Articles | Volume 39, issue 6
https://doi.org/10.5194/angeo-39-1005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-39-1005-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of the semidiurnal lunar tide in the equatorial plasma bubble zonal drifts over Brazil
Unidade Acadêmica de Física, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
Ana Roberta Paulino
Departamento de Física, Universidade Estadual da Paraíba, Campina Grande, PB, Brazil
Amauri F. Medeiros
Unidade Acadêmica de Física, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
Cristiano M. Wrasse
Divisão de Clima Espacial, Instituto Nacional de Pesquisas Espacias, São José dos Campos, SP, Brazil
Ricardo Arlen Buriti
Unidade Acadêmica de Física, Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
Hisao Takahashi
Divisão de Clima Espacial, Instituto Nacional de Pesquisas Espacias, São José dos Campos, SP, Brazil
Related authors
Ana Roberta Paulino, Igo Paulino, and José Augusto Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2025-3085, https://doi.org/10.5194/egusphere-2025-3085, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
In this paper, atmospheric responses to the 23 October 2023 annular solar eclipse is discussed considering almost simultaneous temperature measurements from the TIMED/SABER satellite. Reductions of the temperature in troposphere, mesosphere and mesopause were observed. On the other hand, the temperature increased by about 7 K around 33 km. The temporal and spatial configuration of the measurements is consistent with the observed structures.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025, https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Short summary
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the estimation of zonal ionospheric irregularity drifts using the scintillation spaced-receiver technique, previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the recorded raw data can be used to estimate irregularity drifts. Further, our observations are consistent with the behavior of an empirical model of the thermospheric winds (HMW14).
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Tracy Moffat-Griffin, Damian John Murphy, Toyese Tunde Ayorinde, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3114, https://doi.org/10.5194/egusphere-2025-3114, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This work analyzes the medium-scale atmospheric gravity waves observed by ground-based airglow imaging over the Antarctic continent. Medium-scale gravity waves refer to waves larger than 50 km of horizontal wavelength, and have not been analyzed in that region so far. Wave parameters and horizontal propagation characteristics were obtained by a recently improved methodology and are described thoroughly.
Ana Roberta Paulino, Igo Paulino, and José Augusto Pereira
EGUsphere, https://doi.org/10.5194/egusphere-2025-3085, https://doi.org/10.5194/egusphere-2025-3085, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
In this paper, atmospheric responses to the 23 October 2023 annular solar eclipse is discussed considering almost simultaneous temperature measurements from the TIMED/SABER satellite. Reductions of the temperature in troposphere, mesosphere and mesopause were observed. On the other hand, the temperature increased by about 7 K around 33 km. The temporal and spatial configuration of the measurements is consistent with the observed structures.
Qinzeng Li, Jiyao Xu, Yajun Zhu, Cristiano M. Wrasse, José V. Bageston, Wei Yuan, Xiao Liu, Weijun Liu, Ying Wen, Hui Li, and Zhengkuan Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1417, https://doi.org/10.5194/egusphere-2025-1417, 2025
Short summary
Short summary
This study explores intense CGWs based on ground – based and multi – satellite observations over Southern Brazil, revealing significant airglow perturbations and strong momentum release. Triggered by deep convections and enabled by weaker wind field, these CGWs reached the mesopause and thermosphere. Consistent detections via OI and OH airglow emissions confirm their vertical propagation, while asymmetric thermosphere propagation is linked to Doppler-induced wavelength changes.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Erdal Yiğit, Vera Y. Tsali-Brown, Ricardo A. Buriti, Cosme A. O. B. Figueiredo, Gabriel A. Giongo, Fábio Egito, Oluwasegun M. Adebayo, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 25, 4053–4082, https://doi.org/10.5194/acp-25-4053-2025, https://doi.org/10.5194/acp-25-4053-2025, 2025
Short summary
Short summary
This work explores the dynamics of the momentum and energy of propagating mesospheric gravity waves (GWs). A photometer was used to observe the vertical component of the GWs, whereas the horizontal component was observed by an all-sky imager. Using the parameters from these two instruments and background wind from meteor radar, the momentum flux and potential energy of the GWs were determined and studied. It is noted that the dynamics of the downward-propagating GWs were controlled by observed ducts.
