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Abstract. Using OI6300 airglow images collected over São
João do Cariri (7.4◦ S, 36.5◦W) from 2000 to 2007, the equa-
torial plasma bubble (EPB) zonal drifts were calculated. A
strong day-to-day variability was observed in the EPB zonal
drifts, which is directly associated with the very complex
dynamics of the nighttime thermosphere–ionosphere system
near the Equator. The present work investigated the contribu-
tion of the semidiurnal lunar tideM2 for the EPB zonal drifts.
TheM2 presented an amplitude of 3.1 m s−1 in the EPB zonal
drifts, which corresponds to 5.6 % of the average drifts. The
results showed that theM2 amplitudes in the EPB zonal drifts
were solar cycle and seasonally dependent. The amplitude of
the M2 was stronger during the high solar activity, reaching
over 10 % of the EPB zonal drift average. Regarding the sea-
sons, during the Southern Hemisphere summer, the M2 am-
plitude was twice as large (12 %) compared to the equinox
ones. The seasonality agrees with other observations of the
M2 in the ionospheric parameters such as vertical drifts and
electron concentration, for instance. On the other hand, the
very large M2 amplitudes found during the high solar activ-
ity agree with previous observations of the lunar tide in the
ionospheric E region.

1 Introduction

Equatorial plasma bubbles (EPBs) appear during the night-
time near the magnetic equator and extend across the trop-
ics along the magnetic field lines (e.g., Weber et al., 1978).
EPBs can be understood as a depletion of the plasma density

compared to the background ionosphere (e.g., Sobral et al.,
1980b).

Airglow emissions from the thermosphere can be used to
detect and study the morphology and dynamics of EPBs (e.g.,
Sobral et al., 1980a; Mendillo and Baumgardner, 1982; Fa-
gundes et al., 1995; Takahashi et al., 2001). Additionally,
as the EPBs contain plasma irregularities, radio techniques
have also been used to investigate them (e.g., Woodman and
La Hoz, 1976; Abdu et al., 1985, 1998; Fejer et al., 1996;
de Paula and Hysell, 2004; Chu et al., 2005).

In the equatorial ionosphere, the zonal electric field con-
trols the vertical movement of the F layer. In general, dur-
ing the daytime the plasma moves upward, while during the
nighttime, the motion is downward. However, after the sun-
set, the pre-reversal enhancement (PRE) can occur, which
is a rapid upward movement of the F region before it re-
verses, i.e., before the motion becomes downward (Farley
et al., 1986). The PRE has well-defined temporal dependen-
cies, being more intense during the summer and with high
solar activity (Fejer et al., 1991).

Besides the PRE, after the sunset, there is a quick recom-
bination in the ionospheric E region (e.g., Bates, 1988), pro-
ducing a strong vertical gradient of plasma with high-density
levels in the F region. This scenario is very favorable to the
Rayleigh–Taylor instability (RTI) development, which has
been recognized as the main mechanism for generating EPBs
(Dungey, 1956; Haerendel et al., 1992). Even so, the RTI
theory requires a seeding process in order to initiate the in-
stability. Although gravity waves, thermospheric wind, post-
sunset vortex, large-scale waves, and magnetic disturbances
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have been pointed out as possible seedings for EPBs (e.g.,
Kudeki et al., 2007; Abdu et al., 2009; Abalde et al., 2009;
Saito and Maruyama, 2009; Takahashi et al., 2009; Paulino
et al., 2011a; Huang et al., 2013; Tsunoda et al., 2018),
this topic continues to be under scientific investigation (e.g.,
Fritts et al., 2009, and references therein).

EPBs move zonally eastward under quiet magnetic con-
ditions during the nighttime, reaching high drift values dur-
ing the evening hours (e.g., Pimenta et al., 2003; Paulino
et al., 2011b). Clear seasonal and solar activity dependen-
cies were also observed (e.g., Pimenta et al., 2001; Paulino
et al., 2011b). In contrast, during the magnetic storms, this
behavior can be totally disturbed; i.e., the drifts can inclu-
sively reverse to the west (e.g., Abdu et al., 2003; Li et al.,
2009; Paulino et al., 2010; Santos et al., 2016).

The PRE (vertical motion) and the zonal drifts present
a strong day-to-day variability in the equatorial ionosphere
(e.g., Liu, 2020; Aswathy and Manju, 2021, and references
therein). The understanding of the short-period variability
represents one of the biggest challenges in atmospheric and
space science (e.g., Tsunoda, 2006). Among the features
that can produce day-to-day variabilities, the lunar tide ap-
peared to be relevant after the work by Stening and Fejer
(2001), which simulated the effects of the semidiurnal lu-
nar tide (M2) on the vertical motion of the F region and
PRE. According to them, the M2 can either change the lo-
cal time of PRE or its amplitude. The M2 has a period of
12.43 h, and it is the main lunar tide periodicity. It is pri-
marily produced in the lower levels of the atmosphere due to
the gravitational interaction of the Sun–Earth–Moon system,
and it can propagate upward into the atmosphere–ionosphere
(Chapman and Lindzen, 1970). The M2 is composed of mi-
grating components, which follow the motion of the Moon,
and non-migrating components, which can propagate to the
east or west.

