Marsh, D. R., Päivärinta, S.-M., and Plane, J. M. C.: WACCM-D – Improved modeling of nitric acid and active chlorine during energetic particle precipitation, J. Geophys. Res.-Atmos., 121, 10328–10341, https://doi.org/10.1002/2015JD024173, 2016. a
Andersson, M. E., Verronen, P. T., Marsh, D. R., Seppälä, A.,
Päivärinta, S.-M., Rodger, C. J., Clilverd, M. A., Kalakoski, N., and van de Kamp, M.: Polar Ozone Response to Energetic Particle Precipitation Over Decadal Time Scales: The Role of Medium-Energy Electrons, J. Geophys.
Res.-Atmos., 123, 607–622, https://doi.org/10.1002/2017JD027605, 2018. a
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson,
M. G., Pellat, R., Walker, R. J., Lühr, H., and Paschmann, G.: Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97, 4027–4039, https://doi.org/10.1029/91JA02701, 1992. a
Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R.,
Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W.,
Feldman, W. C., and Gosling, J. T.: Statistical characteristics of
bursty bulk flow events, J. Geophys. Res., 99, 21257–21280,
https://doi.org/10.1029/94JA01263, 1994. a
Angelopoulos, V., McFadden, J. P., Larson, D., Carlson, C. W., Mende,
S. B., Frey, H., Phan, T., Sibeck, D. G., Glassmeier, K.-H.,
Auster, U., Donovan, E., Mann, I. R., Rae, I. J., Russell, C. T.,
Runov, A., Zhou, X.-Z., and Kepko, L.: Tail Reconnection Triggering
Substorm Onset, Science, 321, 931, https://doi.org/10.1126/science.1160495, 2008. a, b
Annadurai, N. M. N., Hamid, N. S. A., Yamazaki, Y., and Yoshikawa, A.:
Investigation of Unusual Solar Flare Effect on the Global Ionospheric
Current System, J. Geophys. Res.-Space, 123,
8599–8609, https://doi.org/10.1029/2018JA025601, 2018. a
Archer, M. O., Horbury, T. S., Brown, P., Eastwood, J. P., Oddy, T. M., Whiteside, B. J., and Sample, J. G.: The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer, Ann. Geophys., 33, 725–735, https://doi.org/10.5194/angeo-33-725-2015, 2015. a
Archer, W. E., Knudsen, D. J., Burchill, J. K., Jackel, B., Donovan, E., Connors, M., and Juusola, L.: Birkeland current boundary flows,
J. Geophys. Res.-Space, 122, 4617–4627,
https://doi.org/10.1002/2016JA023789, 2017. a
Aruliah, A. L., Griffin, E. M., Yiu, H.-C. I., McWhirter, I., and Charalambous, A.: SCANDI – an all-sky Doppler imager for studies of thermospheric spatial structure, Ann. Geophys., 28, 549–567, https://doi.org/10.5194/angeo-28-549-2010, 2010. a
Asikainen, T. and Mursula, K.: Correcting the NOAA/MEPED energetic
electron fluxes for detector efficiency and proton contamination, J. Geophys. Res.-Space, 118, 6500–6510,
https://doi.org/10.1002/jgra.50584, 2013. a
Axford, W. I. and Hines, C. O.: A unifying theory of high-latitude geophysical phenomena and geomagnetic storms, Can. J. Phys., 39, 1433–1464, 1961. a
Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka III, W. C., and
Crowley, G.: Multisensor profiling of a concentric gravity wave event
propagating from the troposphere to the ionosphere, Geophys. Res.
Lett., 42, 7874–7880, https://doi.org/10.1002/2015GL065903, 2015. a
Azeem, I., Walterscheid, R. L., and Crowley, G.: Investigation of Acoustic
Waves in the Ionosphere Generated by a Deep Convection System Using
Distributed Networks of GPS Receivers and Numerical Modeling, Geophys.
Res. Lett., 45, 8014–8021, https://doi.org/10.1029/2018GL078107, 2018. a
Baker, D. N., Mason, G. M., Figueroa, O., Colon, G., Watzin, J. G.,
and Aleman, R. M.: An overview of the Solar, Anomalous, and Magnetospheric
Particle Explorer (SAMPEX) mission, IEEE T. Geosci. Remote, 31, 531–541, https://doi.org/10.1109/36.225519, 1993. a
Balsiger, H., Altwegg, K., Bochsler, P., Eberhardt, P., Fischer, J.,
Graf, S., Jäckel, A., Kopp, E., Langer, U., Mildner, M.,
Müller, J., Riesen, T., Rubin, M., Scherer, S., Wurz, P.,
Wüthrich, S., Arijs, E., Delanoye, S., de Keyser, J., Neefs,
E., Nevejans, D., Rème, H., Aoustin, C., Mazelle, C.,
Médale, J. L., Sauvaud, J. A., Berthelier, J. J., Bertaux, J. L.,
Duvet, L., Illiano, J. M., Fuselier, S. A., Ghielmetti, A. G.,
Magoncelli, T., Shelley, E. G., Korth, A., Heerlein, K., Lauche,
H., Livi, S., Loose, A., Mall, U., Wilken, B., Gliem, F., Fiethe,
B., Gombosi, T. I., Block, B., Carignan, G. R., Fisk, L. A., Waite,
J. H., Young, D. T., and Wollnik, H.: Rosina Rosetta Orbiter
Spectrometer for Ion and Neutral Analysis, Space Sci. Rev., 128,
745–801, https://doi.org/10.1007/s11214-006-8335-3, 2007. a, b
Banks, P.: Collision frequencies and energy transfer. Ions, Planet.
Space Sci., 14, 1105–1122, https://doi.org/10.1016/0032-0633(66)90025-0, 1966. a, b, c
Bates, D. R.: Some problems concerning the terrestrial atmosphere above about the 100 km level, P. R. Soc. London, A253, 451–462,
https://doi.org/10.1098/rspa.1959.0207, 1959. a
Baumgaertner, A. J. G., Seppälä, A., Jöckel, P., and Clilverd, M. A.: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index, Atmos. Chem. Phys., 11, 4521–4531, https://doi.org/10.5194/acp-11-4521-2011, 2011. a
Baumjohann, W.: Ionospheric and field-aligned current systems in the auroral
zone: A concise review, Adv. Space Res., 2, 55–62, 1983. a
Baumjohann, W., Paschmann, G., and Lühr, H.: Characteristics of high‐speed
ion flows in the plasma sheet, J. Geophys. Res., 95, 3801–3809,
https://doi.org/10.1029/JA095iA04p03801, 1990. a
Beaussier, J., Mainguy, A.-M., Olivero, A., and Rolland, R.: In orbit
performance of the Cactus accelerometer (D5B spacecraft), Acta Astronaut.,
4, 1085–1102, https://doi.org/10.1016/0094-5765(77)90008-X, 1977. a
Becker, E.: Direct heating rates associated with gravity wave saturation, J.
Atmos. Terr. Phys., 66, 683–696, 2004. a
Becker, E.: Mean-Flow Effects of Thermal Tides in the Mesosphere and Lower
Thermosphere, J. Atmos. Sci., 74, 2043–2063,
https://doi.org/10.1175/JAS-D-16-0194.1, 2017. a
Beig, G.: Review of mesospheric temperature trends, Rev. Geophys., 41, 1015, https://doi.org/10.1029/2002RG000121, 2003. a
Beig, G., Scheer, J., Mlynczak, M. G., and Keckhut, P.: Overview of the
temperature response in the mesosphere and lower thermosphere to solar
activity, Rev. Geophys., 46, RG3002, https://doi.org/10.1029/2007RG000236, 2008. a
Belakhovsky, V., Pilipenko, V., Murr, D., Fedorov, E., and Kozlovsky, A.: Modulation of the ionosphere by Pc5 waves observed simultaneously by GPS/TEC and EISCAT, Earth Planet. Space, 68, 102,
https://doi.org/10.1186/s40623-016-0480-7, 2016. a
Berger, M. J., Seltzer, S. M., and Maeda, K.: Energy deposition by auroral
electrons in the atmosphere, J. Atmos. Terr. Phys.,
32, 1015–1045, https://doi.org/10.1016/0021-9169(70)90115-7, 1970. a
Bi, Y., Chen, Y., Zhou, R., Yi, M., and Deng, S.: Simulation of the
effect of water-vapor increase on temperature in the stratosphere, Adv.
Atmos. Sci., 28, 832–842, https://doi.org/10.1007/s00376-010-0047-7, 2011. a
Bilitza, D. and Reinisch, B. W.: International Reference Ionosphere 2007:
Improvements and new parameters, Adv. Space Res., 42, 599–609,
https://doi.org/10.1016/j.asr.2007.07.048, 2008. a
Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V.,
Richards, P., McKinnell, L.-A., and Reinisch, B.: The International
Reference Ionosphere 2012 - a model of international collaboration, J. Space Weather Spac., 4, A07, https://doi.org/10.1051/swsc/2014004, 2014. a
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I.,
Reinisch, B., and Huang, X.: International Reference Ionosphere 2016:
From ionospheric climate to real-time weather predictions, Adv. Space Res.
15, 418–429, https://doi.org/10.1002/2016SW001593, 2017. a
Billett, D. D., Hosokawa, K., Grocott, A., Wild, J. A., Aruliah,
A. L., Ogawa, Y., Taguchi, S., and Lester, M.: Multi-Instrument
Observations of Ion-Neutral Coupling in the Dayside Cusp, Geophys.
Res. Lett., 47, e85590, https://doi.org/10.1029/2019GL085590, 2020. a
Birkeland, K.: The norwegian aurora polaris expedition, 1902-03, vol. 1, First Section, Aschehoug and Co., Christiania, 1908. a
Birn, J., Hesse, M., Haerendel, G., Baumjohann, W., and Shiokawa, K.: Flow
braking and the substorm current wedge, J. Geophys. Res., 104,
19895–19903, https://doi.org/10.1029/1999JA900173, 1999. a
Blelly, P.-L., Fontanari, J., Alcayde, D., Wu, J., Blanc, M., and
Hansen, T. L.: Observations of the structure and vertical transport of the polar upper ionosphere with the EISCAT-VHF radar. III - Topside neutral composition and quiet-time temperature, Annales Geophysicae, 10, 394–406, 1992. a
Blelly, P.-L., Lathuillère, C., Emery, B., Lilensten, J., Fontanari, J., and Alcaydé, D.: An extended TRANSCAR model including ionospheric convection: simulation of EISCAT observations using inputs from AMIE, Ann. Geophys., 23, 419–431, https://doi.org/10.5194/angeo-23-419-2005, 2005. a
Blelly, P. L., Alcaydé, D., and van Eyken, A. P.: A new analysis
method for determining polar ionosphere and upper atmosphere characteristics
from ESR data: Illustration with IPY period, J. Geophys.
Res.-Space, 115, A09322, https://doi.org/10.1029/2009JA014876, 2010. a
Blăgău, A. and Vogt, J.: Multipoint field-aligned current estimates
with Swarm, J. Geophys. Res.-Space, 124, 6869–6895,
https://doi.org/10.1029/2018JA026439, 2019. a
Blum, L., Li, X., and Denton, M.: Rapid MeV electron precipitation as observed by SAMPEX/HILT during high-speed stream-driven storms, J.
Geophys. Res.-Space, 120, 3783–3794,
https://doi.org/10.1002/2014JA020633, 2015. a
Brasseur, G. P. and Solomon, S.: Aeronomy of the Middle Atmosphere, Springer,
Dordrecht, 3rd revised and enlarged edn., 2005. a
Brattli, A., Lie-Svendsen, Ø., Svenes, K., Hoppe, U.-P., Strelnikova, I., Rapp, M., Latteck, R., and Friedrich, M.: The ECOMA 2007 campaign: rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer, Ann. Geophys., 27, 781–796, https://doi.org/10.5194/angeo-27-781-2009, 2009. a
Brekke, A. and Hall, C.: Auroral ionospheric quiet summer time conductances,
Annales Geophysicae, 6, 361–375, 1988. a
Bruinsma, S.: The DTM-2013 thermosphere model, J. Space Weather Spac., 5, A1, https://doi.org/10.1051/swsc/2015001, 2015. a
Buchert, S. C.: Entangled dynamos and Joule heating in the Earth's ionosphere, Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, 2020. a
Bunescu, C., Marghitu, O., Constantinescu, D., Narita, Y., Vogt, J., and
Blăgău, A.: Multiscale field-aligned current analyzer, J. Geophys.
Res.-Space, 120, 9563–9577, https://doi.org/10.1002/2015JA021670, 2015. a
Burch, J. L., Reiff, P. H., Menietti, J. D., Heelis, R. A., Hanson,
W. B., Shawhan, S. D., Shelley, E. G., Sugiura, M., Weimer, D. R.,
and Winningham, J. D.: IMF By-dependent plasma flow and Birkeland
currents in the dayside magnetosphere 1. Dynamics Explorer observations,
J. Geophys. Res.-Space, 90, 1577–1594,
https://doi.org/10.1029/JA090iA02p01577, 1985. a
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.:
Magnetospheric Multiscale Overview and Science Objectives, Space Sci.
Rev., 199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016. a
Burchill, J. K., Clemmons, J. H., Knudsen, D. J., Larsen, M., Nicolls, M. J.,
Pfaff, R. F., Rowland, D., and Sangalli, L.: High-latitudeEregion
ionosphere-thermosphere coupling: A comparative study using in situ and
incoherent scatter radar observations, J. Geophys. Res.-Space, 117, A02301, https://doi.org/10.1029/2011JA017175, 2012. a
Burrage, M. D., Skinner, W. R., Marshall, A. R., Hays, P. B.,
Lieberman, R. S., Franke, S. J., Gell, D. A., Ortland, D. A.,
Morton, Y. T., Schmidlin, F. J., Vincent, R. A., and Wu, D. L.:
Comparison of HRDI wind measurements with radar and rocket observations,
Geophys. Res. Lett., 20, 1259–1262, https://doi.org/10.1029/93GL01108, 1993. a
Cabinet Office: National Risk Register Of Civil Emergencies,
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/644968/UK_National_Risk_Register_2017.pdf
(last access: 18 June 2020), 2017. a
Caudal, G. and Blanc, M.: The spatial distribution of magnetospheric
convection electric fields at ionospheric altitudes - A review. I -
Observations, Annales Geophysicae, 1, 519–526, 1983. a
Chappell, C. R.: The terrestrial plasma source: a new perspective in
solar-terrestrialprocesses from Dynamics Explorer., Rev. Geophys.,
26, 229–248, https://doi.org/10.1029/RG026i002p00229, 1988. a
Chartier, A. T., Mitchell, C. N., and Miller, E. S.: Annual Occurrence Rates of
Ionospheric Polar Cap Patches Observed Using Swarm, J. Geophys.
Res.-Space, 123, 2327–2335, https://doi.org/10.1002/2017JA024811, 2018. a
Chaston, C. C., Seki, K., Sakanoi, T., Asamura, K., Hirahara, M., and Carlson, C. W.: Cross-scale coupling in the auroral acceleration region, Geophys. Res. Lett., 38, L20101, https://doi.org/10.1029/2011GL049185, 2011. a
Cheng, M., Tapley, B., Bettadpur, S., and Ries, J.: Determination of
thermospheric winds from grace accelerometer data, Adv.
Astron. Sci., 130, 1181–1192, 2008. a
Chisham, G., Lester, M., Milan, S. E., Freeman, M. P., Bristow,
W. A., Grocott, A., McWilliams, K. A., Ruohoniemi, J. M., Yeoman,
T. K., Dyson, P. L., Greenwald, R. A., Kikuchi, T., Pinnock, M.,
Rash, J. P. S., Sato, N., Sofko, G. J., Villain, J. P., and Walker,
A. D. M.: A decade of the Super Dual Auroral Radar Network (SuperDARN):
scientific achievements, new techniques and future directions, Surv.