Ana Roberta Paulino, Delis Otildes Rodrigues, Igo Paulino, Lourivaldo Mota Lima, Ricardo Arlen Buriti, Paulo Prado Batista, Aaron Ridley, and Chen Wu
Ann. Geophys., 43, 183–191, https://doi.org/10.5194/angeo-43-183-2025, https://doi.org/10.5194/angeo-43-183-2025, 2025
Short summary
Short summary
Comparisons of wind measurements using two different techniques (ground-based radar and satellite) in Brazil during 2006 were made in order to point out the advantages of each instrument for studies in the mesosphere and upper thermosphere. (i) For short-period variations, the measurements of the satellite were more advantageous. (ii) The monthly climatology using the radar was more appropriate. (iii) For long periods (longer than a few months), both instruments responded satisfactorily.
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025, https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Short summary
New low-cost, off-the-shelf Global Navigation Satellite System (GNSS) receivers enable the estimation of zonal ionospheric irregularity drifts using the scintillation spaced-receiver technique, previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the recorded raw data can be used to estimate irregularity drifts. Further, our observations are consistent with the behavior of an empirical model of the thermospheric winds (HMW14).
Toyese Tunde Ayorinde, Cristiano Max Wrasse, Hisao Takahashi, Luiz Fernando Sapucci, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Ligia Alves da Silva, Patrick Essien, and Anderson Vestena Bilibio
EGUsphere, https://doi.org/10.5194/egusphere-2024-4083, https://doi.org/10.5194/egusphere-2024-4083, 2025
Short summary
Short summary
We studied how the Intertropical Convergence Zone (ITCZ) interacts with atmospheric gravity waves high in the sky and how global climate patterns like El Niño affect them. Using RO, ERA5, and NCEP reanalysis data, we found that the ITCZ shifts with seasons but stays strong year-round, influencing weather and energy flow. Our findings show how climate patterns shape weather systems and help predict changes, improving understanding of the atmosphere and its effects on global climate.
Gabriel Augusto Giongo, Cristiano Max Wrasse, Pierre-Dominique Pautet, José Valentin Bageston, Prosper Kwamla Nyassor, Cosme Alexandre Oliveira Barros Figueiredo, Anderson Vestena Bilibio, Delano Gobbi, and Hisao Takahashi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3344, https://doi.org/10.5194/egusphere-2024-3344, 2024
Short summary
Short summary
A new algorithm for medium-scale gravity waves analysis was developed for studies of gravity waves observed by airglow imaging. With this procedure, observation datasets can be analyzed to extract the gravity waves parameters for climatological purposes. The procedure showed reliable performance and are ready to be used in other observation sites.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Hisao Takahashi, Cosme A. O. B. Figueiredo, Patrick Essien, Cristiano M. Wrasse, Diego Barros, Prosper K. Nyassor, Igo Paulino, Fabio Egito, Geangelo M. Rosa, and Antonio H. R. Sampaio
Ann. Geophys., 40, 665–672, https://doi.org/10.5194/angeo-40-665-2022, https://doi.org/10.5194/angeo-40-665-2022, 2022
Short summary
Short summary
We observed two different wave propagations in the earth’s upper atmosphere: a gravity wave in the mesosphere and the ionospheric disturbances. We investigated the wave propagations by using airglow imaging techniques. It is found that there was a gravity wave generation from the tropospheric convection spot, and it propagated upward in the ionosphere. This reports observational evidence of gravity wave propagation from the troposphere to ionosphere.
Prosper K. Nyassor, Cristiano M. Wrasse, Igo Paulino, Eliah F. M. T. São Sabbas, José V. Bageston, Kleber P. Naccarato, Delano Gobbi, Cosme A. O. B. Figueiredo, Toyese T. Ayorinde, Hisao Takahashi, and Diego Barros
Atmos. Chem. Phys., 22, 15153–15177, https://doi.org/10.5194/acp-22-15153-2022, https://doi.org/10.5194/acp-22-15153-2022, 2022
Short summary
Short summary
This work investigates the sources of concentric gravity waves (CGWs) excited by a moving system of clouds with several overshooting regions on 1–2 October 2019 at São Martinho da Serra. The parameters of these waves were estimated using 2D spectral analysis and their source locations identified using backward ray tracing. Furthermore, the sources of these waves were properly identified by tracking the individual overshooting regions in space and time since the system of clouds was moving.