As a direct response to the EPBs and M2 interaction,
changes of ∼14 min in the starting time of the EPBs were
observed over the Brazilian equatorial region (Paulino et al.,
2020) along almost one solar cycle. The present article aims
to investigate, for the first time, the M2 effects on the EPB
zonal drifts derived from airglow images. It used measure-
ment over São João do Cariri (7.4◦ S, 36.5◦W) from 2000
to 2007, covering periods of high and low solar activities. In
addition, the seasonality is going to be studied as well.

2 Observations and methods

An all-sky airglow imager was deployed at São João do
Cariri in September 2000 to observe the nighttime airglow.
The OI6300 emissions were used to study equatorial plasma
bubbles. This imager operated up to December 2010, and
it was equipped with a CCD camera and filter wheel. The
CCD had a resolution of 1024× 1024 pixels binned on-chip
down to 512× 512 to enhance the signal-to-noise ratio. The

CCD had high linearity (0.05 %), high quantum efficiency,
low dark noise (five electrons per pixel per second), and low
readout noise (15-electron root mean square – rms). In ad-
dition, the optical system had a fisheye lens and a telecen-
tric system of lenses, allowing the record of the OI6300 air-
glow images, with 90 s of time integration. The filter wheel
could select five other emissions, but only the OI6300 fil-
ter was used in the present work to calculate the EPB zonal
drifts. The observations were made between September 2000
and April 2007, centered at new Moon periods, resulting in
13 nights of data per month. This limitation of the observa-
tions is due to the strong brightness of the Moon, which does
not allow us to make good-quality images when the Moon is
above the horizon.

The collected images were unwarped to the geographic co-
ordinates with a spatial resolution of 512 km× 512 km ac-
cording to the method described by Garcia et al. (1997).
Then, the EPB zonal drifts were calculated using a cross-
correlation between two lines of consecutive images. The lag
between the lines was assumed to be the displacement of the
structures within the time interval recorded between the two
images. With this information, it was possible to calculate the
EPB zonal drifts across all latitudes covered by the field of
view of the unwarped images (see Paulino et al., 2011a, for
further details).

Only quiet magnetic nights were used; i.e., the EPB zonal
drifts were calculated considering nights when the Dst index
is higher than−30 nT and that do not have any characteristics
of magnetic storms (Paulino et al., 2011a).

The amplitude of the semidiurnal lunar tide oscillation in
the EPB zonal drifts was calculated by converting the solar
local time (t) to the lunar local time (τ ), i.e., τ = t−ν, where
ν is the age of the Moon set to be equal to 0 at the new Moon
(see Forbes et al., 2013; Paulino et al., 2017, for further de-
tails).

To investigate a possible influence of the solar cycle on the
strength of M2 in EPB zonal drifts, the period of observation
was divided into high solar activity (HSA) and low solar ac-
tivity (LSA). The classification was done using the F10.7 cm
solar flux as a proxy to the solar activity. The nights with so-
lar flux greater than 140×10−22 W m−2 Hz−1 were consid-
ered to be HSA. In contrast, the nights with solar flux lower
than 80× 10− 22 W m−2 Hz−1 were supposed to be LSA.
These criteria make the HSA period from September 2000 to
December 2002 and the LSA period from January 2006 to
April 2007.

Additionally, the summer period includes the months from
December to February. The equinox period was set for
March, April, May, September, October, and November for
the whole period of observations. Please note that during the
winter period, the EPBs rarely appear (Sobral et al., 2002),
and thus the winter months were not used in these analyses.
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Figure 1. EPB zonal drift (stars) obtained from airglow images and
semidiurnal lunar tide fits (solid line) as a function of lunar time for
the whole observed period. Error bars represent the standard devia-
tion at each hourly bin. The estimated amplitude of a 12 oscillation
is shown on the top with its uncertainty.

3 Results

Figure 1 shows the hourly binned average of the EPB zonal
drifts for the whole observed period as a function of the lu-
nar local time. The error bars indicate the standard deviation,
suggesting a strong variability of calculated EPB zonal drifts.
The solid line represents the least-square best fit for 12 h os-
cillation, corresponding to the semidiurnal lunar tide period
in lunar time. Although the observations were concentrated
around the new Moon period, it can be observed that one en-
tire cycle of the oscillation can be reproduced. In addition,
the long period of observations used makes the fit statisti-
cally representative. One can see that the solid line fits very
well to the data, indicating that the lunar semidiurnal tide
was present during the whole studied period, with an ampli-
tude of 3.1 m s−1 corresponding to 5.6 % of the zonal drift
average. Another relevant aspect of being considered is that,
although the amplitude is relatively small, this oscillation is
always present in data producing an interesting day-to-day
variability in the dynamics of the EPBs.