Geophys., 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8, 2007. a
Chu, X., Yu, Z., Fong, W., Chen, C., Zhao, J., Barry, I. F., Smith, J. A., Lu, X., Huang, W., and Gardner, C. S.: From Antarctica lidar discoveries to OASIS exploration, EPJ Web of Conferences, 119, 12001,
https://doi.org/10.1051/epjconf/201611912001, 2016. a
Clilverd, M. A., Rodger, C. J., Thomson, N. R., Brundell, J. B.,
Ulich, T., Lichtenberger, J., Cobbett, N., Collier, A. B., Menk,
F. W., SeppäLä, A., Verronen, P. T., and Turunen, E.: Remote
sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic)
Deposition-VLF Atmospheric Research Konsortium network, Adv. Space Res., 7, 04001, https://doi.org/10.1029/2008SW000412, 2009. a
Codrescu, M., J. Fuller-Rowell, T., and Foster, J.: On the importance of
E-field variability for Joule heating in the high-latitude thermosphere, Geophys. Res. Lett. 22, 2393–2396,
https://doi.org/10.1029/95GL01909, 1995. a, b
Codrescu, M. V., Fuller-Rowell, T. J., Roble, R. G., and Evans, D. S.: Medium energy particle precipitation influences on the mesosphere and lower thermosphere, J. Geophys. Res., 102, 19977–19988, 1997. a
Connor, H. K., Raeder, J., Sibeck, D. G., and Trattner, K. J.:
Relation between cusp ion structures and dayside reconnection for four IMF
clock angles: OpenGGCM-LTPT results, J. Geophys. Res.-Space, 120, 4890–4906, https://doi.org/10.1002/2015JA021156, 2015. a
Coster, A., Williams, J., Weatherwax, A., Rideout, W., and Herne, D.: Accuracy of GPS total electron content: GPS receiver bias temperature
dependence, Radio Sci., 48, 190–196, https://doi.org/10.1002/rds.20011, 2013. a
Coster, A. J., Gaposchkin, E. M., and Thornton, L. E.: Real-time
ionospheric monitoring system using GPS, Navigation, 39, 191–204, 1992. a
Cousins, E. D. P. and Shepherd, S. G.: A dynamical model of high-latitude convection derived from SuperDARN plasma drift measurements, J. Geophys. Res.-Space, 115, A12329,
https://doi.org/10.1029/2010JA016017, 2010. a
Cousins, E. D. P., Matsuo, T., and Richmond, A. D.: Mapping high-latitude
ionospheric electrodynamics with SuperDARN and AMPERE, J.
Geophys. Res.-Space, 120, 5854–5870,
https://doi.org/10.1002/2014JA020463, 2015. a, b
Cowley, S. W. H. and Lockwood, M.: Excitation and decay of solar wind-driven
flows in the magnetosphere-ionophere system, Annales Geophysicae, 10,
103–115, 1992. a
Coxon, J. C., Milan, S. E., and Anderson, B. J.: A revies of Birkeland
current research using AMPERE, in: Electric currents in Geospace and
beyond, edited by: Keiling, A., Marghiu, O., and Wheatland, M., Geophysical
Monograph 235, 257–278, AGU and Wiley, Washington, D.C.,
https://doi.org/10.1002/9781119324522.ch16, 2018. a
Crooker, N. U.: Dayside merging and cusp geometry, J. Geophys.
Res.-Space, 84, 951–959, https://doi.org/10.1029/JA084iA03p00951, 1979. a
Cummings, W. D. and Dessler, A. J.: Field-aligned currents in the
magnetosphere, J. Geophys. Res., 72, 1007–1013, 1967. a
Curto, J. J., Amory-Mazaudier, C., Torta, J. M., and Menvielle, M.:
Solar flare effects at Ebre: Regular and reversed solar flare effects,
statistical analysis (1953 to 1985), a global case study and a model of
elliptical ionospheric currents, J. Geophys. Res., 99,
3945–3954, https://doi.org/10.1029/93JA02270, 1994. a
Dahlgren, H., Lanchester, B. S., Ivchenko, N., and Whiter, D. K.:
Electrodynamics and energy characteristics of aurora at high resolution by
optical methods, J. Geophys. Res.-Space, 121,
5966–5974, https://doi.org/10.1002/2016JA022446, 2016. a
Dalgarno, A., McDowell, M. R. C., and Williams, A.: The Mobilities of
Ions in Unlike Gases, Philos. T. R. Soc.
Lond., 250, 411–425, https://doi.org/10.1098/rsta.1958.0002, 1958. a
Damiani, A., Funke, B., Santee, M. L., Cordero, R. R., and Watanabe, S.:
Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere, Geophys. Res. Lett., 43, 3554–3562,
https://doi.org/10.1002/2016GL068279, 2016. a
Dandouras, I., Yamauchi, M., De Keyser, J., Marghitu, O., Rème,
H., Yoshikawa, I., Sakanoi, T., and the ESCAPE proposal team: ESCAPE: a mission proposal for ESA-M5 to systematically study Exosphere and atmospheric escape using European, Japanese, and US instruments, in: ISAS Symposium, S10-001, 9–10 January 2018
Sagamihara, Kanagawa, Japan, https://repository.exst.jaxa.jp/dspace/handle/a-is/876320,
2018 (in Japanese with English abstract). a
Dandouras, I., Blanc, M., Fossati, L., Gerasimov, M., Guenther,
E. W., Kislyakova, K. G., Lammer, H., Lin, Y., Marty, B., Mazelle,
C., Rugheimer, S., Scherf, M., Sotin, M., Sproß, L., Tachibana,
S., Wurz, P., and Yamauchi, M.: Future Missions related to the
determination of the elemental and isotopic composition of Earth, Moon and
planets, Space Sci. Rev., 216, 121, https://doi.org/10.1007/s11214-020-00736-0,
2020. a
Danilov, A.: Ionospheric F-region response to geomagnetic disturbances,
Adv. Space Res., 52, 343–366,
https://doi.org/10.1016/j.asr.2013.04.019, 2013. a
Dautermann, T., Calais, E., and Mattioli, G. S.: Global Positioning
System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat, J. Geophys. Res.-Sol. Ea., 114, B02202,
https://doi.org/10.1029/2008JB005722, 2009. a
de Jesus, R., Fagundes, P., Coster, A., Bolaji, O., Sobral, J., Batista, I.,
de Abreu, A., Venkatesh, K., Gende, M., Abalde, J., and Sumod, S.: Effects of the intense geomagnetic storm of September–October 2012 on the
equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle, J. Atmos.
Sol.-Terr. Phy., 138–139, 93–105,
https://doi.org/10.1016/j.jastp.2015.12.015, 2016. a
Deng, W., Killeen, T. L., Burns, A. G., and Roble, R. G.: The flywheel effect: ionospheric currents after a geomagneic storm, Geophys. Res. Lett., 18, 1845–1848, 1991. a
Deng, W., Killeen, T. L., Burns, A. G., Roble, R. G., Slavin, J., and Wharton, L.: The effects of neutral inertia on ionospheric currents in the
high-latitude thermosphere following a geomagneic storm, J. Geophys. Res.,
98, 7775–7790, 1993. a
Dhadly, M. S., Meriwether, J., Conde, M., and Hampton, D.: First ever
cross comparison of thermospheric wind measured by narrow- and wide-field
optical Doppler spectroscopy, J. Geophys. Res.-Space, 120, 9683–9705, https://doi.org/10.1002/2015JA021316, 2015. a
Dombeck, J., Cattell, C., Prasad, N., Meeker, E., Hanson, E., and
McFadden, J.: Identification of Auroral Electron Precipitation Mechanism
Combinations and Their Relationships to Net Downgoing Energy and Number
Flux, J. Geophys. Res.-Space, 123, 10064–10089,
https://doi.org/10.1029/2018JA025749, 2018. a
Doornbos, E., Klinkrad, H., and Visser, P.: Use of two-line element data for thermosphere neutral density model calibration, Adv. Space
Res., 41, 1115–1122, https://doi.org/10.1016/j.asr.2006.12.025, 2008. a
Doornbos, E., van den IJssel, J., Lühr, H., Foerster, M.,
Koppenwallner, G., Bruinsma, S., Sutton, E., Forbes, J. M., Marcos, F., and Perosanz, F.: Neutral Density and Crosswind Determination from Arbitrarily Oriented Multiaxis Accelerometers on Satellites, J. Spacecraft Rockets, 47, 580–589, https://doi.org/10.2514/1.48114, 2010. a
Drob, D. P., Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G.,
Skinner, W., Hays, P., Niciejewski, R. J., Larsen, M., She, C. Y.,
Meriwether, J. W., Hernandez, G., Jarvis, M. J., Sipler, D. P., Tepley,
C. A., O'Brien, M. S., Bowman, J. R., Wu, Q., Murayama, Y., Kawamura, S.,
Reid, I. M., and Vincent, R. A.: An empirical model of the Earth's
horizontal wind fields: HWM07, J. Geophys.Res.-Space, 113, A12304, https://doi.org/10.1029/2008JA013668, 2008. a
Drob, D. P., Emmert, J. T., Meriwether, J. W., Makela, J. J., Doornbos, E.,
Conde, M., Hernandez, G., Noto, J., Zawdie, K. A., McDonald, S. E., Huba,
J. D., and Klenzing, J. H.: An update to the Horizontal Wind Model
(HWM): The quiet time thermosphere, Earth Space Sci., 2, 301–319, https://doi.org/10.1002/2014EA000089, 2015. a, b
Dungey, J. W.: Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Lett., 6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961. a, b
Dunlop, M. W., Balogh, A., Glassmeier, K.-H., and Robert, P.: Four-point
Cluster application of magnetic field analysis tools: The Curlometer,
J. Geophys. Res.-Space, 107, 1384, https://doi.org/10.1029/2001JA005088, 2002. a
Durgonics, T., Komjathy, A., Verkhoglyadova, O., Shume, E. B., Benzon, H.-H.,
Mannucci, A. J., Butala, M. D., Høeg, P., and Langley, R. B.:
Multiinstrument observations of a geomagnetic storm and its effects on the
Arctic ionosphere: A case study of the 19 February 2014 storm, Radio Sci., 52, 146–165, https://doi.org/10.1002/2016RS006106, 2017. a
Eastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L.,
Codrescu, M., Correira, J. T., Daniell, R. E., England, S. L., Evans, J. S.,
Harvey, J., Krywonos, A., Lumpe, J. D., Richmond, A. D., Rusch, D. W.,
Siegmund, O., Solomon, S. C., Strickland, D. J., Woods, T. N., Aksnes, A.,
Budzien, S. A., Dymond, K. F., Eparvier, F. G., Martinis, C. R., and
Oberheide, J.: The Global-Scale Observations of the Limb and Disk (GOLD)
Mission, Space Sci. Rev., 212, 383–408, https://doi.org/10.1007/s11214-017-0392-2,
2017. a
Elphic, R. C., Bonnell, J. W., Strangeway, R. J., Kepko, L., Ergun, R. E.,
McFadden, J. P., Carlson, C. W., Peria, W., Cattell, C. A., Klumpar, D.,
Shelley, E., Peterson, W., Möbius, E., Kistler, L., and Pfaff, R.: The
auroral current circuit and field-aligned currents observed by FAST,
Geophys. Res. Lett., 25, 2033–2036, 1998. a
Emmert, J. T., Picone, J. M., and Meier, R. R.: Thermospheric global average
density trends, 1967–2007, derived from orbits of 5000 near-Earth objects,
Geophys. Res. Lett., 35, L05101, https://doi.org/10.1029/2007GL032809,
2008. a
Emmert, J. T., Stevens, M. H., Bernath, P. F., Drob, D. P., and
Boone, C. D.: Observations of increasing carbon dioxide concentration in
Earth's thermosphere, Nat. Geosci., 5, 868–871,
https://doi.org/10.1038/ngeo1626, 2012. a
Engebretson, M. J., Posch, J. L., Capman, N. S. S., Campuzano, N. G.,
Bělik, P., Allen, R. C., Vines, S. K., Anderson, B. J., Tian,
S., Cattell, C. A., Wygant, J. R., Fuselier, S. A., Argall, M. R.,
Lessard, M. R., Torbert, R. B., Moldwin, M. B., Hartinger, M. D.,
Kim, H., Russell, C. T., Kletzing, C. A., Reeves, G. D., and
Singer, H. J.: MMS, Van Allen Probes, GOES 13, and Ground-Based
Magnetometer Observations of EMIC Wave Events Before, During, and After a
Modest Interplanetary Shock, J. Geophys. Res.-Space, 123, 8331–8357, https://doi.org/10.1029/2018JA025984, 2018. a
ESA: Swarm Data Access, available at: http://swarm-diss.eo.esa.int, last access: 22 February 2021.
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction
The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Executive Office of the President of the United States: National Space
Weather Strategy and Action Plan,
https://aerospace.org/sites/default/files/2019-03/Natl_Space_Weather_Strategy_Mar19.pdf (last access: 22 February 2021), 2019. a
Faircloth, E.: Community Earth System Model CESM2, available at: http://www.cesm.ucar.edu/models/cesm2/, last access: 22 February 2021.
Fedrizzi, M., Fuller-Rowell, T. J., and Codrescu, M. V.: Global Joule heating
index derived from thermospheric density physics-based modeling and
observations, Adv. Space Res, 10, S03001, https://doi.org/10.1029/2011SW000724, 2012. a
Finlay, C. C., Olsen, N., Kotsiaros, S., Gillet, N., and Tøffner-Clausen,
L.: Recent geomagnetic secular variation from Swarm and ground
observatories as estimated in the CHAOS-6 geomagnetic field model, Earth
Planet. Space, 68, 112, https://doi.org/10.1186/s40623-016-0486-1, 2016. a
Fok, M.-C., Moore, T. E., Wilson, G. R., Perez, J. D., Zhang, X. X., Brandt,
P. C., Mitchell, D. G., Roelof, E. C., Jahn, J.-M., Pollock, C. J., and Wolf,
R. A.: Global ENA IMAGE Simulations, in: Magnetospheric Imaging —
The Image Prime Mission, edited by: Burch, J. L.,
Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-010-0027-7_5, 77–103, 2003. a
Follestad, A. F., Clausen, L. B. N., Miloch, W. J., van den Ijssel, J., and
Haagmans, R.: Two dimensional reconstruction of ionospheric plasma density
variations using Swarm, Adv. Space Res., 18, e2019SW002406,
https://doi.org/10.1029/2019SW002406, 2020. a, b
Fomichev, V. I., Shved, G. M., and Kutepov, A. A.: Radiative cooling of the 30 – 110 km atmospheric layer., J. Atmos. Terr. Phy., 48, 529–544, https://doi.org/10.1016/0021-9169(86)90087-5, 1986. a
Foster, J. C.: An empirical electric field model derived from Chatanika
radar data, J. Geophys. Res.-Space, 88, 981–988,
https://doi.org/10.1029/JA088iA02p00981, 1983. a
Frey, H. U., Mende, S. B., Angelopoulos, V., and Donovan, E. F.:
Substorm onset observations by IMAGE-FUV, J. Geophys. Res.-Space , 109, A10304, https://doi.org/10.1029/2004JA010607, 2004. a
Friis-Christensen, E., Lühr, H., and Hulot, G.: Swarm: A constellation to
study the Earth's magnetic field, Earth Planet. Space, 58, 351–358, 2006. a
Friis-Christensen, E., Lühr, H., Knudsen, D., and Haagmans, R.:
Swarm – An Earth Observation Mission investigating Geospace, Adv.
Space Res., 41, 210–216, https://doi.org/10.1016/j.asr.2006.10.008, 2008. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Fujii, R., Amm, O., Yoshikawa, A., Ieda, A., and Vanhamäki, H.: Reformulation and energy flow of the Cowling channel, J. Geophys. Res.-Space, 116, A02305, https://doi.org/10.1029/2010JA015,989, 2011. a
Fukizawa, M., Sakanoi, T., Miyoshi, Y., Hosokawa, K., Shiokawa, K.,
Katoh, Y., Kazama, Y., Kumamoto, A., Tsuchiya, F., Miyashita, Y.,
Tanaka, Y. M., Kasahara, Y., Ozaki, M., Matsuoka, A., Matsuda, S., Hikishima, M., Oyama, S., Ogawa, Y., Kurita, S., and Fujii, R.:
Electrostatic Electron Cyclotron Harmonic Waves as a Candidate to Cause
Pulsating Auroras, Geophys. Res. Lett., 45, 12661–12668,
https://doi.org/10.1029/2018GL080145, 2018. a
Fuller-Rowell, T. J.: The Dynamics of the Lower Thermosphere, in: The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, edited by: Johnson, R. M. and Killeen, T. L.,
American Geophysical Union (AGU),, Washington DC, https://doi.org/10.1029/GM087p0023, 23–36, 2013. a
Funke, B., López-Puertas, M., Holt, L., Randall, C. E., Stiller,
G. P., and von Clarmann, T.: Hemispheric distributions and interannual
variability of NOy produced by energetic particle precipitation in
2002–2012, J. Geophys. Res., 119, 13565–13582,
https://doi.org/10.1002/2014JD022423, 2014. a
Galand, M.: Introduction to special section: Proton precipitation into the
atmosphere, J. Geophys. Res., 106, 1–6, https://doi.org/10.1029/2000JA002015, 2001. a
Gallardo-Lacourt, B., Liang, J., Nishimura, Y., and Donovan, E.: On
the Origin of STEVE: Particle Precipitation or Ionospheric Skyglow?,
Geophys. Res. Lett., 45, 7968–7973, https://doi.org/10.1029/2018GL078509,
2018. a
Garcia, R. R., Marsh, D. R., Kinnison, D. E., Boville, B. A., and
Sassi, F.: Simulation of secular trends in the middle atmosphere,
1950-2003, J. Geophys. Res.-Atmos., 112, D09301,
https://doi.org/10.1029/2006JD007485, 2007. a
Garcia-Sage, K., Yue, J., Foster, B., and Solomon, S.: Thermosphere Ionosphere Electrodynamics General Circulation Model, available at: https://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=TIE-GCM, last access: 22 February 2021.