Ana Roberta Paulino, Fabiano da Silva Araújo, Igo Paulino, Cristiano Max Wrasse, Lourivaldo Mota Lima, Paulo Prado Batista, and Inez Staciarini Batista
Ann. Geophys., 39, 151–164, https://doi.org/10.5194/angeo-39-151-2021, https://doi.org/10.5194/angeo-39-151-2021, 2021
Short summary
Short summary
Long- and short-period oscillations in the lunar semidiurnal tidal amplitudes in the ionosphere derived from the total electron content were investigated over Brazil from 2011 to 2014. The results showed annual, semiannual and triannual oscillations as the dominant components. Additionally, the most pronounced short-period oscillations were observed between 7 and 11 d, which suggest a possible coupling of the lunar tide and planetary waves.
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020, https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Short summary
Solar atmospheric tides are natural oscillations of 24, 12, 8... hours that contribute to the circulation of the atmosphere from low to high altitudes. The Sun heats the atmosphere periodically because, mainly, water vapor and ozone absorb solar radiation between the ground and 50 km height during the day. Tides propagate upward and they can be observed in, for example, the wind field. This work presents diurnal tides observed by meteor radars which measure wind between 80 and 100 km height.
Cited articles
Abalde, J. R., Sahai, Y., Fagundes, P. R., Becker-Guedes, F., Bittencourt, J. A., Pillat, V. G., Lima, W. L. C., Candido, C. M. N., and de Freitas, T. F.: Day-to-day variability in the development of plasma bubbles associated with geomagnetic disturbances, J. Geophys. Res.-Space, 114, A04304, https://doi.org/10.1029/2008JA013788, 2009. a
Abdu, M., Sobral, J., Batista, I., Rios, V., and Medina, C.: Equatorial
spread-F occurrence statistics in the American longitudes: Diurnal, seasonal
and solar cycle variations, Adv. Space Res., 22, 851–854,
https://doi.org/10.1016/S0273-1177(98)00111-2, 1998. a
Abdu, M. A., Kantor, I. J., Batista, I. S., and de Paula, E. R.: East-west
plasma bubble irregularity motion determined from spaced VHF polarimeters:
Implications on velocity shear in the zonal F region bulk plasma motion,
Radio Sci., 20, 111–122, https://doi.org/10.1029/RS020i001p00111, 1985. a
Abdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H.,
Medeiros, A. F., and Trivedi, N. B.: Magnetospheric disturbance induced
equatorial plasma bubble development and dynamics: A case study in Brazilian
sector, J. Geophys. Res.-Space, 108, 1449–1462, https://doi.org/10.1029/2002JA009721, 2003. a
Abdu, M. A., Alam Kherani, E., Batista, I. S., de Paula, E. R., Fritts, D. C., and Sobral, J. H. A.: Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign, Ann. Geophys., 27, 2607–2622, https://doi.org/10.5194/angeo-27-2607-2009, 2009. a
Aswathy, R. and Manju, G.: The post sunset equatorial F-region zonal drift
variability and its linkage with equatorial spread F onset and duration over
Indian longitudes, Adv. Space Res., 67, 1254–1260, https://doi.org/10.1016/j.asr.2020.11.024, 2021. a
Bates, D. R.: Recombination in the normal E and F layers of the ionosphere,
Planet. Space Sci., 36, 55–63, https://doi.org/10.1016/0032-0633(88)90146-8, 1988. a
Chapagain, N. P., Makela, J. J., Meriwether, J. W., Fisher, D. J., Buriti, R. A., and Medeiros, A. F.: Comparison of nighttime zonal neutral winds and
equatorial plasma bubble drift velocities over Brazil, J. Geophys.
Res.-Space, 117, A06309, https://doi.org/10.1029/2012JA017620, 2012. a
Chapman, S. and Lindzen, R. S.: Atmospheric tides; thermal and gravitational,
Gordon and Breach, New York, 1970. a
Chau, J. L., Hoffmann, P., Pedatella, N. M., Matthias, V., and Stober, G.:
Upper mesospheric lunar tides over middle and high latitudes during sudden
stratospheric warming events, J. Geophys. Res.-Space, 120, 3084–3096, https://doi.org/10.1002/2015JA020998, 2015. a
Chu, F. D., Liu, J. Y., Takahashi, H., Sobral, J. H. A., Taylor, M. J., and
Medeiros, A. F.: The climatology of ionospheric plasma bubbles and
irregularities over Brazil, Ann. Geophys., 23, 379–384,
https://doi.org/10.5194/angeo-23-379-2005, 2005. a
de Paula, E. R. and Hysell, D. L.: The São Luís 30 MHz coherent
scatter ionospheric radar: System description and initial results, Radio Sci., 39, RS1014, https://doi.org/10.1029/2003RS002914, 2004. a
Dungey, J.: Convective diffusion in the equatorial F region, J. Atmos. Terr. Phys., 9, 304–310, https://doi.org/10.1016/0021-9169(56)90148-9, 1956. a
Eccles, V., Rice, D. D., Sojka, J. J., Valladares, C. E., Bullett, T., and
Chau, J. L.: Lunar atmospheric tidal effects in the plasma drifts observed by
the Low-Latitude Ionospheric Sensor Network, J. Geophys. Res.-Space, 116, A07309, https://doi.org/10.1029/2010JA016282, 2011. a, b, c
Fagundes, P., Sahai, Y., and Takahashi, H.: Investigation of OI 557.7 nm and OI 630.0 nm nightglow intensity ratios during the occurrence of equatorial
F-region plasma bubbles, J. Atmos. Terr. Phys., 57, 929–932, https://doi.org/10.1016/0021-9169(94)00064-U, 1995. a
Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F.: The prereversal
enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. Res.-Space, 91, 13723–13728, https://doi.org/10.1029/JA091iA12p13723, 1986. a
Fejer, B. G. and Tracy, B. D.: Lunar tidal effects in the electrodynamics of
the low latitude ionosphere, J. Atmos. Sol.-Terr. Phys., 103, 76–82, https://doi.org/10.1016/j.jastp.2013.01.008, 2013. a
Fejer, B. G., de Paula, E. R., González, S. A., and Woodman, R. F.: Average vertical and zonal F region plasma drifts over Jicamarca, J. Geophys. Res.-Space, 96, 13901–13906, https://doi.org/10.1029/91JA01171, 1991. a
Fejer, B. G., de Paula, E. R., Scherliess, L., and Batista, I. S.: Incoherent
scatter radar, ionosonde, and satellite measurements of equatorial F region
vertical plasma drifts in the evening sector, Geophys. Res. Lett., 23, 1733–1736, https://doi.org/10.1029/96GL01847, 1996. a
Fejer, B. G., Tracy, B. D., Olson, M. E., and Chau, J. L.: Enhanced lunar
semidiurnal equatorial vertical plasma drifts during sudden stratospheric
warmings, Geophys. Res. Lett., 38, L21104, https://doi.org/10.1029/2011GL049788, 2011. a
Forbes, J. M.: Atmospheric tide: 2. The solar and lunar semidiurnal components, J. Geophys. Res.-Space, 87, 5241–5252, https://doi.org/10.1029/JA087iA07p05241, 1982. a, b
Forbes, J. M. and Zhang, X.: Lunar tide amplification during the January 2009
stratosphere warming event: Observations and theory, J. Geophys. Res.-Space, 117, A12312, https://doi.org/10.1029/2012JA017963, 2012. a
Forbes, J. M. and Zhang, X.: Lunar Tide in the F Region Ionosphere, J. Geophys. Res.-Space, 124, 7654–7669, https://doi.org/10.1029/2019JA026603, 2019. a, b
Forbes, J. M., Zhang, X., Bruinsma, S., and Oberheide, J.: Lunar semidiurnal
tide in the thermosphere under solar minimum conditions, J. Geophys. Res.-Space, 118, 1788–1801, https://doi.org/10.1029/2012JA017962, 2013. a