Gardner, C. S. and Liu, A. Z.: Wave-induced transport of atmospheric
constituents and its effect on the mesospheric Na layer, J. Geophys. Res.-Atmos., 115, D20302, https://doi.org/10.1029/2010JD014140, 2010. a
Gardner, L., Sojka, J. J., Schunk, R. W., and Heelis, R.: Changes in
thermospheric temperature induced by high-speed solar wind streams, J. Geophys. Res.-Space, 117, A12303, https://doi.org/10.1029/2012JA017892,
2012. a
Gary, J. B., Heelis, R. A., Hanson, W. B., and Slavin, J. A.: Field-aligned
Poynting Flux observations in the high-latitude ionosphere, J. Geophys. Res.-Space, 99, 11417–11427, https://doi.org/10.1029/93JA03167, 1994. a
Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K.,
Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C. G., McInerny, J., Liu, H.-L.,
Solomon, S. C., Polvani, L. M., Emmons, L. K., Lamarque, J.-F., Richter,
J. H., Glanville, A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B.,
Simpson, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.: The Whole
Atmosphere Community Climate Model Version 6 (WACCM6), J. Geophys.
Res.-Atmos., 124, 12380–12403, https://doi.org/10.1029/2019JD030943, 2019. a
Glocer, A., Fok, M., Meng, X., Toth, G., Buzulukova, N., Chen, S., and Lin, K.: CRCM + BATS-R-US two-way coupling, J. Geophys.
Res.-Space, 118, 1635–1650, https://doi.org/10.1002/jgra.50221, 2013. a
Goldstein, J. and McComas, D. J.: Five Years of Stereo Magnetospheric
Imaging by TWINS, Space Sci. Rev., 180, 39–70,
https://doi.org/10.1007/s11214-013-0012-8, 2013. a
Gordeev, E., Sergeev, V., Honkonen, I., Kuznetsova, M., Rastätter, L.,
Palmroth, M., Janhunen, P., Tóth, G., Lyon, J., and Wiltberger, M.:
Assessing the performance of community-available global MHD models using key system parameters and empirical relationships, Adv. Space Sci., 13, 868–884, https://doi.org/10.1002/2015SW001307, 2015. a
Graf, K. L., Lehtinen, N. G., Spasojevic, M., Cohen, M. B., Marshall,
R. A., and Inan, U. S.: Analysis of experimentally validated
trans-ionospheric attenuation estimates of VLF signals, J.
Geophys. Res.-Space, 118, 2708–2720, https://doi.org/10.1002/jgra.50228, 2013. a
Grandin, M.: Small-Scale Optical Atmospheric Emissions Discovered Using Citizen Science Photography, AGU Advances, 1, e2020AV000268,
https://doi.org/10.1029/2020AV000268, 2020. a
Grandin, M., Aikio, A. T., Kozlovsky, A., Ulich, T., and Raita, T.: Effects of solar wind high-speed streams on the high-latitude ionosphere: Superposed epoch study, J. Geophys. Res.-Space, 120,
10669–10687, https://doi.org/10.1002/2015JA021785, 2015. a, b
Grandin, M., Aikio, A. T., Kozlovsky, A., Ulich, T., and Raita, T.:
Cosmic radio noise absorption in the high-latitude ionosphere during solar
wind high-speed streams, J. Geophys. Res.-Space,
122, 5203–5223, https://doi.org/10.1002/2017JA023923, 2017a. a
Grandin, M., Kero, A., Partamies, N., McKay, D., Whiter, D.,
Kozlovsky, A., and Miyoshi, Y.: Observation of pulsating aurora
signatures in cosmic noise absorption data, Geophys. Res. Lett.,
44, 5292–5300, https://doi.org/10.1002/2017GL073901, 2017b. a
Grandin, M., Aikio, A. T., and Kozlovsky, A.: Properties and
Geoeffectiveness of Solar Wind High-Speed Streams and Stream Interaction
Regions During Solar Cycles 23 and 24, J. Geophys. Res.-Space, 124, 3871–3892, https://doi.org/10.1029/2018JA026396,
2019a. a
Grandin, M., Battarbee, M., Osmane, A., Ganse, U., Pfau-Kempf, Y., Turc, L., Brito, T., Koskela, T., Dubart, M., and Palmroth, M.: Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions, Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, 2019b. a
Grandin, M., Turc, L., Battarbee, M., Ganse, U., Johlander, A.,
Pfau-Kempf, Y., Dubart, M., and Palmroth, M.: Hybrid-Vlasov simulation of auroral proton precipitation in the cusps: Comparison of northward and southward interplanetary magnetic field driving, J. Space Weather Spac., 10, 51, https://doi.org/10.1051/swsc/2020053, 2020. a
Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K.,
Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl,
G. A., Shindell, D., van Geel, B., and White1, W.: Solar influences on
climate, Rev. Geophys., 48, RG4001, https://doi.org/10.1029/2009RG000282, 2010. a
Grebowsky, J. and Bilitza, D.: Sounding rocket data base of E- and D-region ion composition, Adv. Space Res., 25, 183–192,
https://doi.org/10.1016/S0273-1177(99)00916-3, 2000. a
Greenwald, R. A., Baker, K. B., Hutchins, R. A., and Hanuise, C.: An
HF phased-array radar for studying small-scale structure in the high-latitude ionosphere, Radio Sci., 20, 63–79, https://doi.org/10.1029/RS020i001p00063, 1985. a
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B.,
Thomas, E. C., Villain, J. P., Cerisier, J. C., Senior, C., Hanuise, C.,
Hunsucker, R. D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker, A. D. M., Sato, N., and Yamagishi, H.: DARN/SuperDARN, Space Sci. Rev., 71, 761–796, https://doi.org/10.1007/BF00751350, 1995. a
Gumbel, J., Megner, L., Christensen, O. M., Ivchenko, N., Murtagh, D. P., Chang, S., Dillner, J., Ekebrand, T., Giono, G., Hammar, A., Hedin, J., Karlsson, B., Krus, M., Li, A., McCallion, S., Olentšenko, G., Pak, S., Park, W., Rouse, J., Stegman, J., and Witt, G.: The MATS satellite mission – gravity wave studies by Mesospheric Airglow/Aerosol Tomography and Spectroscopy, Atmos. Chem. Phys., 20, 431–455, https://doi.org/10.5194/acp-20-431-2020, 2020. a, b
Haiducek, J. D., Welling, D. T., Ganushkina, N. Y., Morley, S. K., and Ozturk, D. S.: SWMF Global Magnetosphere Simulations of January 2005:
Geomagnetic Indices and Cross-Polar Cap Potential, Adv. Space Res., 15,
1567–1587, https://doi.org/10.1002/2017SW001695, 2017. a
Hairston, M. R. and Heelis, R. A.: Model of the high-latitude ionospheric convection pattern during southward interplanetary magnetic field using DE 2 data, J. Geophys. Res.-Space, 95, 2333–2343,
https://doi.org/10.1029/JA095iA03p02333, 1990. a
Haldoupis, C.: Midlatitude Sporadic E. A Typical Paradigm of
Atmosphere-Ionosphere Coupling, Space Sci. Rev., 168, 441–461,
https://doi.org/10.1007/s11214-011-9786-8, 2012. a
Hanson, W. B., Zuccaro, D. R., Lippincott, C. R., and Sanatani, S.:
The retarding-potential analyzer on Atmosphere Explorer, Radio Sci., 8, 333–339, https://doi.org/10.1029/RS008i004p00333, 1973. a
Hardy, D. A., Schmitt, L. K., Gussenhoven, M. S., Marshall, F. J., and Yeh,
H. C.: Precipitating electron and ion detectors (SSJ/4) for the block
5D/Flights 6-10 DMSP (Defense Meteorological Satellite Program) satellites:
Calibration and data presentation, Tech. rep., Air Force Geophysics Lab Hanscom Afb MA, 1984. a
Hardy, D. A., Gussenhoven, M. S., and Holeman, E.: A statistical model
of auroral electron precipitation, J. Geophys. Res., 90,
4229–4248, https://doi.org/10.1029/JA090iA05p04229, 1985. a
Hardy, D. A., Gussenhoven, M. S., and Brautigam, D.: A statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370–392, https://doi.org/10.1029/JA094iA01p00370, 1989. a
Hargreaves, J. K.: Auroral absorption of HF radio waves in the ionosphere: A review of results from the first decade of riometry., P. IEEE , 57, 1348–1373, 1969. a
He, Z., Yan, Q., Ma, Y., and Cao, Y.: Precipitation loss of Van Allen radiation belt electrons by hiss waves outside the plasmasphere,
Astrophys. Space Sci., 363, 66, https://doi.org/10.1007/s10509-018-3279-0,
2018. a
Heelis, R. and Maute, A.: Challenges to Understanding the Earth's Ionosphere
and Thermosphere, J. Geophys. Res.-Space, 125, e2019JA027497, https://doi.org/10.1029/2019JA027497, 2020. a, b
Heelis, R. A.: The effects of interplanetary magnetic field orientation on
dayside high-latitude ionospheric convection, J. Geophys. Res.-Space, 89, 2873–2880, https://doi.org/10.1029/JA089iA05p02873, 1984. a
Heelis, R. A.: Electrodynamics in the low and middle latitude ionosphere: a
tutorial, J. Atmos. Sol.-Terr. Phy., 66, 825–838,
https://doi.org/10.1016/j.jastp.2004.01.034, 2004. a
Heelis, R. A., Hanson, W. B., and Burch, J. L.: Ion convection velocity reversals in the dayside cleft, J. Geophys. Res., 81, 3803,
https://doi.org/10.1029/JA081i022p03803, 1976. a
Heelis, R. A., Hanson, W. B., Lippincott, C. R., Zuccaro, D. R.,
Harmon, L. H., Holt, B. J., Doherty, J. E., and Power, R. A.: The
Ion Drift Meter for Dynamics Explorer-B., Space Sci. Instr., 5, 511–521, 1981. a
Heelis, R. A., Lowell, J. K., and Spiro, R. W.: A model of the
high-latitude ionospheric convection pattern, J. Geophys.
Res.-Space, 87, 6339–6345, https://doi.org/10.1029/JA087iA08p06339, 1982. a
Heelis, R. A., Reiff, P. H., Winningham, J. D., and Hanson, W. B.:
ionospheric convection signatures observed by DE 2 during northward
interplanetary magnetic field, J. Geophys. Res.-Space, 91, 5817–5830, https://doi.org/10.1029/JA091iA05p05817, 1986. a
Heki, K.: Explosion energy of the 2004 eruption of the Asama Volcano,
central Japan, inferred from ionospheric disturbances, Geophys. Res. Lett., 33, L14303, https://doi.org/10.1029/2006GL026249, 2006. a
Helleputte, T. V. and Visser, P.: CHAMP and GRACE accelerometer calibration by GPS based orbit determination, Adv. Space Res., 43, 1890–1896,
https://doi.org/10.1016/j.asr.2009.02.017, 2009. a
Henderson, M. G., Reeves, G. D., and Murphree, J. S.: Are north-south aligned
auroral structures an ionospheric manifestation of bursty bulk flows?,
Geophys. Res. Lett., 25, 3737–3740, 1998. a
Hendrickx, K., Megner, L., Marsh, D. R., and Smith-Johnsen, C.: Production and transport mechanisms of NO in the polar upper mesosphere and lower thermosphere in observations and models, Atmos. Chem. Phys., 18, 9075–9089, https://doi.org/10.5194/acp-18-9075-2018, 2018. a
Hickey, M. P., Schubert, G., and Walterscheid, R. L.: Acoustic wave
heating of the thermosphere, J. Geophys. Res., 106,
21543–21548, https://doi.org/10.1029/2001JA000036, 2001. a
Hoffman, J. H., Dodson, W. H., Lippincott, C. R., and Hammack, H. D.:
Initial ion composition results from the Isis 2 satellite, J.
Geophys. Res., 79, 4246, https://doi.org/10.1029/JA079i028p04246, 1974. a
Hoffman, R. A.: Dynamics Explorer Program, EOS Transactions, 61, 689–692, https://doi.org/10.1029/EO061i044p00689, 1980. a
Hoilijoki, S., Souza, V. M., Walsh, B. M., Janhunen, P., and Palmroth, M.:
Magnetopause reconnection and energy conversion as influenced by the dipole
tilt and the IMF Bx, J. Geophys. Res.-Space, 119,
4484–4494, https://doi.org/10.1002/2013JA019693, 2014. a
Holt, J. M., Wand, R. H., Evans, J. V., and Oliver, W. L.: Empirical
models for the plasma convection at high latitudes from Millstone Hill
observations, J. Geophys. Res.-Space, 92, 203–212,
https://doi.org/10.1029/JA092iA01p00203, 1987. a
Honkonen, I., RastäTter, L., Grocott, A., Pulkkinen, A.,
Palmroth, M., Raeder, J., Ridley, A. J., and Wiltberger, M.: On the performance of global magnetohydrodynamic models in the Earth's
magnetosphere, Adv. Space Res., 11, 313–326, https://doi.org/10.1002/swe.20055, 2013. a
Huang, C.: Effects of the postsunset vertical plasma drift on the generation
of equatorial spread F, Prog. Earth Planet. Sci., 5, 3,
https://doi.org/10.1186/s40645-017-0155-4, 2018. a
Huang, C.-S., Sofko, G. J., Koustov, A. V., Andre, D. A., Ruohoniemi,
J. M., Greenwald, R. A., and Hairston, M. R.: Evolution of ionospheric
multicell convection during northward interplanetary magnetic field with
|Bz/By|>1, J. Geophys. Res.-Space,
105, 27095–27108, https://doi.org/10.1029/2000JA000163, 2000. a
Huang, T., Lühr, H., and Wang, H.: Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation, Ann. Geophys., 35, 1249–1268, https://doi.org/10.5194/angeo-35-1249-2017, 2017. a
Huba, J. D. and Liu, H. L.: Global Modeling of Equatorial Spread F with
SAMI3/WACCM-X, Geophys. Res. Lett., 47, e88258,
https://doi.org/10.1029/2020GL088258, 2020. a, b
Hysell, D. L., Kelley, M. C., Swartz, W. E., and Woodman, R. F.: Seeding and
layering of equatorial spread F by gravity waves, J. Geophys.
Res.-Space, 95, 17253–17260, https://doi.org/10.1029/JA095iA10p17253,
1990. a
Hysell, D. L., Jafari, R., Fritts, D. C., and Laughman, B.: Gravity wave
effects on postsunset equatorial F region stability, J. Geophys. Res., 119, 5847–5860,
https://doi.org/10.1002/2014JA019990, 2014. a
Ieda, A., Fairfield, D. H., Mukai, T., Saito, Y., Kokubun, S.,
Liou, K., Meng, C. I., Parks, G. K., and Brittnacher, M. J.:
Plasmoid ejection and auroral brightenings, J. Geophys. Res., 106,
3845–3858, https://doi.org/10.1029/1999JA000451, 2001. a
Iijima, T.: Field-aligned currents in geospace: Substance and significance,
in: Magnetospheric current systems, edited by Ohtani, S., Fujii, R., Hesse,
M., and Lysak, R. L., Geophysical Monograph 118, 107–129, AGU,
Washington, D.C., https://doi.org/10.1029/GM118p0107, 2000. a
Iijima, T. and Potemra, T. A.: Large-scale characteristics of
field-aligned currents associated with substorms, J. Geophys.
Res., 83, 599–615, https://doi.org/10.1029/JA083iA02p00599, 1978. a, b
Imber, S. M., Milan, S. E., and Hubert, B.: The auroral and ionospheric flow signatures of dual lobe reconnection, Ann. Geophys., 24, 3115–3129, https://doi.org/10.5194/angeo-24-3115-2006, 2006. a
Immel, T. J., England, S. L., Mende, S. B., Heelis, R. A., Englert, C. R.,
Edelstein, J., Frey, H. U., Korpela, E. J., Taylor, E. R., Craig, W. W.,
Harris, S. E., Bester, M., Bust, G. S., Crowley, G., Forbes, J. M., Gérard,
J.-C., Harlander, J. M., Huba, J. D., Hubert, B., Kamalabadi, F., Makela,
J. J., Maute, A. I., Meier, R. R., Raftery, C., Rochus, P., Siegmund, O.
H. W., Stephan, A. W., Swenson, G. R., Frey, S., Hysell, D. L., Saito, A.,
Rider, K. A., and Sirk, M. M.: The Ionospheric Connection Explorer Mission:
Mission Goals and Design, Space Sci. Rev., 214,
https://doi.org/10.1007/s11214-017-0449-2, 2018. a
Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I., Juusola, L.,
Facskó, G., and Pulkkinen, T. I.: The GUMICS-4 global MHD
magnetosphere-ionosphere coupling simulation, J. Atmos.
Sol.-Terr. Phy., 80, 48–59, https://doi.org/10.1016/j.jastp.2012.03.006,
2012. a, b
Jiang, F., Kivelson, M., Strangeway, R., Khurana, K., and Walker, R.:
Ionospheric flow shear associated with the preexisting auroral arc: A
statistical study from the FAST spacecraft data, J. Geophys. Res.-Space, 120, 5194–5213, https://doi.org/10.1002/2013JA019255, 2015. a
Jin, H., Miyoshi, Y., Pancheva, D., Mukhtarov, P., Fujiwara, H., and Shinagawa, H.: Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole
atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations,
J. Geophys. Res.-Space, 117, A10323,
https://doi.org/10.1029/2012JA017650, 2012. a
Jin, Y., Spicher, A., Xiong, C., Clausen, L. B. N., Kervalishvili, G., Stolle, C., and Miloch, W. J.: Ionospheric Plasma Irregularities Characterized by the Swarm Satellites: Statistics at High Latitudes, J. Geophys. Res.-Space, 124, 1262–1282, https://doi.org/10.1029/2018JA026063, 2019. a, b, c, d
Joshi, P. P., Waldrop, L. S., and Brum, C. G. M.: Ionospheric O+ Momentum
Balance Through Charge Exchange With Thermospheric O Atoms, J.
Geophys. Res.-Space, 123, 9743–9761, https://doi.org/10.1029/2018JA025821, 2018. a
Karlsson, T., Andersson, L., Gillies, D., Lynch, K., Marghitu, O., Partamies,
N., Sivadas, N., and Wu, J.: Quiet, discrete auroral arcs – Observations, Space Sci. Rev., 216, 16, https://doi.org/10.1007/s11214-020-0641-7, 2020. a
Keiling, A., Angelopoulos, V., Runov, A., Weygand, J., Apatenkov,
S. V., Mende, S., McFadden, J., Larson, D., Amm, O., Glassmeier,
K. H., and Auster, H. U.: Substorm current wedge driven by plasma flow
vortices: THEMIS observations, J. Geophys. Res.-Space, 114, A00C22, https://doi.org/10.1029/2009JA014114, 2009. a, b
Keiling, A., Marghiu, O., and Wheatland, M.: Electric currents in
Geospace and beyond, Geophysical Monograph 235, AGU and Wiley, Washigton,
D.C., 2018. a
Kelley, M. C.: The Earth's Ionosphere. Plasma Physics and Electrodynamics,
International Geophysical Series, Academic Press, Amsterdam, San Diego, London, 2009. a
Kelley, M. C., Larsen, M. F., LaHoz, C., and McClure, J. P.: Gravity wave
initiation of equatorial spread F: A case study, J. Geophys.
Res.-Space, 86, 9087–9100, https://doi.org/10.1029/JA086iA11p09087, 1981. a
Kelley, M. C., Knudsen, D. J., and Vickrey, J. F.: Poynting flux
measurements on a satellite: A diagnostic tool for space research, J.
Geophys. Res., 96, 201–207, https://doi.org/10.1029/90JA01837, 1991. a
Kero, A., Enell, C. F., Kavanagh, A. J., Vierinen, J., Virtanen, I., and Turunen, E.: Could negative ion production explain the polar
mesosphere winter echo (PMWE) modulation in active HF heating experiments?, Geophys. Res. Lett., 35, L23102, https://doi.org/10.1029/2008GL035798, 2008. a
Kilcommons, L.: Ovation Pyme – A pure-python implementation of the Ovation Prime 2010 auroral precipitation model, available at: https://github.com/lkilcommons/OvationPyme, last access: 22 February 2021.
Killeen, T. L., Hays, P. B., Carignan, G. R., Heelis, R. A., Hanson, W. B.,
Spencer, N. W., and Brace, L. H.: Ion-neutral coupling in the high-latitude F region: Evaluation of ion heating terms from Dynamics Explorer 2, J. Geophys. Res.-Space, 89, 7495–7508, https://doi.org/10.1029/JA089iA09p07495, 1984. a
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R.,
Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess,
P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A.,
Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res., 112, D20302, https://doi.org/10.1029/2006JD007879, 2007. a
Kintner, P. M., Ledvina, B. M., and de Paula, E. R.: GPS and ionospheric scintillations, Adv. Space Res., 5, 09003, https://doi.org/10.1029/2006SW000260, 2007. a
Kiviranta, J., Pérot, K., Eriksson, P., and Murtagh, D.: An empirical model of nitric oxide in the upper mesosphere and lower thermosphere based on 12 years of Odin SMR measurements, Atmos. Chem. Phys., 18, 13393–13410, https://doi.org/10.5194/acp-18-13393-2018, 2018. a
Knipp, D. J., Emery, B. A., Engebretson, M., Li, X., McAllister, A. H., Mukai, T., Kokubun, S., Reeves, G. D., Evans, D., Obara, T., Pi, X., Rosenberg, T., Weatherwax, A., McHarg, M. G., Chun, F., Mosely, K., Codrescu, M., Lanzerotti, L., Rich, F. J., Sharber, J., and Wilkinson, P.: An overview of the early November 1993 geomagnetic storm, J. Geophys. Res., 103, 26197, https://doi.org/10.1029/98JA00762, 1998. a
Knipp, D. J., Tobiska, W. K., and Emery, B. A.: Direct and Indirect
Thermospheric Heating Sources for Solar Cycles 21–23, Solar Phys., 224,
495–505, https://doi.org/10.1007/s11207-005-6393-4, 2004. a
Knipp, D. J., Welliver, T., McHarg, M. G., Chun, F. K., Tobiska,
W. K., and Evans, D.: Climatology of extreme upper atmospheric heating
events, Adv. Space Res., 36, 2506–2510, https://doi.org/10.1016/j.asr.2004.02.019, 2005. a
Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R.,
Wahlund, J.-E., Öhlen, L., Smith, M., and Moffat, B.: Thermal ion imagers and Langmuir probes in the Swarm electric field instruments, J. Geophys. Res.-Space 122, 2655–2673,
https://doi.org/10.1002/2016JA022571, 2017. a
Kofman, W.: Incoherent Scatter Technique Applied to Study the Terrestrial
Ionosphere and Thermosphere, Phys. Chem. Earth Pt. C, 25,
555–562, https://doi.org/10.1016/S1464-1917(00)00076-3, 2000. a
Kosch, M. J., Yiu, I., Anderson, C., Tsuda, T., Ogawa, Y., Nozawa, S., Aruliah, A., Howells, V., Baddeley, L. J., McCrea, I. W., and Wild, J. A.: Mesoscale observations of Joule heating near an auroral arc and ion-neutral collision frequency in the polar cap E region, J. Geophys. Res.-Space, 116, A05321, https://doi.org/10.1029/2010JA016015, 2011. a, b
Krall, J., Huba, J. D., and Fritts, D. C.: On the seeding of equatorial spread F by gravity waves, Geophys. Res. Lett., 40, 661–664,
https://doi.org/10.1002/GRL.50144, 2013. a
Kyrölä, E., Andersson, M. E., Verronen, P. T., Laine, M., Tukiainen, S., and Marsh, D. R.: Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations, Atmos. Chem. Phys., 18, 5001–5019, https://doi.org/10.5194/acp-18-5001-2018, 2018. a
Laštovička, J., Beig, G., and Marsh, D. R.: Response of the
mesosphere-thermosphere-ionosphere system to global change - CAWSES-II
contribution, Progr. Earth Planet. Sci., 1, 21,
https://doi.org/10.1186/s40645-014-0021-6, 2014. a
Laundal, K. M., Finlay, C. C., Olsen, N., and Reistad, J. P.: Solar Wind and
Seasonal Influence on Ionospheric Currents From Swarm and CHAMP
Measurements, J. Geophys. Res., 123, 4402–4429, https://doi.org/10.1029/2018ja025387, 2018. a
Laštovička, J.: Trends in the upper atmosphere and ionosphere:
Recent progress, J. Geophys. Res.-Space, 118,
3924–3935, https://doi.org/10.1002/jgra.50341, 2013. a
Lean, J. L., Warren, H. P., Mariska, J. T., and Bishop, J.: A new
model of solar EUV irradiance variability 2. Comparisons with empirical
models and observations and implications for space weather, J.
Geophys. Res.-Space, 108, 1059, https://doi.org/10.1029/2001JA009238,
2003. a
Lei, J., Thayer, J. P., Burns, A. G., Lu, G., and Deng, Y.: Wind and
temperature effects on thermosphere mass density response to the November
2004 geomagnetic storm, J. Geophys. Res.-Space, 115, A05303,
https://doi.org/10.1029/2009JA014754, 2010. a, b
Li, W. and Hudson, M. K.: Earth's Van Allen Radiation Belts: From
Discovery to the Van Allen Probes Era, J. Geophys. Res.-Space, 124, 8319–8351, https://doi.org/10.1029/2018JA025940, 2019. a
Lilensten, J., Blelly, P. L., Kofman, W., and Alcaydé, D.: Auroral
ionospheric conductivities: a comparison between experiment and modeling, and theoretical f10.7-dependent model for EISCAT and ESR, Annales
Geophysicae, 14, 1297–1304, https://doi.org/10.1007/s00585-996-1297-7, 1996. a
Lin, S. L. and Bardsley, J. N.: Monte Carlo simulation of ion motion in
drift tubes, J. Chem. Phys., 66, 435–445,
https://doi.org/10.1063/1.433988, 1977. a
Lindsay, B. G., Sieglaff, D. R., Smith, K. A., and Stebbings, R. F.:
Charge transfer of keV O+ ions with atomic oxygen, J.
Geophys. Res.-Space, 106, 8197–8204,
https://doi.org/10.1029/2000JA000437, 2001. a
Liu, A. Z.: Estimate eddy diffusion coefficients from gravity wave vertical momentum and heat fluxes, Geophys. Res. Lett., 36, L08806,
https://doi.org/10.1029/2009GL037495, 2009. a
Liu, H. and Lühr, H.: Strong disturbance of the upper thermospheric density
due to magnetic storms: CHAMP observations, J. Geophys. Res.-Space, 110, A09S29, https://doi.org/10.1029/2004JA010908, 2005. a
Liu, H.-L.: Temperature changes due to gravity wave saturation, J.
Geophys. Res., 105, 12329–12336, 2000. a
Liu, H.-L.: On the large wind shear and fast meridional transport above the
mesopause, Geophys. Res. Lett., 34, https://doi.org/10.1029/2006GL028789,
l08815, 2007. a
Liu, H.-L.: Variability and predictability of the space environment as related to lower atmosphere forcing, Adv. Space Res., 14, 634–658,
https://doi.org/10.1002/2016SW001450, 2016SW001450, 2016. a, b
Liu, H.-L.: Large Wind Shears and Their Implications for Diffusion in Regions
With Enhanced Static Stability: The Mesopause and the Tropopause, J. Geophys. Res.-Atmos., 122, 9579–9590,
https://doi.org/10.1002/2017JD026748, 2017. a
Liu, H.-L.: Day-to-day variability of pre-reversal enhancement in the vertical ion drift in response to large-scale forcing from the lower atmosphere, Adv. Space Res., 18, e2019SW002334, https://doi.org/10.1029/2019SW002334, 2020. a
Liu, H.-L., Foster, B. T., Hagan, M. E., McInerney, J. M., Maute, A., Qian, L., Richmond, A. D., Roble, R. G., Solomon, S. C., Garcia, R. R., Kinnison, D., Marsh, D. R., Smith, A. K., Richter, J., Sassi, F., and Oberheide, J.:
Thermosphere extension of the Whole Atmosphere Community Climate Model,
J. Geophys. Res.-Space, 115, A12302, https://doi.org/10.1029/2010JA015586, 2010. a
Liu, H.-L., McInerney, J. M., Santos, S., Lauritzen, P. H., Taylor, M. A., and Pedatella, N. M.: Gravity waves simulated by high-resolution Whole
Atmosphere Community Climate Model, Geophys. Res. Lett., 41,
9106–9112, https://doi.org/10.1002/2014GL062468, 2014. a
Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G.,
Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., Qian, L.,
Richmond, A. D., Roble, R. G., Solomon, S. C., Vitt, F. M., and Wang, W.:
Development and Validation of the Whole Atmosphere Community
Climate Model With Thermosphere and Ionosphere Extension
(WACCM-X 2.0), J. Adv. Model. Earth Sy., 10,
381–402, https://doi.org/10.1002/2017MS001232, 2018a. a, b
Liu, J., Angelopoulos, V., Chu, X., Zhou, X.-Z., and Yue, C.: Substorm current wedge composition by wedgelets, Geophys. Res. Lett., 42, 1669–1676,
https://doi.org/10.1002/2015GL063289, 2015. a
Liu, J., Angelopoulos, V., Yao, Z., Chu, X., Zhou, X.-Z., and Runov, A.: The
current system of dipolarizing flux bundles and their role as wedgelets in
the substorm current wedge, in: Electric currents in Geospace and beyond,
edited by: Keiling, A., Marghiu, O., and Wheatland, M., Geophysical Monograph 235, pp. 323–337, AGU and Wiley, Washington, D.C.,
https://doi.org/10.1002/9781119324522.ch19, 2018b. a
Lomidze, L., Burchill, J. K., Knudsen, D. J., Kouznetsov, A., and Weimer,
D. R.: Validity Study of the Swarm Horizontal Cross-Track Ion
Drift Velocities in the High-Latitude Ionosphere, Earth Space
Sci., 6, 411–432, https://doi.org/10.1029/2018EA000546, 2019. a
Lorenz, N. E.: Available potential energy and the maintenance of the general
circulation, Tellus, 7, 157–167, https://doi.org/10.1111/j.2153-3490.1955.tb01148.x,
1955. a
Lu, G., Baker, D. N., McPherron, R. L., Farrugia, C. J., Lummerzheim, D.,
Ruohoniemi, J. M., Rich, F. J., Evans, D. S., Lepping, R. P., Brittnacher,
M., Li, X., Greenwald, R., Sofko, G., Villain, J., Lester, M., Thayer, J.,
Moretto, T., Milling, D., Troshichev, O., Zaitzev, A., Odintzov, V., Makarov, G., and Hayashi, K.: Global energy deposition during the January 1997 magnetic cloud event, J. Geophys. Res., 103, 11685,
https://doi.org/10.1029/98JA00897, 1998. a
Lu, G., Richmond, A. D., Lühr, H., and Paxton, L.: High-latitude energy input
and its impact on the thermosphere, J. Geophys. Res.-Space, 121, 7108–7124, https://doi.org/10.1002/2015JA022294, 2016. a
Lühr, H., Rother, M., Köhler, W., Ritter, P., and Grunwaldt, L.:
Thermospheric up-welling in the cusp region: Evidence from CHAMP
observations, Geophys. Res. Lett., 31, L06805, https://doi.org/10.1029/2003GL019314,
2004. a, b
Lühr, H., Park, J., Gjerloev, J. W., Rauberg, J., Michaelis, I., Merayo, J. M. G., and Brauer, P.: Field-aligned currents scale analysis performed with the Swarm constellation, Geophys. Res. Lett., 42, 1–8,
https://doi.org/10.1002/2014gl062453, 2015. a
Lühr, H., Huang, T., Wing, S., Kervalishvili, G., Rauberg, J., and Korth, H.: Filamentary field-aligned currents at the polar cap region during northward interplanetary magnetic field derived with the Swarm constellation, Ann. Geophys., 34, 901–915, https://doi.org/10.5194/angeo-34-901-2016, 2016. a
Lui, A. T. Y.: Comment on “Tail Reconnection Triggering
Substorm Onset”, Science, 324, 1391,
https://doi.org/10.1126/science.1167726, 2009. a
Lühr, H., Kervalishvili, G. N., Stolle, C., Rauberg, J., and Michaelis, I.:
Average Characteristics of Low-Latitude Interhemispheric and F Region Dynamo Currents Deduced From the Swarm Satellite Constellation, J.