Forbes, J. M., Zhang, X., and Bruinsma, S. L.: New perspectives on thermosphere tides: 2. Penetration to the upper thermosphere, Earth Planets Space, 66, 122, https://doi.org/10.1186/1880-5981-66-122, 2014. a, b
Fritts, D. C., Abdu, M. A., Batista, B. R., Batista, I. S., Batista, P. P.,
Buriti, R., Clemesha, B. R., Dautermann, T., de Paula, E. R., Fechine, B. J.,
Fejer, B. G., Gobbi, D., Haase, J., Kamalabadi, F., Kherani, E. A., Laughman,
B., Lima, P. P., Liu, H.-L., Medeiros, A., Pautet, P.-D., Riggin, D. M.,
Rodrigues, F. S., São Sabbas, F., Sobral, J. H. A., Stamus, P., Takahashi, H., Taylor, M. J., Vadas, S. L., Vargas, F., and Wrasse, C. M.: Overview and summary of the Spread F Experiment (SpreadFEx), Ann. Geophys., 27, 2141–2155, https://doi.org/10.5194/angeo-27-2141-2009, 2009. a
Garcia, F. J., Taylor, M. J., and Kelley, M. C.: Two-dimensional spectral
analysis of mesospheric airglow image data, Appl. Optics, 36, 7374–7385,
https://doi.org/10.1364/AO.36.007374, 1997. a
Haerendel, G., Eccles, J. V., and Çakir, S.: Theory for modeling the
equatorial evening ionosphere and the origin of the shear in the horizontal
plasma flow, J. Geophys. Res.-Space, 97, 1209–1223, https://doi.org/10.1029/91JA02226, 1992. a
Huang, C.-S., de La Beaujardière, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., Hairston, M. R., and Pfaff, R. F.: Large-scale quasiperiodic plasma bubbles: C/NOFS observations and causal mechanism, J. Geophys. Res.-Space, 118, 3602–3612, https://doi.org/10.1002/jgra.50338, 2013. a
Kudeki, E., Akgiray, A., Milla, M., Chau, J. L., and Hysell, D. L.: Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves, J. Atmos. Sol.-Terr. Phys., 69, 2416–2427,
https://doi.org/10.1016/j.jastp.2007.04.012, 2007. a
Li, G., Ning, B., Liu, L., Wan, W., and Liu, J. Y.: Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia, Ann. Geophys., 27, 303–312, https://doi.org/10.5194/angeo-27-303-2009, 2009. a
Liu, H.-L.: Day-to-Day Variability of Prereversal Enhancement in the Vertical
Ion Drift in Response to Large-Scale Forcing From the Lower Atmosphere, Space
Weather, 18, e2019SW002334, https://doi.org/10.1029/2019SW002334, 2020. a
Lühr, H., Siddiqui, T. A., and Maus, S.: Global characteristics of the lunar tidal modulation of the equatorial electrojet derived from CHAMP
observations, Ann. Geophys., 30, 527–536, https://doi.org/10.5194/angeo-30-527-2012, 2012. a
Maute, A., Fejer, B. G., Forbes, J. M., Zhang, X., and Yudin, V.: Equatorial
vertical drift modulation by the lunar and solar semidiurnal tides during the
2013 sudden stratospheric warming, J. Geophys. Res.-Space, 121, 1658–1668, https://doi.org/10.1002/2015JA022056, 2016. a
Mendillo, M. and Baumgardner, J.: Airglow characteristics of equatorial plasma depletions, J. Geophys. Res.-Space, 87, 7641–7652,
https://doi.org/10.1029/JA087iA09p07641, 1982. a
Park, J., Lühr, H., Kunze, M., Fejer, B. G., and Min, K. W.: Effect of
sudden stratospheric warming on lunar tidal modulation of the equatorial
electrojet, J. Geophys. Res.-Space, 117, A03306, https://doi.org/10.1029/2011JA017351, 2012. a
Paulino, A., Batista, P., Clemesha, B., Buriti, R., and Schuch, N.: An
enhancement of the lunar tide in the MLT region observed in the Brazilian
sector during 2006 SSW, J. Atmos. Sol.-Terr. Phys., 90–91, 97–103, https://doi.org/10.1016/j.jastp.2011.12.015, 2012. a
Paulino, A., Batista, P., Lima, L., Clemesha, B., Buriti, R., and Schuch, N.:
The lunar tides in the mesosphere and lower thermosphere over Brazilian