Geophys. Res.-Space, 124, https://doi.org/10.1029/2019JA027419, 2019. a
MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M.,
Gallardo-Lacourt, B., Archer, W. E., Spanswick, E. L., Bourassa, N., Connors, M., Heavner, M., Jackel, B., Kosar, B., Knudsen, D. J., Ratzlaff, C., and Schofield, I.: New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere, Sci. Adv., 4, eaaq0030, https://doi.org/10.1126/sciadv.aaq0030, 2018. a, b
Maeda, K.-I.: Mid-latitude Electron Density Profile as Revealed by Rocket
Experiments, J. Geomag. Geoelec., 21, 557–567, 1969. a
Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W.,
Stone, S. W., and Jakosky, B. M.: Structure and composition of the
neutral upper atmosphere of Mars from the MAVEN NGIMS investigation,
Geophys. Res. Lett., 42, 8951–8957, https://doi.org/10.1002/2015GL065329,
2015. a, b
Makela, J. J., Lognonné, P., Hébert, H., Gehrels, T.,
Rolland, L., Allgeyer, S., Kherani, A., Occhipinti, G., Astafyeva, E., Coïsson, P., Loevenbruck, A., Clévédé, E., Kelley, M. C., and Lamouroux, J.: Imaging and modeling the ionospheric
airglow response over Hawaii to the tsunami generated by the Tohoku
earthquake of 11 March 2011, Geophys. Res. Lett., 38, L00G02,
https://doi.org/10.1029/2011GL047860, 2011. a
Manninen, J., Kleimenova, N., Kozlovsky, A., Fedorenko, Y., Gromova, L., and Turunen, T.: Ground-Based Auroral Hiss Recorded in Northern Finland with Reference to Magnetic Substorms, Geophys. Res. Lett., 47, e86285, https://doi.org/10.1029/2019GL086285, 2020. a
March, G., Doornbos, E., and Visser, P.: High-fidelity geometry models for
improving the consistency of CHAMP, GRACE, GOCE and Swarm
thermospheric density data sets, Adv. Space Res., 63, 213–238,
https://doi.org/10.1016/j.asr.2018.07.009, 2019a. a
March, G., Visser, T., Visser, P., and Doornbos, E.: CHAMP and GOCE
thermospheric wind characterization with improved gas-surface interactions
modelling, Adv. Space Res., 64, 1225–1242,
https://doi.org/10.1016/j.asr.2019.06.023, 2019b. a
Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Dunlop, M. W., Wild, J. A., Décréau, P. M. E., Förster, M., Fontaine, D., and Laakso, H.: Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and SuperDARN, Ann. Geophys., 22, 141–158, https://doi.org/10.5194/angeo-22-141-2004, 2004. a
Marchaudon, A., Cerisier, J.-C., Bosqued, J.-M., Owen, C. J., Fazakerley, A. N., and Lahiff, A. D.: On the structure of field-aligned currents in the mid-altitude cusp, Ann. Geophys., 24, 3391–3401, https://doi.org/10.5194/angeo-24-3391-2006, 2006. a
Marchaudon, A., Cerisier, J.-C., Dunlop, M. W., Pitout, F., Bosqued, J.-M., and Fazakerley, A. N.: Shape, size, velocity and field-aligned currents of dayside plasma injections: a multi-altitude study, Ann. Geophys., 27, 1251–1266, https://doi.org/10.5194/angeo-27-1251-2009, 2009. a
Marghitu, O.: Auroral arc electrodynamics: Review and outlook, in:
Relationship between auroral phenomenology and magnetospheric processes:
Earth and oher planets, edited by: Keiling, A., Donovan, E., Bagenal, F.,
and Karlsson, T., Geophysical Monograph 197, pp. 143–158, AGU, Washington,
D.C., https://doi.org/10.1029/2011GM001189, 2012. a
Marghitu, O., Karlsson, T., Klecker, B., Haerendel, G., and McFadden, J. P.:
Auroral arc and oval electrodynamics in the Harang region, J. Geophys. Res.-Space, 114, A03214, https://doi.org/10.1029/2008JA013630, 2009. a
Marghitu, O., Bunescu, C., Karlsson, T., Klecker, B., and Stenbaek-Nielsen,
H. C.: On the divergence of the auroral electrojets, J. Geophys. Res.-Space, 116, A00K17, https://doi.org/10.1029/2011JA016789, 2011. a
Marklund, G. T., Ivchenko, N., Karlsson, T., Fazakerley, A., Dunlop, M.,
Lindqvist, P. A., Buchert, S., Owen, C., Taylor, M., Vaivalds, A., Carter,
P., André, M., and Balogh, A.: Temporal evolution of the electric field
accelerating electrons away from the auroral ionosphere, Nature, 414,
724–727, 2001. a
Marsh, D. R., Solomon, S. C., and Reynolds, A. E.: Empirical model of
nitric oxide in the lower thermosphere, J. Geophys. Res.-Space, 109,
A07301, https://doi.org/10.1029/2003JA010199, 2004. a
Mathews, J.: Sporadic E: current views and recent progress, J.
Atmos. Sol.-Terr. Phy., 60, 413–435,
https://doi.org/10.1016/S1364-6826(97)00043-6, 1998. a
Matsuo, T. and Richmond, A. D.: Effects of high-latitude ionospheric
electric field variability on global thermospheric Joule heating and
mechanical energy transfer rate, J. Geophys. Res.-Space, 113, A07309, https://doi.org/10.1029/2007JA012993, 2008. a
Matthes, K., Funke, B., Andersson, M. E., Barnard, L., Beer, J., Charbonneau, P., Clilverd, M. A., Dudok de Wit, T., Haberreiter, M., Hendry, A., Jackman, C. H., Kretzschmar, M., Kruschke, T., Kunze, M., Langematz, U., Marsh, D. R., Maycock, A. C., Misios, S., Rodger, C. J., Scaife, A. A., Seppälä, A., Shangguan, M., Sinnhuber, M., Tourpali, K., Usoskin, I., van de Kamp, M., Verronen, P. T., and Versick, S.: Solar forcing for CMIP6 (v3.2), Geosci. Model Dev., 10, 2247–2302, https://doi.org/10.5194/gmd-10-2247-2017, 2017. a
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck,
D. G., and Ukhorskiy, A.: Science Objectives and Rationale for the
Radiation Belt Storm Probes Mission, Space Sci. Rev., 179, 3–27,
https://doi.org/10.1007/s11214-012-9908-y, 2013. a
Maute, A. and Richmond, A. D.: F-Region Dynamo Simulations at Low and
Mid-Latitude, Space Sci. Rev., 206, 471–493,
https://doi.org/10.1007/s11214-016-0262-3, 2017. a
McCrea, I., Aikio, A., Alfonsi, L., Belova, E., Buchert, S., Clilverd, M.,
Engler, N., Gustavsson, B., Heinselman, C., Kero, J., Kosch, M., Lamy, H.,
Leyser, T., Ogawa, Y., Oksavik, K., Pellinen-Wannberg, A., Pitout, F., Rapp, M., Stanislawska, I., and Vierinen, J.: The science case for the EISCAT_3D radar, Prog. Earth Planet. Sci., 2, 21, 2015. a
McGranaghan, R., Knipp, D. J., Matsuo, T., and Cousins, E.: Optimal
interpolation analysis of high-latitude ionospheric Hall and Pedersen
conductivities: Application to assimilative ionospheric electrodynamics
reconstruction, J. Geophys. Res.-Space, 121, 4898–4923, https://doi.org/10.1002/2016JA022486, 2016. a
McPherron, R. L.: Magnetospheric substorms., Rev. Geophys., 17, 657–681, https://doi.org/10.1029/RG017i004p00657, 1979. a
McPherron, R. L., Russell, C. T., and Aubry, M. P.: Satellite studies of
magnetospheric substorms on August 15, 1968. 9. Phenomenological model
for substorms, J. Geophys. Res., 78, 3131–3149, 1973. a
Meggs, R. W., Mitchell, C. N., and Spencer, P. S. J.: A comparison of
techniques for mapping total electron content over Europe using GPS signals, Radio Sci., 39, RS1S10, https://doi.org/10.1029/2002RS002846, 2004. a
Mendillo, M.: Storms in the ionosphere: Patterns and processes for total
electron content, Rev. Geophys., 44, RG4001, https://doi.org/10.1029/2005RG000193, 2006. a
Milan, S. E., Clausen, L. B. N., Coxon, J. C., Carter, J. A., Walach,
M. T., Laundal, K., Østgaard, N., Tenfjord, P., Reistad, J.,
Snekvik, K., Korth, H., and Anderson, B. J.: Overview of Solar
Wind-Magnetosphere-Ionosphere-Atmosphere Coupling and the Generation of
Magnetospheric Currents, Space Sci. Rev., 206, 547–573,
https://doi.org/10.1007/s11214-017-0333-0, 2017. a
Miles, D. M., Mann, I. R., Pakhotin, I. P., Burchill, J. K., Howarth, A. D.,
Knudsen, D. J., Lysak, R. L., Wallis, D. D., Cogger, L. L., and Yau, A. W.:
Alfvénic Dynamics and Fine Structuring of Discrete Auroral
Arcs: Swarm and e-POP Observations, Geophys. Res. Lett., 45,
545–555, https://doi.org/10.1002/2017GL076051, 2018. a, b, c
Millward, G. H., Moffett, R. J., Balmforth, H. F., and Rodger, A. S.:
Modeling the ionospheric effects of ion and electron precipitation in the
cusp, J. Geophys. Res., 104, 24603–24612,
https://doi.org/10.1029/1999JA900249, 1999. a
Miyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H.,
Kataoka, R., Ebihara, Y., Kletzing, C., Reeves, G., Santolik, O.,
Clilverd, M., Rodger, C. J., Turunen, E., and Tsuchiya, F.:
Energetic electron precipitation associated with pulsating aurora: EISCAT
and Van Allen Probe observations, J. Geophys. Res.-Space, 120, 2754–2766, https://doi.org/10.1002/2014JA020690, 2015. a
Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N.,
Mitani, T., Kasahara, S., Yokota, S., Kazama, Y., Wang, S.-Y.,
Tam, S. W. Y., Ho, P. T. P., Kasahara, Y., Kasaba, Y., Yagitani,
S., Matsuoka, A., Kojima, H., Katoh, Y., Shiokawa, K., and Seki,
K.: Geospace exploration project ERG, Earth Planet Space, 70, 101,
https://doi.org/10.1186/s40623-018-0862-0, 2018. a
Mlynczak, M. G.: A contemporary assessment of the mesospheric energy
budget, Geophysical Monograph Series, 123, 37–52, American Geophysical Union, Washington DC, https://doi.org/10.1029/GM123p0037, 2000. a
Moen, J. and Brekke, A.: The solar flux influence on quiet time
conductances in the auroral ionosphere, Geophys. Res. Lett., 20, 971–974,
https://doi.org/10.1029/92GL02109, 1993. a
Montenbruck, O. and Rodríguez, B. G.: NeQuick-G performance assessment for space applications, GPS Solutions, 24, 13, https://doi.org/10.1007/s10291-019-0931-2, 2020. a
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J.,
Rasch, P. J., and Zhang, M.: The Mean Climate of the Community
Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments, J. Climate, 26, 5150–5168, https://doi.org/10.1175/JCLI-D-12-00236.1, 2013. a
Newell, P. T., Liou, K., and Wilson, G. R.: Polar cap particle
precipitation and aurora: Review and commentary, J. Atmos. Sol.-Terr. Phy., 71, 199–215, https://doi.org/10.1016/j.jastp.2008.11.004,
2009. a
Newell, P. T., Sotirelis, T., and Wing, S.: Diffuse, monoenergetic, and
broadband aurora: The global precipitation budget, J. Geophys.
Res.-Space, 114, A09207, https://doi.org/10.1029/2009JA014326, 2009. a
Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J., and Mitchell,
E. J.: OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels, Adv. Space Res., 12, 368–379, https://doi.org/10.1002/2014SW001056,
2014. a
Nicolls, M. J., Bahcivan, H., Häggström, I., and Rietveld, M.: Direct measurement of lower thermospheric neutral density using
multifrequency incoherent scattering, Geophys. Res. Lett., 41,
8147–8154, https://doi.org/10.1002/2014GL062204, 2014. a
Nishimura, Y., Lyons, L. R., Zou, Y., Oksavik, K., Moen, J. I., Clausen, L. B., Donovan, E. F., Angelopoulos, V., Shiokawa, K., Ruohoniemi, J. M., Nishitani, N., McWilliams, K. A., and Lester, M.: Day-night coupling by a localized flow channel visualized by polar cap patch propagation, Geophys. Res. Lett., 41, 3701–3709, https://doi.org/10.1002/2014GL060301, 2014. a
Nishioka, M., Tsugawa, T., Kubota, M., and Ishii, M.: Concentric waves and
short-period oscillations observed in the ionosphere after the 2013 Moore
EF5 tornado, Geophys. Res. Lett., 40, 5581–5586,
https://doi.org/10.1002/2013GL057963, 2013. a
Nishitani, N., Ruohoniemi, J. M., Lester, M., Baker, J. B. H.,
Koustov, A. V., Shepherd, S. G., Chisham, G., Hori, T., Thomas,
E. G., Makarevich, R. A., Marchaudon, A., Ponomarenko, P., Wild,
J. A., Milan, S. E., Bristow, W. A., Devlin, J., Miller, E.,
Greenwald, R. A., Ogawa, T., and Kikuchi, T.: Review of the
accomplishments of mid-latitude Super Dual Auroral Radar Network (SuperDARN)
HF radars, Prog. Earth Planet. Sci., 6, 27,
https://doi.org/10.1186/s40645-019-0270-5, 2019. a, b
Noja, M., Stolle, C., Park, J., and Lühr: Long term analysis of ionospheric polar patches based on CHAMP TEC data, Radio Sci., 48, 289–301 https://doi.org/10.1002/rds.20033, 2013. a, b
Norberg, J., Roininen, L., Vierinen, J., Amm, O., McKay-Bukowski, D., and Lehtinen, M.: Ionospheric tomography in Bayesian framework with
Gaussian Markov random field priors, Radio Sci., 50, 138–152,
https://doi.org/10.1002/2014RS005431, 2015. a
Norberg, J., Vierinen, J., Roininen, L., Orispaa, M., Kauristie, K., Rideout, W. C., Coster, A. J., and Lehtinen, M. S.: Gaussian Markov Random Field Priors in Ionospheric 3-D Multi-Instrument Tomography, IEEE T. Geosci. Remote, 56, 7009–7021, https://doi.org/10.1109/TGRS.2018.2847026, 2018. a
Nygrén, T., Lanchester, B. S., Jalonen, L., and Huuskonen, A.: A method
for determining ion-neutral collision frequency using radar measurements of
ion velocity in two directions, Planet. Space Sci., 37, 493–502,
https://doi.org/10.1016/0032-0633(89)90126-8, 1989. a, b
Nygrén, T., Aikio, A. T., Kuula, R., and Voiculescu, M.: Electric fields
and neutral winds from monostatic incoherent scatter measurements by means of stochastic inversion, J. Geophys. Res.-Space, 116, A05305,
https://doi.org/10.1029/2010JA016347, 2011. a
Ohtani, S., Fujii, R., Hesse, M., and Lysak, R. L., eds.: Magnetospheric
current systems, Geophysical Mooograph 118, AGU, Washigton, D.C., 2000. a
Oksavik, K., Moen, J., and Carlson, H. C.: High-resolution observations of the
small-scale flow pattern associated with a poleward moving auroral form in
the cusp, Geophys. Res. Lett., 31, L11807, https://doi.org/10.1029/2004GL019838, 2004. a
Olsen, N.: Ionospheric F Region Currents at Middle and Low Latitudes
Estimated From Magsat Data, J. Geophys. Res., 102, 4563–4576, 1997. a
Olsen, N. and Stolle, C.: Satellite Geomagnetism, Annu. Rev. Earth Planet.
Sci., 40, 441–465, https://doi.org/10.1146/annurev-earth-042711-105540, 2012. a
Omidi, N. and Sibeck, D. G.: Flux transfer events in the cusp,
Geophysical Research Letters, 34, L04106, https://doi.org/10.1029/2006GL028698, 2007. a
Omidi, N., Thorne, R., and Bortnik, J.: Hybrid simulations of EMIC waves
in a dipolar magnetic field, J. Geophys. Res.-Space, 116, A09231, https://doi.org/10.1029/2011JA016511, 2011. a
Orsini, S., Daglis, I. A., Candidi, M., Hsieh, K. C., Livi, S., and
Wilken, B.: Model calculation of energetic neutral atoms precipitation at
low altitudes, J. Geophys. Res., 99, 13489–13498,
https://doi.org/10.1029/93JA03270, 1994. a
Oyama, S., Kurihara, J., Watkins, B. J., Tsuda, T. T., and Takahashi,
T.: Temporal variations of the ion-neutral collision frequency from EISCAT
observations in the polar lower ionosphere during periods of geomagnetic
disturbances, J. Geophys. Res.-Space, 117, A05308,
https://doi.org/10.1029/2011JA017159, 2012. a
Päivärinta, S.-M., Verronen, P. T., Funke, B., Gardini, A.,
Seppälä, A., and Andersson, M. E.: Transport versus energetic
particle precipitation: Northern polar stratospheric NOx and ozone in January-March 2012, J. Geophys. Res.-Atmos., 121, 6085–6100,
https://doi.org/10.1002/2015JD024217, 2016. a
Pakhotin, I. P., Mann, I. R., Lysak, R. L., Knudsen, D. J., Gjerloev,
J. W., Rae, I. J., Forsyth, C., Murphy, K. R., Miles, D. M., Ozeke,
L. G., and Balasis, G.: Diagnosing the Role of Alfvén Waves in
Magnetosphere-Ionosphere Coupling: Swarm Observations of Large Amplitude
Nonstationary Magnetic Perturbations During an Interval of Northward IMF,
J. Geophys. Res.-Space, 123, 326–340, https://doi.org/10.1002/2017JA024713, 2018. a, b
Pakhotin, I. P., Mann, I. R., Knudsen, D. J., Lysak, R. L., and
Burchill, J. K.: Diagnosing the Role of Alfvén Waves in Global
Field-Aligned Current System Dynamics During Southward IMF: Swarm
Observations, J. Geophys. Res.-Space, 125, e27277,
https://doi.org/10.1029/2019JA027277, 2020. a, b
Palmroth, M., Laakso, H., Fejer, B. G., and Pfaff, R. F.: DE 2
observations of morningside and eveningside plasma density depletions in the equatorial ionosphere, J. Geophys. Res., 105, 18429–18442,
https://doi.org/10.1029/1999JA005090, 2000. a
Palmroth, M., Pulkkinen, T. I., Janhunen, P., and Wu, C. C.: Stormtime energy transfer in global MHD simulation, J. Geophys. Res.-Space, 108, 1048, https://doi.org/10.1029/2002JA009446, 2003. a, b
Palmroth, M., Janhunen, P., Pulkkinen, T. I., and Koskinen, H. E. J.: Ionospheric energy input as a function of solar wind parameters: global MHD simulation results, Ann. Geophys., 22, 549–566, https://doi.org/10.5194/angeo-22-549-2004, 2004. a
Palmroth, M., Janhunen, P., Pulkkinen, T. I., Aksnes, A., Lu, G., Østgaard, N., Watermann, J., Reeves, G. D., and Germany, G. A.: Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis, Ann. Geophys., 23, 2051–2068, https://doi.org/10.5194/angeo-23-2051-2005, 2005. a, b, c
Palmroth, M., Janhunen, P., Germany, G., Lummerzheim, D., Liou, K., Baker, D. N., Barth, C., Weatherwax, A. T., and Watermann, J.: Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations, Ann. Geophys., 24, 861–872, https://doi.org/10.5194/angeo-24-861-2006, 2006a. a
Palmroth, M., Laitinen, T. V., and Pulkkinen, T. I.: Magnetopause energy and mass transfer: results from a global MHD simulation, Ann. Geophys., 24, 3467–3480, https://doi.org/10.5194/angeo-24-3467-2006, 2006b. a
Palmroth, M., Janhunen, P., and Pulkkinen, T. I.: Hysteresis in solar wind
power input to the magnetosphere, Geophys. Res. Lett., 33, L03107,
https://doi.org/10.1029/2005GL025188, 2006c. a
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T.,
Grandin, M., Hoilijoki, S., Sandroos, A., and von Alfthan, S.: Vlasov methods in space physics and astrophysics, Living Rev. Comput.
Astrophys., 4, 1, https://doi.org/10.1007/s41115-018-0003-2, 2018. a
Palmroth, M., Praks, J., Vainio, R., Janhunen, P., Kilpua, E. K. J.,
Afanasiev, A., Ala-Lahti, M., Alho, A., Asikainen, T., Asvestari,
E., Battarbee, M., Binios, A., Bosser, A., Brito, T., Dubart, M.,
Envall, J., Ganse, U., Ganushkina, N. Y., George, H., Gieseler, J., Good, S., Grandin, M., Haslam, S., Hedman, H. P., Hietala, H., Jovanovic, N., Kakakhel, S., Kalliokoski, M., Kettunen, V. V.,
Koskela, T., Lumme, E., Meskanen, M., Morosan, D., Mughal, M. R.,
Niemelä, P., Nyman, S., Oleynik, P., Osmane, A., Palmerio, E., Peltonen, J., Pfau-Kempf, Y., Plosila, J., Polkko, J., Poluianov, S., Pomoell, J., Price, D., Punkkinen, A., Punkkinen, R., Riwanto, B., Salomaa, L., Slavinskis, A., Säntti, T., Tammi, J., Tenhunen, H., Toivanen, P., Tuominen, J., Turc, L., Valtonen, E., Virtanen, P., and Westerlund, T.: FORESAIL-1 CubeSat Mission to Measure Radiation Belt Losses and Demonstrate Deorbiting, J. Geophys. Res.-Space , 124, 5783–5799, https://doi.org/10.1029/2018JA026354, 2019. a
Palmroth, M., Grandin, M., Helin, M., Koski, P., Oksanen, A., Glad, M. A.,
Valonen, R., Saari, K., Bruus, E., Norberg, J., Viljanen, A., Kauristie, K., and Verronen, P. T.: Citizen Scientists Discover a New Auroral Form: Dunes Provide Insight Into the Upper Atmosphere, AGU Adv., 1,
e2019AV000133, https://doi.org/10.1029/2019AV000133, 2020. a, b
Papadopoulos, K., Goodrichl, C., Wiltberger, M., Lopez, R., and Lyon, J.: The physics of substorms as revealed by the ISTP, Phys. Chem. Earth Pt. C, 24, 189–202, https://doi.org/10.1016/S1464-1917(98)00028-2, 1999. a
Papitashvili, N.: NRLMSISE-00 Atmosphere Model, available at: https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php, last access: 22 February 2021.
Papitashvili, N. and Rastaetter, L.: International Reference Ionosphere – IRI-2012, available at: https://ccmc.gsfc.nasa.gov/modelweb/models/iri2012_vitmo.php, last access: 22 February 2021.
Papitashvili, V. O. and Rich, F. J.: High-latitude ionospheric convection
models derived from Defense Meteorological Satellite Program ion drift
observations and parameterized by the interplanetary magnetic field strength and direction, J. Geophys. Res.-Space, 107, 1198,
https://doi.org/10.1029/2001JA000264, 2002. a
Park, J., Lühr, H., Knudsen, D. J., Burchill, J. K., and Kwak,
Y.-S.: Alfvén waves in the auroral region, their Poynting flux, and
reflection coefficient as estimated from Swarm observations, J.
Geophys. Res.-Space, 122, 2345–2360,
https://doi.org/10.1002/2016JA023527, 2017a. a, b, c
Park, J., Lühr, H., Kervalishvili, G., Rauberg, J., Stolle, C., Kwak, Y.-S.,
and Lee, W. K.: Morphology of high-latitude plasma density perturbations as
deduced from the total electron content measurements onboard the Swarm
constellation, J. Geophys. Res.-Space, 122,
1338–1359, https://doi.org/10.1002/2016JA023086, 2017b. a
Park, J., Yamazaki, Y., and Lühr, H.: Latitude Dependence of Interhemispheric
Field-Aligned Currents (IHFACs) as Observed by the Swarm Constellation,
J. Geophys. Res.-Space, 125, e2019JA027694, https://doi.org/10.1029/2019JA027694, 2020. a, b
Partamies, N., Syrjäsuo, M., Donovan, E., Connors, M., Charrois, D., Knudsen, D., and Kryzanowsky, Z.: Observations of the auroral width spectrum at kilometre-scale size, Ann. Geophys., 28, 711–718, https://doi.org/10.5194/angeo-28-711-2010, 2010. a
Paschmann, G., Haaland, S., and Treumann, R.: Auroral plasma physics,
Space Science series of ISSI, Vol. 15, Kluwer, Dordrecht, 2003. a
Peterson, W. K., Woods, T. N., Fontenla, J. M., Richards, P. G., Chamberlin,
P. C., Solomon, S. C., Tobiska, W. K., and Warren, H. P.: Solar EUV and XUV
energy input to thermosphere on solar rotation time scales derived from
photoelectron observations, J. Geophys. Res.-Space,
117, A05320, https://doi.org/10.1029/2011JA017382, 2012. a
Pettigrew, E. D., Shepherd, S. G., and Ruohoniemi, J. M.: Climatological
patterns of high-latitude convection in the Northern and Southern
hemispheres: Dipole tilt dependencies and interhemispheric comparisons,
J. Geophys. Res.-Space, 115, A07305,
https://doi.org/10.1029/2009JA014956, 2010. a
Peymirat, C., Richmond, A. D., Emery, B. A., and Roble, R. G.: A
magnetosphere-thermosphere-ionosphere electrodynamics general circulation
model, J. Geophys. Res.-Space, 103, 17467–17477, https://doi.org/10.1029/98JA01235, 1998. a
Pfaff, R. F.: The Near-Earth Plasma Environment, Space Sci. Rev.,
168, 23–112, https://doi.org/10.1007/s11214-012-9872-6, 2012. a
Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C.: NRLMSISE-00
empirical model of the atmosphere: Statistical comparisons and scientific
issues, J. Geophys. Res.-Space , 107, SIA 15-1–SIA 15-16, https://doi.org/10.1029/2002JA009430, 2002. a, b
Pilipenko, V., Belakhovsky, V., Murr, D., Fedorov, E., and
Engebretson, M.: Modulation of total electron content by ULF Pc5 waves,
J. Geophys. Res.-Space, 119, 4358–4369, https://doi.org/10.1002/2013JA019594, 2014. a
Pitkänen, T., Aikio, A. T., and Juusola, L.: Observations of polar cap flow
channel and plasma sheet flow bursts during substorm expansion, J.
Geophys. Res.-Space, 118, 774–784, https://doi.org/10.1002/jgra.50119,
2013. a
Pitout, F., Blelly, P. L., and Alcaydé, D.: High-latitude
ionospheric response to the solar eclipse of 1 August 2008: EISCAT
observations and TRANSCAR simulation, J. Atmos.
Sol.-Terr. Phy., 105, 336–349, https://doi.org/10.1016/j.jastp.2013.02.004,
2013. a
Preusse, P., Eckermann, S. D., and Ern, M.: Transparency of the
atmosphere to short horizontal wavelength gravity waves, J.
Geophys. Res.-Atmos., 113, D24104, https://doi.org/10.1029/2007JD009682,
2008. a, b
Prölss, G. W.: Density perturbations in the upper atmosphere caused by the
dissipation of solar wind energy, Surv. Geophys., 32, 101–195,
https://doi.org/10.1007/s10712-010-9104-0, 2011. a
Provan, G., Yeoman, T. K., and Cowley, S. W. H.: The influence of the
IMF By component on the location of pulsed flows in the dayside
ionosphere observed by an HF radar, Geophys. Res. Lett., 26,
521–524, https://doi.org/10.1029/1999GL900009, 1999. a
Qian, L. Y., Solomon, S. C., and Kane, T. J.: Seasonal variation of
thermospheric density and composition, J. Geophys. Res., 114,
A01312, https://doi.org/10.1029/2008JA013643, 2009. a
Qin, J. and Waldrop, L.: Non-thermal hydrogen atoms in the terrestrial
upper thermosphere, Nat. Commun., 7, 13655,
https://doi.org/10.1038/ncomms13655, 2016. a
Ramesh, K., Sridharan, S., and Vijaya Bhaskara Rao, S.: Dominance of
chemical heating over dynamics in causing a few large mesospheric inversion
layer events during January-February 2011, J. Geophys. Res.-Space, 118, 6751–6765, https://doi.org/10.1002/jgra.50601, 2013. a
Randall, C. E., Harvey, V. L., Holt, L. A., Marsh, D. R., Kinnison, D., Funke, B., and Bernath, P. F.: Simulation of energetic particle precipitation effects during the 2003–2004 Arctic winter, J. Geophys. Res.-Space, 120, 5035–5048, https://doi.org/10.1002/2015JA021196, 2015. a
Randall, C. E. e. a.: Energetic particle precipitation effects on the
Southern Hemisphere stratosphere in 1992–2005, J. Geophys. Res., 112,
D08308, https://doi.org/10.1029/2006JD007696, 2007. a
Redmon, R.: DMSP Space Environment Instruments – Precipitating Particles (SSJ), Bulk Plasma Parameters (SSIES) and Magnetic Fields (SSM), available at: https://satdat.ngdc.noaa.gov/dmsp/data, last access: 22 February 2021.
Redmon, R. J., Denig, W. F., Kilcommons, L. M., and Knipp, D. J.: New DMSP database of precipitating auroral electrons and ions, J.
Geophys. Res.-Space, 122, 9056–9067,
https://doi.org/10.1002/2016JA023339, 2017. a, b
Rees, M. H.: Physics and Chemistry of the Upper Atmosphere, Cambridge
University Press, Cambridge, UK, 1989. a
Reigber, C., Lühr, H., Grunwaldt, L., Förste, C., König, R.,
Massmann, H., and Falck, C.: CHAMP Mission 5 Years in Orbit, in:
Observation of the Earth System from Space, edited by: Flury, J., Rummel,
R., Reigber, C., Rothacher, M., Boedecker, G., and Schreiber, U., Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/3-540-29522-4_1, 3–15, 2006. a
Rich, F. J. and Hairston, M.: Large-scale convection patterns observed by DMSP, J. Geophys. Res., 99, 3827–3844, https://doi.org/10.1029/93JA03296, 1994. a
Richardson, I. G. and Cane, H. V.: Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of
Properties, Solar Phys., 264, 189–237, https://doi.org/10.1007/s11207-010-9568-6,
2010. a
Richmond, A. D.: On the ionospheric application of Poynting's theorem, J.