sector, J. Atmos. Sol.-Terr. Phys., 133, 129–138, https://doi.org/10.1016/j.jastp.2015.08.011, 2015. a
Paulino, A. R., Batista, P. P., and Batista, I. S.: A global view of the
atmospheric lunar semidiurnal tide, J. Geophys. Res.-Atmos., 118, 13128–13139, https://doi.org/10.1002/2013JD019818, 2013. a, b
Paulino, A. R., Lima, L. M., Almeida, S. L., Batista, P. P., Batista, I. S.,
Paulino, I., Takahashi, H., and Wrasse, C. M.: Lunar tides in total electron
content over Brazil, J. Geophys. Res.-Space, 122, 7519–7529, https://doi.org/10.1002/2017JA024052, 2017. a
Paulino, I., Medeiros, A., Buriti, R., Sobral, J., Takahashi, H., and Gobbi,
D.: Optical observations of plasma bubble westward drifts over Brazilian
tropical region, J. Atmos. Sol.-Terr. Phys., 72, 521–527, https://doi.org/10.1016/j.jastp.2010.01.015, 2010. a
Paulino, I., Takahashi, H., Medeiros, A., Wrasse, C., Buriti, R., Sobral, J.,
and Gobbi, D.: Mesospheric gravity waves and ionospheric plasma bubbles
observed during the COPEX campaign, J. Atmospheric Sol.-Terr. Phys., 73, 1575–1580, https://doi.org/10.1016/j.jastp.2010.12.004, 2011b. a, b
Paulino, I., Paulino, A. R., Cueva, R. Y. C., Agyei-Yeboah, E., Buriti, R. A., Takahashi, H., Wrasse, C. M., Santos, A. M., Fragoso de Medeiros, A., and
Batista, I. S.: Semimonthly oscillation observed in the start times of
equatorial plasma bubbles, Ann. Geophys., 38, 437–443,
https://doi.org/10.5194/angeo-38-437-2020, 2020. a
Pedatella, N. M., Liu, H.-L., Richmond, A. D., Maute, A., and Fang, T.-W.:
Simulations of solar and lunar tidal variability in the mesosphere and lower
thermosphere during sudden stratosphere warmings and their influence on the
low-latitude ionosphere, J. Geophys. Res.-Space, 117, A08326, https://doi.org/10.1029/2012JA017858, 2012. a
Pimenta, A., Fagundes, P., Bittencourt, J., and Sahai, Y.: Relevant aspects of equatorial plasma bubbles under different solar activity conditions, Adv. Space Res., 27, 1213–1218, https://doi.org/10.1016/S0273-1177(01)00200-9, 2001. a
Pimenta, A., Bittencourt, J., Fagundes, P., Sahai, Y., Buriti, R., Takahashi,
H., and Taylor, M.: Ionospheric plasma bubble zonal drifts over the tropical
region: a study using OI 630 nm emission all-sky images, J. Atmos. Sol.-Terr. Phys., 65, 1117–1126, https://doi.org/10.1016/S1364-6826(03)00149-4, 2003. a
Saito, S. and Maruyama, T.: Effects of transequatorial thermospheric wind on
plasma bubble occurrences, J. Natl. Inst. Inform. Commun. Technol., 56, 257–266, 2009. a
Santos, A. M., Abdu, M. A., Souza, J. R., Sobral, J. H. A., Batista, I. S., and Denardini, C. M.: Storm time equatorial plasma bubble zonal drift reversal due to disturbance Hall electric field over the Brazilian region, J. Geophys. Res.-Space, 121, 5594–5612, https://doi.org/10.1002/2015JA022179, 2016. a
Sobral, J., Abdu, M., Takahashi, H., Taylor, M., de Paula, E., Zamlutti, C.,
de Aquino, M., and Borba, G.: Ionospheric plasma bubble climatology over
Brazil based on 22 years (1977–1998) of 630 nm airglow observations, J. Atmos. Sol.-Terr. Phys., 64, 1517–1524, https://doi.org/10.1016/S1364-6826(02)00089-5, 2002. a
Sobral, J. H. A., Abdu, M. A., and Batista, I. S.: Airglow studies on
the ionosphere dynamics over low latitude in Brazil, Ann. Geophys., 36, 199–204, 1980a. a
Sobral, J. H. A., Abdu, M. A., Zamlutti, C. J., and Batista, I. S.: Association between plasma bubble irregularities and airglow disturbances over Brazilian low latitudes, Geophys. Res. Lett., 7, 980–982,