Geophys. Res.-Space, 115, A10311, https://doi.org/10.1029/2010JA015768, 2010. a
Richmond, A. D. and Kamide, Y.: Mapping electrodynamic features of the
high-latitude ionosphere from localized observations: Technique, Journal of Geophys. Res.-Space , 93, 5741–5759, https://doi.org/10.1029/JA093iA06p05741, 1988. a
Richmond, A. D., Blanc, M., Emery, B. A., Wand, R. H., Fejer, B. G., Woodman,
R. F., Ganguly, S., Amayenc, P., Behnke, R. A., Calderon, C., and Evans,
J. V.: An empirical model of quiet-day ionospheric electric fields at middle and low latitudes, J. Geophys. Res.-Space, 85,
4658–4664, https://doi.org/10.1029/JA085iA09p04658, 1980. a
Richmond, A. D., Ridley, E. C., and Roble, R. G.: A thermosphere/ionosphere
general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601–604, https://doi.org/10.1029/92GL00401, 1992. a
Ridley, A. J., Gombosi, T. I., and DeZeeuw, D. L.: Ionospheric control of the magnetosphere: conductance, Ann. Geophys., 22, 567–584, https://doi.org/10.5194/angeo-22-567-2004, 2004. a
Ridley, A., Deng, Y., and Tóth, G.: The Global Ionosphere-Thermosphere Model,
J. Atmos. Sol.-Terr. Phy., 68, 839–864,
https://doi.org/10.1016/j.jastp.2006.01.008, 2006. a
Ridley, A. J.: Effects of seasonal changes in the ionospheric conductances
on magnetospheric field-aligned currents, Geophys. Res. Lett., 34, L05101,
https://doi.org/10.1029/2006GL028444, 2007. a
Rishbeth, H. and Williams, P. J. S.: The EISCAT ionospheric radar - The system and its early results, Royal Astronomical Society, Quarterly J., 26,
478–512, 1985. a
Ritter, P., Lühr, H., and Rauberg, J.: Determining field-aligned currents with the Swarm constellation mission, Earth Planet. Space, 65, 9, https://doi.org/10.5047/eps.2013.09.006, 2013. a, b
Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., and Hardy, D.: On
calculating ionospheric conductances from the flux and energy of
precipitating electrons, J. Geophys. Res.-Space, 92,
2565–2569, https://doi.org/10.1029/JA092iA03p02565, 1987. a
Roble, R. G., Emery, B. A., Killeen, T. L., Reid, G. C., Solomon, S.,
Garcia, R. R., Evans, D. S., Hays, P. B., Carignan, G. R., Heelis,
R. A., Hanson, W. B., Winningham, D. J., Spencer, N. W., and Brace,
L. H.: Joule heating in the mesosphere and thermosphere during the July 13,
1982, solar proton event, J. Geophys. Res., 92, 6083–6090,
https://doi.org/10.1029/JA092iA06p06083, 1987. a
Rodger, C. J., Raita, T., Clilverd, M. A., Seppälä, A.,
Dietrich, S., Thomson, N. R., and Ulich, T.: Observations of
relativistic electron precipitation from the radiation belts driven by EMIC
waves, Geophys. Res. Lett., 35, L16106,
https://doi.org/10.1029/2008GL034804, 2008. a
Rodger, C. J., Clilverd, M. A., Green, J. C., and Lam, M. M.: Use of
POES SEM-2 observations to examine radiation belt dynamics and energetic
electron precipitation into the atmosphere, J. Geophys. Res.-Space
115, A04202, https://doi.org/10.1029/2008JA014023, 2010a. a
Rodger, C. J., Kavanagh, A. J., Clilverd, M. A., and Marple, S. R.:
Comparison between POES energetic electron precipitation observations and
riometer absorptions: Implications for determining true precipitation
fluxes, J. Geophys. Res.-Space, 118, 7810–7821,
https://doi.org/10.1002/2013JA019439, 2013. a
Rodríguez-Zuluaga, J., Stolle, C., and Park, J.: On the direction
of the Poynting flux associated with equatorial plasma depletions as derived from Swarm, Geophys. Res, Lett., 44,
5884–5891, https://doi.org/10.1002/2017GL073385, 2017. a
Rodríguez-Zuluaga, J. and Stolle, C.: Interhemispheric field-aligned currents
at the edges of equatorial plasma depletions, Sci. Rep.-UK, 9, 1233,
https://doi.org/10.1038/s41598-018-37955-z, 2019. a
Roelof, E. C.: Energetic neutral atom imaging of magnetospheric ions from
high- and low-altitude spacecraft, Adv. Space Res., 20, 341–350,
https://doi.org/10.1016/S0273-1177(97)00689-3, 1997. a, b
Runov, A., Angelopoulos, V., Zhou, X. Z., Zhang, X. J., Li, S.,
Plaschke, F., and Bonnell, J.: A THEMIS multicase study of
dipolarization fronts in the magnetotail plasma sheet, J.
Geophys. Res.-Space, 116, A05216,
https://doi.org/10.1029/2010JA016316, 2011. a
Ruohoniemi, J. M. and Baker, K. B.: Large-scale imaging of high-latitude
convection with Super Dual Auroral Radar Network HF radar observations,
J. Geophys. Res.-Space, 103, 20797–20811,
https://doi.org/10.1029/98JA01288, 1998. a
Ruohoniemi, J. M. and Greenwald, R. A.: Statistical patterns of
high-latitude convection obtained from Goose Bay HF radar observations,
J. Geophys. Res.-Space, 101, 21743–21764,
https://doi.org/10.1029/96JA01584, 1996. a
Ruohoniemi, J. M. and Greenwald, R. A.: Dependencies of high-latitude
plasma convection: Consideration of interplanetary magnetic field, seasonal,
and universal time factors in statistical patterns, J. Geophys. Res.-Space, 110, A09204, https://doi.org/10.1029/2004JA010815, 2005. a
Sangalli, L., Knudsen, D. J., Larsen, M. F., Zhan, T., Pfaff, R. F., and
Rowland, D.: Rocket-based measurements of ion velocity, neutral wind, and
electric field in the collisional transition region of the auroral
ionosphere, J. Geophys. Res.-Space, 114, A04306,
https://doi.org/10.1029/2008JA013757, 2009. a, b
Sarris, T. E.: Understanding the ionosphere thermosphere response to solar
and magnetospheric drivers: status, challenges and open issues, Philosophical
Transactions of the Royal Society A: Mathematical, Phys. Eng.
Sci., 377, 20180101, https://doi.org/10.1098/rsta.2018.0101, 2019. a, b, c
Sarris, T. E., Talaat, E. R., Palmroth, M., Dandouras, I., Armandillo, E., Kervalishvili, G., Buchert, S., Tourgaidis, S., Malaspina, D. M., Jaynes, A. N., Paschalidis, N., Sample, J., Halekas, J., Doornbos, E., Lappas, V., Moretto Jørgensen, T., Stolle, C., Clilverd, M., Wu, Q., Sandberg, I., Pirnaris, P., and Aikio, A.: Daedalus: a low-flying spacecraft for in situ exploration of the lower thermosphere–ionosphere, Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, 2020. a, b, c
Sauvaud, J. A., Moreau, T., Maggiolo, R., Treilhou, J.-P., Jacquey, C., Cros,
A., Coutelier, J., Rouzaud, J., Penou, E., and Gangloff, M.: High-energy
electron detection onboard DEMETER: The IDP spectrometer, description
and first results on the inner belt, Planet. Space Sci., 54,
502–511, https://doi.org/10.1016/j.pss.2005.10.019, 2006. a, b
Scherliess, L. and Fejer, B. G.: Radar and satellite global equatorial F
region vertical drift model, J. Geophys. Res., 104, 6829–6842,
https://doi.org/10.1029/1999JA900025, 1999. a
Schunk, R. and Nagy, A.: Ionospheres: Physics, Plasma Physics, and Chemistry,
Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, 2 edn., https://doi.org/10.1017/CBO9780511635342, 2009. a
Schunk, R. W. and Nagy, A. F.: Ionospheres of the terrestrial planets,
Rev. Geophys., 18, 813–852, https://doi.org/10.1029/RG018i004p00813, 1980. a, b, c
Sciffer, M. D. and Waters, C. L.: Propagation of ULF waves through the
ionosphere: Analytic solutions for oblique magnetic fields, J.
Geophys. Res.-Space, 107, 1297, https://doi.org/10.1029/2001JA000184,
2002. a
Scott, C. J. and Major, P.: The ionospheric response over the UK to major bombing raids during World War II, Ann. Geophys., 36, 1243–1254, https://doi.org/10.5194/angeo-36-1243-2018, 2018. a
Semeter, J., Hunnekuhl, M., MacDonald, E., Hirsch, M., Zeller, N., Chernenkoff, A., and Wang, J.: The Mysterious Green Streaks Below STEVE, AGU Adv., 1, e2020AV000183, https://doi.org/10.1029/2020AV000183, 2020. a
Senior, C., Fontaine, D., Caudal, G., Alcayde, D., and Fontanari, J.: Convection electric fields and electrostatic potential over Lambda between 61 and 72 degrees invariant latitude observed with the European incoherent scatter facility. II - Statistical results, Annales Geophysicae, 8, 257–272, 1990. a
Senior, C., Cerisier, J.-C., Rich, F., Lester, M., and Parks, G. K.: Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations, Ann. Geophys., 20, 771–779, https://doi.org/10.5194/angeo-20-771-2002, 2002. a
Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., and
Rodger, C. J.: Geomagnetic activity and polar surface air temperature
variability, J. Geophys. Res., 114, A10312, https://doi.org/10.1029/2008JA014029,
2009. a
Seppälä, A., Matthes, K., Randall, C. E., and Mironova, I. A.: What is the solar influence on climate? Overview of activities during CAWSES-II, Prog. Earth Planet. Sci., 1, 24, https://doi.org/10.1186/s40645-014-0024-3, 2014. a
Seppälä, A., Clilverd, M. A., Beharrell, M. J., Rodger, C. J.,
Verronen, P. T., Andersson, M. E., and Newnham, D. A.: Substorm-induced
energetic electron precipitation: Impact on atmospheric chemistry,
Geophys. Res. Lett., 42, 8172, https://doi.org/10.1002/2015GL065523, 2015. a
Seppälä, A., Douma, E., Rodger, C. J., Verronen, P. T.,
Clilverd, M. A., and Bortnik, J.: Relativistic Electron Microburst
Events: Modeling the Atmospheric Impact, Geophys. Res. Lett., 45,
1141–1147, https://doi.org/10.1002/2017GL075949, 2018. a
Sergeev, V., Aikio, A., Bosinger, T., Brekke, A., Hakkinen, L.,
Kangas, J., Pellinen, R., and Pollari, P.: Nighttime patterns of
ionospheric convection, conductance, horizontal and field-aligned currents
during a steady magnetospheric convection event., J. Atmos. Terr. Phys., 58, 107–119, https://doi.org/10.1016/0021-9169(95)00023-2, 1996. a
Sergeev, V. A.: On magnetic effects of chromospheric flares and on the
electric field in the high-latitude ionosphere. I. The region of the polar
cap., Geomagn. Aeronomy+, 17, 291–297, 1977. a
Sergeev, V. A. and Tsyganenko, N. A.: Energetic particle losses and
trapping boundaries as deduced from calculations with a realistic magnetic
field model, Planet. Space Sci., 30, 999–1006,
https://doi.org/10.1016/0032-0633(82)90149-0, 1982. a
Shiokawa, K., Otsuka, Y., Oyama, S., Nozawa, S., Satoh, M., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., and Meriwether, J.: Development of low-cost sky-scanning Fabry-Perot interferometers for airglow and auroral studies, Earth Planet. Space, 64, 1033–1046,
https://doi.org/10.5047/eps.2012.05.004, 2012. a
Singh, R. P. and Pallamraju, D.: Mesospheric Temperature Inversions
Observed in OH and O2 Rotational Temperatures From Mount Abu
(24.6∘ N, 72.8∘ E), India, J. Geophys.
Res.-Space, 123, 8823–8834, https://doi.org/10.1029/2018JA025703, 2018. a
Sinnhuber, M., Nieder, H., and Wieters, N.: Energetic Particle
Precipitation and the Chemistry of the Mesosphere/Lower
Thermosphere, Surv. Geophys., 33, 1281–1334,
https://doi.org/10.1007/s10712-012-9201-3, 2012. a
Solomon, S. and Roble, R.: Thermosphere, in: Encyclopedia of Atmospheric
Sciences (Second Edition), edited by: North, G. R., Pyle, J., and Zhang, F., Academic Press, Oxford,
https://doi.org/10.1016/B978-0-12-382225-3.00408-4, 402–408, 2015. a
Spiro, R. W., Heelis, R. A., and Hanson, W. B.: Rapid subauroral ion
drifts observed by Atmosphere Explorer C, Geophys. Res. Lett., 6,
657–660, https://doi.org/10.1029/GL006i008p00657, 1979. a
St.-Maurice, J.-P. and Torr, D. G.: Nonthermal rate coefficients in the
ionosphere - The reactions of O+ with N2, O2, and NO, J.
Geophys. Res., 83, 969–977, https://doi.org/10.1029/JA083iA03p00969, 1978. a, b
Stolle, C., Lühr, H., and Fejer, B. G.: Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations, Ann. Geophys., 26, 3979–3988, https://doi.org/10.5194/angeo-26-3979-2008, 2008a. a
Stolle, C., Manoj, C., Lühr, H., Maus, S., and Alken, P.: Estimating the day
time Equatorial Ionization Anomaly strength from electric field proxies, J. Geophys. Res., 113, A09310, https://doi.org/10.1029/2007JA012781, 2008b. a
Stolle, C., Olsen, N., Richmond, A. D., and Opgenoorth, H. J.: Editorial:
Topical Volume on Earth’s Magnetic Field–Understanding Geomagnetic
Sources from the Earth’s Interior and Its Environment, Space Sci. Rev., 206, 1–3, https://doi.org/10.1007/s11214-017-0346-8, 2017. a
Storz, M. F., Bowman, B. R., Branson, M. J. I., Casali, S. J., and
Tobiska, W. K.: High accuracy satellite drag model (HASDM), Adv.
Space Res., 36, 2497–2505, https://doi.org/10.1016/j.asr.2004.02.020, 2005. a, b
Sutton, E. K., Forbes, J. M., and Nerem, R. S.: Global thermospheric neutral
density and wind response to the severe 2003 geomagnetic storms from CHAMP
accelerometer data, J. Geophys. Res.-Space, 110, A09S40,
https://doi.org/10.1029/2004JA010985, 2005. a
Tapley, B. D., Ries, J. C., Bettadpur, S., and Cheng, M.: Neutral density
measurements from the gravity recovery and climate experiment
accelerometers, J. Spacecraft Rockets, 6, 1220–1225,
https://doi.org/10.2514/1.28843, 2007. a
Thomas, E. G. and Shepherd, S. G.: Statistical Patterns of Ionospheric
Convection Derived From Mid-latitude, High-Latitude, and Polar SuperDARN HF
Radar Observations, J. Geophys. Res.-Space, 123,
3196–3216, https://doi.org/10.1002/2018JA025280, 2018. a, b
Thorne, R. M.: Radiation belt dynamics: The importance of wave-particle
interactions, Geophys. Res. Lett., 37, L22107, https://doi.org/10.1029/2010GL044990,
2010. a
Thorne, R. M., Ni, B., Tao, X., Horne, R. B., and Meredith, N. P.: Scattering
by chorus waves as the dominant cause of diffuse auroral precipitation,
Nature, 467, 943–946, https://doi.org/10.1038/nature09467, 2010. a
Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R.,
De Zeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., Oehmke,
R. C., Powell, K. G., Ridley, A. J., Roussev, I. I., Stout, Q. F., Volberg,
O., Wolf, R. A., Sazykin, S., Chan, A., Yu, B., and Kóta, J.: Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res.-Space, 110, A12226, https://doi.org/10.1029/2005JA011126, 2005. a
Trattner, K. J., Mulcock, J. S., Petrinec, S. M., and Fuselier, S. A.: Probing
the boundary between antiparallel and component reconnection during southward
interplanetary magnetic field conditions, J. Geophys. Res.-Space, 112, A08210, https://doi.org/10.1029/2007JA012270, 2007. a
Tsuchiya, F., Hirai, A., Obara, T., Misawa, H., Kurita, S.,
Miyoshi, Y., Shiokawa, K., Connors, M., Ozaki, M., Kasahara, Y.,
Kumamoto, A., Kasaba, Y., Matsuoka, A., Shoji, M., and Shinohara,
I.: Energetic Electron Precipitation Associated With Pulsating Aurora
Observed by VLF Radio Propagation During the Recovery Phase of a Substorm on 27 March 2017, Geophys. Res. Lett., 45, 12651–12660,
https://doi.org/10.1029/2018GL080222, 2018. a
Tsugawa, T., Saito, A., and Otsuka, Y.: A statistical study of large-scale
traveling ionospheric disturbances using the GPS network in Japan, J. Geophys. Res.-Space, 109, A06302, https://doi.org/10.1029/2003JA010302, 2004. a
Tsugawa, T., Saito, A., Otsuka, Y., Nishioka, M., Maruyama, T., Kato, H.,
Nagatsuma, T., and Murata, K. T.: Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Space, 63, 875–879,
https://doi.org/10.5047/eps.2011.06.035, 2011. a
Turunen, E., Verronen, P. T., Seppälä, A., Rodger, C. J., Clilverd,
M. A., Tamminen, J., Enell, C.-F., and Ulich, T.: Impact of different
precipitation energies on NOx generation during geomagnetic
storms, J. Atmos. Sol.-Terr. Phys., 71, 1176–1189,
https://doi.org/10.1016/j.jastp.2008.07.005, 2009. a
van de Kamp, M., Seppälä, A., Clilverd, M. A., Rodger, C. J., Verronen, P. T., and Whittaker, I. C.: A model providing long-term datasets of energetic electron precipitation during geomagnetic storms, J. Geophys. Res.-Atmos., 121, 12520–12540, https://doi.org/10.1002/2015JD024212, 2016. a
van de Kamp, M., Rodger, C. J., Seppälä, A., Clilverd, M. A., and
Verronen, P. T.: An updated model providing long-term datasets of energetic
electron precipitation, including zonal dependence, J. Geophys. Res.-Atmos., 123, 9891–9915, https://doi.org/10.1029/2017JD028253, 2018. a
Vanhamäki, H. and Juusola, L.: Review of data analysis techniques for
estimating ionospheric currents based on MIRACLE and saellite observations, in: Electric currents in Geospace and beyond, edited by: Keiling, A., Marghiu, O., and Wheatland, M., , AGU and Wiley, Washington, D.C., https://doi.org/10.1002/9781119324522.ch24, Geophysical Monograph 235, 407–426, 2018. a
Vanhamäki, H., Yoshikawa, A., Amm, O., and Fujii, R.: Ionospheric Joule
heating and Poynting flux in quasistatic approximation, J. Geophys. Res.-Space, 117, A08327, https://doi.org/10.1029/2012JA017841, 2012. a, b
Verronen, P. T., SeppäLä, A., Clilverd, M. A., Rodger, C. J.,
KyröLä, E., Enell, C.-F., Ulich, T., and Turunen, E.:
Diurnal variation of ozone depletion during the October-November 2003 solar proton events, J. Geophys. Res.-Space, 110, A09S32,
https://doi.org/10.1029/2004JA010932, 2005. a, b
Verronen, P. T., Andersson, M. E., Kero, A., Enell, C.-F., Wissing, J. M., Talaat, E. R., Kauristie, K., Palmroth, M., Sarris, T. E., and Armandillo, E.: Contribution of proton and electron precipitation to the observed electron concentration in October–November 2003 and September 2005, Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, 2015. a
Verronen, P. T., Andersson, M. E., Marsh, D. R., Kovács, T., and Plane,
J. M. C.: WACCM-D – Whole Atmosphere Community Climate Model with
D-region ion chemistry, J. Adv. Model. Earth Syst., 8, 954–975,
https://doi.org/10.1002/2015MS000592, 2016. a
Verronen, P. T., Marsh, D. R., Szeląg, M. E., and Kalakoski, N.: Magnetic-local-time dependency of radiation belt electron precipitation: impact on ozone in the polar middle atmosphere, Ann. Geophys., 38, 833–844, https://doi.org/10.5194/angeo-38-833-2020, 2020. a
Vette, J. I.: AE/AP trapped particle flux maps (1966-1980), Planet.
Space Sci., 40, 566–568, https://doi.org/10.1016/0032-0633(92)90240-O, 1992. a
Vickrey, J. F., Vondrak, R. R., and Matthews, S. J.: Energy deposition by
precipitating particles and Joule dissipation in the auroral ionosphere,
J. Geophys. Res.-Space, 87, 5184–5196,
https://doi.org/10.1029/JA087iA07p05184, 1982. a
Villain, J. P., Caudal, G., and Hanuise, C.: A safari-eiscat comparison between the velocity of F region small-scale irregularities and the ion drift, J. Geophys. Res.-Space, 90, 8433–8444,
https://doi.org/10.1029/JA090iA09p08433, 1985. a
Vincent, R. A.: The dynamics of the mesosphere and lower thermosphere: a brief review, Prog. Earth Planet. Sci., 2, 4,
https://doi.org/10.1186/s40645-015-0035-8, 2015. a, b
Virtanen, I. I., McKay-Bukowski, D., Vierinen, J., Aikio, A., Fallows, R., and Roininen, L.: Plasma parameter estimation from multistatic, multibeam
incoherent scatter data, J. Geophys. Res.-Space, 119, 10,528–10,543, https://doi.org/10.1002/2014JA020540, 2014. a
Virtanen, I. I., Gustavsson, B., Aikio, A., Kero, A., Asamura, K.,
and Ogawa, Y.: Electron Energy Spectrum and Auroral Power Estimation From Incoherent Scatter Radar Measurements, J. Geophys. Res.-Space, 123, 6865–6887, https://doi.org/10.1029/2018JA025636, 2018. a, b
Visser, T., March, G., Doornbos, E., de Visser, C., and Visser, P.: Horizontal and vertical thermospheric cross-wind from GOCE linear and angular accelerations, Adv. Space Res., 63, 3139–3153, https://doi.org/10.1016/j.asr.2019.01.030, 2019. a
Vogt, J., Blăgău, A., Bunescu, C., and He, M.: Local least squares
analysis of auroral currents, in: Ionospheric multi-spacecraft analysis
tools, edited by Dunlop, M. and Lühr, H., ISSI Scientific Reports Series,
Vol. 17, pp. 55–81, Springer, Cham, https://doi.org/10.1007/978-3-030-26732-2_4, 2020. a
Waite, J. H., Lewis, W. S., Kasprzak, W. T., Anicich, V. G., Block,
B. P., Cravens, T. E., Fletcher, G. G., Ip, W. H., Luhmann, J. G.,
McNutt, R. L., Niemann, H. B., Parejko, J. K., Richards, J. E.,
Thorpe, R. L., Walter, E. M., and Yelle, R. V.: The Cassini Ion and
Neutral Mass Spectrometer (INMS) Investigation, Space Sci. Rev., 114,
113–231, https://doi.org/10.1007/s11214-004-1408-2, 2004. a, b
Waldrop, L. and Paxton, L. J.: Lyman α airglow
emission: Implications for atomic hydrogen geocorona variability with solar
cycle, J. Geophys. Res.-Space, 118, 5874–5890,
https://doi.org/10.1002/jgra.50496, 2013. a
Walker, G. O., Ma, J. H. K., and Golton, E.: The equatorial ionospheric
anomaly in electron content from solar minimum to solar maximum for South
East Asia, Ann. Geophys., 12, 195–209, 1994. a
Walterscheid, R. L.: Dynamical cooling induced by dissipating internal
gravity-waves, Geophys. Res. Lett., 8, 1235–1238, 1981. a
Walterscheid, R. L. and Hickey, M. P.: Acoustic waves generated by gusty
flow over hilly terrain, J. Geophys. Res.-Space,
110, A10307, https://doi.org/10.1029/2005JA011166, 2005. a
Walterscheid, R. L., Schubert, G., and Brinkman, D. G.: Acoustic waves
in the upper mesosphere and lower thermosphere generated by deep tropical
convection, J. Geophys. Res.-Space, 108, 1392,
https://doi.org/10.1029/2003JA010065, 2003. a
Wang, W., Talaat, E. R., Burns, A. G., Emery, B., Hsieh, S.-y.,
Lei, J., and Xu, J.: Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations, J. Geophys. Res.-Space, 117, A07301, https://doi.org/10.1029/2012JA017656, 2012. a
Watanabe, S., Whalen, B. A., Wallis, D. D., and Pfaff, R. F.: Observations of
ion-neutral collisional effects in the auroral E region, J. Geophys. Res.-Space, 96, 9761–9771, https://doi.org/10.1029/91JA00561,
1991. a
Waters, C. L., Anderson, B. J., Greenwald, R. A., Barnes, R. J., and Ruohoniemi, J. M.: High-latitude poynting flux from combined Iridium and SuperDARN data, Ann. Geophys., 22, 2861–2875, https://doi.org/10.5194/angeo-22-2861-2004, 2004. a, b
Weimer, D. R.: Improved ionospheric electrodynamic models and application to
calculating Joule heating rates, J. Geophys. Res., 110,
A05306, https://doi.org/10.1029/2004JA010884, 2005. a, b
Weimer, D. R., Goertz, C. K., Gurnett, D. A., Maynard, N. C., and Burch, J. L.: Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions,
J. Geophys. Res.-Space, 90, 7479–7494,
https://doi.org/10.1029/JA090iA08p07479, 1985. a
Welling, D. T., André, M., Dandouras, I., Delcourt, D.,
Fazakerley, A., Fontaine, D., Foster, J., Ilie, R., Kistler, L.,
Lee, J. H., Liemohn, M. W., Slavin, J. A., Wang, C.-P., Wiltberger, M., and Yau, A.: The Earth: Plasma Sources, Losses, and Transport Processes, Space Sci. Rev., 192, 145–208,
https://doi.org/10.1007/s11214-015-0187-2, 2015. a
Wild, J. A., Milan, S. E., Cowley, S. W. H., Dunlop, M. W., Owen, C. J., Bosqued, J. M., Taylor, M. G. G. T., Davies, J. A., Lester, M., Sato, N., Yukimatu, A. S., Fazakerley, A. N., Balogh, A., and Rème, H.: Coordinated interhemispheric SuperDARN radar observations of the ionospheric response to flux transfer events observed by the Cluster spacecraft at the high-latitude magnetopause, Ann. Geophys., 21, 1807–1826, https://doi.org/10.5194/angeo-21-1807-2003, 2003. a
Wiltberger, M., Wang, W., Burns, A., Solomon, S., Lyon, J., and Goodrich, C.:
Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses, J. Atmos. Sol.-Terr. Phy., 66, 1411–1423, https://doi.org/10.1016/j.jastp.2004.03.026, 2004. a
Woo, S. B. and Wong, S. F.: Interpretation of Rate Constants Measured in
Drift Tubes in Terms of Cross Sections, J. Chem. Phys., 55,
3531–3541, https://doi.org/10.1063/1.1676609, 1971. a
Woodger, L. A., Halford, A. J., Millan, R. M., McCarthy, M. P.,
Smith, D. M., Bowers, G. S., Sample, J. G., Anderson, B. R., and
Liang, X.: A summary of the BARREL campaigns: Technique for studying
electron precipitation, J. Geophys. Res.-Space, 120,
4922–4935, https://doi.org/10.1002/2014JA020874, 2015. a
Workayehu, A. B., Vanhamäki, H., and Aikio, A. T.: Field-Aligned and
Horizontal Currents in the Northern and Southern Hemispheres From the Swarm
Satellite, J. Geophys. Res.-Space, 124, 7231–7246,
https://doi.org/10.1029/2019JA026835, 2019. a
Wright, J. W. and Pitteway, M. L. V.: Application of Dopplionograms and
Gonionograms to atmospheric gravity wave disturbances in the ionosphere,
J. Geophys. Res.-Space, 87, 1719–1721,
https://doi.org/10.1029/JA087iA03p01719, 1982. a
Wu, J., Knudsen, D. J., Gillies, D. M., Donovan, E. F., and Burchill, J. K.:
Swarm observation of field-aligned currents associated with multiple auroral
arc systems, J. Geophys. Res.-Space, 122, 10145–10156,
https://doi.org/10.1002/2017JA024439, 2017. a
Wu, Q.: Longitudinal and seasonal variation of the equatorial flux tube
integrated Rayleigh–Taylor instability growth rate, J. Geophys. Res., 120, 7952–7957,
https://doi.org/10.1002/2015JA021553, 2015. a
Wurz, P., Abplanalp, D., Tulej, M., Iakovleva, M., Fernandes, V. A., Chumikov, A., and Managadze, G. G.: Mass spectrometric analysis in planetary science: Investigation of the surface and the atmosphere, Solar Syst. Res.+, 46, 408–422, https://doi.org/10.1134/S003809461206007X, 2012. a, b
Xiong, C., Xu, J.-S., Stolle, C., van den Ijssel, J., Yin, F.,
Kervalishvili, G. N., and Zangerl, F.: On the Occurrence of GPS Signal
Amplitude Degradation for Receivers on Board LEO Satellites, Adv. Space Res. 18, e02398, https://doi.org/10.1029/2019SW002398, 2020. a
Yahnin, A. G., Yahnina, T. A., Frey, H. U., Bösinger, T., and
Manninen, J.: Proton aurora related to intervals of pulsations of
diminishing periods, J. Geophys. Res.-Space, 114,
A12215, https://doi.org/10.1029/2009JA014670, 2009. a
Yamauchi, M., Shimoyama, M., De Keyser, J., Yau, A., Liu, Y., Tian, F., Rong,
Z. J., Kallio, E., Ulich, T., Dandouras, I., Henri, P., Saur, J., Daglis, I.,
Oyama, S.-I., Abe, T., Yoshikawa, I., Sakanoi, T., Tsuda, T., Taguchi, S.,
Mann, I., Marghitu, O., Ivchenko, N., Wurz, P., Beth, A., Nicolaou, G.,
Dunlop., M., Parks, G., Kucharek, H., Tsurutani, B., and Turner, D.:
Plasma-neutral gas interactions in various space environments, Voyage 2050 – Long-term planning of the ESA Science Programme, available at:
https://www.cosmos.esa.int/documents/1866264/3219248/YamauchiM_whitepaper_i_n_final.pdf/57d48e1d-a5bd-aa32-4c73-b70170e0804f?t=1565184757639 (last access: 22 February 2021),
eSA white paper, 2019. a
Yamauchi, M., Johnsen, M. G., Enell, C.-F., Tjulin, A., Willer, A., and Sormakov, D. A.: High-latitude crochet: solar-flare-induced magnetic disturbance independent from low-latitude crochet, Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020, 2020. a
Yamazaki, Y. and Maute, A.: Sq and EEJ – A Review on the Daily
Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents,
Space Sci. Rev., 206, 299–405, https://doi.org/10.1007/s11214-016-0282-z, 2017. a, b, c
Yamazaki, Y., Stolle, C., Matzka, J., Siddiqui, T. A., Lühr, H., and Alken,
P.: Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet,
J. Geophys. Res.-Space, 122, 12445–12463, https://doi.org/10.1002/2017JA024601, 2017. a
Yokoyama, T., Jin, H., Shinagawa, H., and Liu, H.: Seeding of equatorial
plasma bubbles by vertical neutral wind, Geophys. Res. Lett., 46, 7088–7095,
https://doi.org/10.1029/2019GL083629, 2019. a
Yoshikawa, A.: How does the ionospheric rotational Hall current absorb the
increasing energy from the field-aligned current system?, Geophys. Res.
Lett., 29, 1133, https://doi.org/10.1029/2001GL014125, 2002a. a
Yoshikawa, A.: Excitation of a Hall-current generator by field-aligned current
closure, via an ionospheric, divergent Hall-current, during the transient
phase of magnetosphere–ionosphere coupling, J. Geophys. Res., 107, 1445,
https://doi.org/10.1029/2001JA009170, 2002b. a, b
Zakharenkova, I., Astafyeva, E., and Cherniak, I.: GPS and in situ Swarm
observations of the equatorial plasma density irregularities in the topside
ionosphere, Earth Planet. Sp., 68, 120, https://doi.org/10.1186/s40623-016-0490-5, 2016.
a
Zettergren, M. D. and Snively, J. B.: Ionospheric signatures of acoustic waves generated by transient tropospheric forcing, Geophys. Res. Lett., 40, 5345–5349, https://doi.org/10.1002/2013GL058018, 2013. a
Zhang, B., Lotko, W., Brambles, O., Damiano, P., Wiltberger, M., and Lyon, J.: Magnetotail origins of auroral Alfvénic power, J. Geophys.
Res.-Space, 117, A09205, https://doi.org/10.1029/2012JA017680, 2012. a
Zhang, Q.-H., Moen, J., Lockwood, M., McCrea, I., Zhang, B.-C., McWilliams,
K. A., Zong, Q.-G., Zhang, S.-R., Ruohoniemi, J. M., Thomas, E. G., Dunlop,
M. W., Liu, R.-Y., Yang, H.-G., Hu, H.-Q., and Lester, M.: Polar cap patch
transportation beyond the classic scenario, J. Geophys. Res.-Space, 121, 9063–9074, https://doi.org/10.1002/2016JA022443, 2016. a
Zhou, X., Liu, H.-L., Lu, X., Zhang, R., Maute, A., Wu, H., Yue, X., and Wan,
W.: Quiet-time Day-to-day Variability of Equatorial Vertical E×B
Drift from Atmosphere Perturbations at Dawn, J. Geophys. Res.-Space, 125, e2020JA027824, https://doi.org/10.1029/2020JA027824, 2020. a
Zhou, Y.-L., Lühr, H., Xiong, C., and Pfaff, R. F.: Ionospheric storm effects
and equatorial plasma irregularities during the 17–18 March 2015 event,
J. Geophys. Res.-Space, 121, 9146–9163,
https://doi.org/10.1002/2016JA023122, 2016. a
Zmuda, A. J., Martin, J. H., and Heuring, F. T.: Transverse magnetic
disturbances at 1100 kilometers in the auroral region, J. Geophys. Res., 71, 5033–5045, 1966. a
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
This is a review paper that summarises the current understanding of the lower...