https://doi.org/10.1029/GL007i011p00980, 1980b. a
Stening, R. J.: Lunar tide in the equatorial electrojet in relation to
stratospheric warmings, J. Geophys. Res.-Space, 116, A12315, https://doi.org/10.1029/2011JA017047, 2011. a
Stening, R. J. and Fejer, B. G.: Lunar tide in the equatorial F region vertical ion drift velocity, J. Geophys. Res.-Space, 106, 221–226, https://doi.org/10.1029/2000JA000175, 2001. a, b
Stening, R. J., Richmond, A. D., and Roble, R. G.: Lunar tides in the
Thermosphere-Ionosphere-Electrodynamics General Circulation Model, J. Geophys. Res.-Space, 104, 1–13, https://doi.org/10.1029/98JA02663, 1999. a, b
Takahashi, H., Taylor, M., Sobral, J., Medeiros, A., Gobbi, D., and Santana,
D.: Fine structure of the ionospheric plasma bubbles observed by the OI 6300 and 5577 airglow images, Adv. Space Res., 27, 1189–1194,
https://doi.org/10.1016/S0273-1177(01)00159-4, 2001. a
Takahashi, H., Taylor, M. J., Pautet, P.-D., Medeiros, A. F., Gobbi, D.,
Wrasse, C. M., Fechine, J., Abdu, M. A., Batista, I. S., Paula, E., Sobral, J. H. A., Arruda, D., Vadas, S. L., Sabbas, F. S., and Fritts, D. C.:
Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign, Ann. Geophys., 27, 1477–1487, https://doi.org/10.5194/angeo-27-1477-2009, 2009. a
Tsunoda, R. T.: Day-to-day variability in equatorial spread F: Is there some
physics missing?, Geophys. Res. Lett., 33, L16106, https://doi.org/10.1029/2006GL025956, 2006. a
Tsunoda, R. T., Saito, S., and Nguyen, T. T.: Post-sunset rise of equatorial F layer – or upwelling growth?, Prog. Earth Planet. Sci., 5, 22, https://doi.org/10.1186/s40645-018-0179-4, 2018. a
Weber, E. J., Buchau, J., Eather, R. H., and Mende, S. B.: North-south aligned equatorial airglow depletions, J. Geophys. Res.-Space, 83, 712–716, https://doi.org/10.1029/JA083iA02p00712, 1978.
a
Woodman, R. F. and La Hoz, C.: Radar observations of F region equatorial
irregularities, J. Geophys. Res., 81, 5447–5466, https://doi.org/10.1029/JA081i031p05447, 1976. a
Yamazaki, Y.: Solar and lunar ionospheric electrodynamic effects during
stratospheric sudden warmings, J. Atmos. Sol.-Terr. Phys., 119, 138–146, https://doi.org/10.1016/j.jastp.2014.08.001, 2014. a
Yamazaki, Y. and Kosch, M. J.: Geomagnetic lunar and solar daily variations
during the last 100 years, J. Geophys. Res.-Space, 119, 6732–6744, https://doi.org/10.1002/2014JA020203, 2014. a
Yamazaki, Y., Richmond, A. D., and Yumoto, K.: Stratospheric warmings and the
geomagnetic lunar tide: 1958–2007, J. Geophys. Res.-Space, 117, A04301, https://doi.org/10.1029/2012JA017514, 2012. a
Yizengaw, E. and Carter, B. A.: Longitudinal, seasonal and solar cycle
variation in lunar tide influence on the equatorial electrojet, Ann. Geophys., 35, 525–533, https://doi.org/10.5194/angeo-35-525-2017, 2017. a
Zhang, J. T., Forbes, J. M., Zhang, C. H., Doornbos, E., and Bruinsma, S. L.:
Lunar tide contribution to thermosphere weather, Space Weather, 12, 538–551,
https://doi.org/10.1002/2014SW001079, 2014. a, b
Short summary
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma bubble (EPB) zonal drifts over Brazil from 2000 to 2007. On average, the M2 contributes 5.6 % to the variability of the EPB zonal drifts. A strong seasonal and solar cycle dependency was also observed, the amplitudes of the M2 being stronger during the summer and high solar activity periods.
In the present work, the lunar semidiurnal tide (M2) was investigated in the equatorial plasma...
Special issue