Figure 2 shows the EPB zonal drift as a function of the
lunar time separated by seasons. Again, the solid lines rep-
resent the fits for lunar tide. Figure 2a shows the results for
the summer period considered in this analysis, the months
from December to February for all the studied years. The
calculated M2 amplitude was 7.2 m s−1, representing 12.1 %
of the zonal drift average. Furthermore, an almost perfect fit
to the data was observed, which suggests that M2 is more
pronounced in the variability of the EPB zonal drifts during
the summer.

Figure 2. EPB zonal drift (stars) for the summer (stars in panel a)
and equinox (open diamonds in panel b) obtained from airglow im-
ages and semidiurnal lunar tide fit (red line in panel a and blue line
in panel b) as a function of lunar time. Error bars represent the stan-
dard deviation at each hourly bin. The estimated amplitude and its
uncertainty for a 12 h oscillation are shown at the top of each panel.

Figure 2b shows how the M2 acted during the equinox
months (March to May for the falls, September to Novem-
ber for the springs). The amplitude of semidiurnal lunar tide
oscillation was 3.0 m s−1, which is about 5.7 % of the zonal
drift average. The fit was not so good when compared to the
summer period as well.

Figure 3 shows the M2 amplitude on EPB zonal drifts
considering the (a) HSA and (b) LSA. The M2 amplitude
was over 10 % of the zonal drift average for the HSA, i.e.,
5.9 m s−1, while for the LSA the amplitude was calculated
as 1.2 m s−1 (2.3 % of the average). Additionally, the least-
square best fit was better for the HSA activity than for the
LSA, which indicates that the M2 found better conditions to
propagate in the thermosphere–ionosphere during the high
solar activity. It is important to note that the HSA period used
27 months and that the LSA period used 16 months. Even so,
the period chosen for LSA is enough to retrieve the M2 from
the data.
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Figure 3. EPB zonal drift (stars) for the HSA (stars in panel a) and
LSA (open diamonds in panel b) obtained from airglow images and
the semidiurnal lunar tide fit (red line in panel a and blue line in
panel b) as a function of lunar time. Error bars represent the stan-
dard deviation at each hourly bin. The estimated amplitude and its
uncertainty for a 12 h oscillation are shown at the top of each panel.

4 Discussion and summary

The presence of M2 in the thermosphere–ionosphere system
can be understood as a combination of the lunar tide in the
E region (geomagnetic tide) and F region (ionospheric tide)
of the ionosphere. The former comes from electrical currents
in the E region, in this case the neutral wind, primarily due
to the tides in the E region, generating polarization electric
fields, which can be transmitted to the F region, producing
drifts due to the E-region dynamo. The latter is due to the
neutral wind variation caused by the wind in the F region
which generates polarization electric fields through the F-
region dynamo.

Stening et al. (1999) showed the importance of this cou-
pling from simulation in a general circulation model, and Ec-
cles et al. (2011) showed observational results and simulation
of the strong connection between the geomagnetic and iono-
spheric semidiurnal lunar tide. A recent and very compre-
hensive explanation of the lunar tide in the ionosphere was
published by Forbes and Zhang (2019).

During the nighttime near the Equator, in general, the F re-
gion of the ionosphere drifts downward and eastward under
magnetic quiet conditions. The zonal drift of the plasma is
almost equal to the neutral zonal wind because the vertical
electric field, which induces the zonal plasma drifts, is driven
through the F-region dynamo (e.g., Chapagain et al., 2012).
In this case, the contribution of the geomagnetic tide seems
to be small, primarily after midnight.

Based on these aspects, it is expected that the results from
Fig. 1 will represent mostly the contribution of the iono-
spheric tide. Thus, the value of the amplitude of ∼ 3.1 m s−1

should be compatible with the amplitude of the lunar tide in
the thermospheric zonal wind. Zhang et al. (2014) showed
that the M2 presented an amplitude of a few meters per sec-
ond around the Equator in the zonal wind measured from
the Gravity Field and Steady-State Ocean Circulation Ex-
plorer (GOCE) satellite. Additionally, they showed that the
contribution of the ionospheric tide to the M2 is larger near
the Equator as compared to the geomagnetic contribution
from the space perturbations. Forbes (1982), extended in
Forbes et al. (2014), showed that the semidiurnal tide can
propagate directly into the thermosphere, primarily the com-
ponents with long vertical wavelengths, which could explain
the presence of this oscillation in the thermosphere/EPB
zonal drifts.

Regarding the seasonal results retrieved from Fig. 2, i.e.,
during the summer, the M2 amplitude was larger in the EPB
zonal drifts than during the equinoxes. The amplitude of the
M2 in the zonal wind from the GOCE was large in January
and February in the equatorial zone, and this behavior was
also predicted by the Global Scale Wave Model (Zhang et al.,
2014). Additionally, the M2 amplitudes have been studied in
the vertical plasma drifts in the equatorial region (e.g., Sten-
ing and Fejer, 2001; Fejer and Tracy, 2013), and the results
showed a similar seasonal dependency, i.e., large amplitudes
during the Southern Hemisphere summer.

A full explanation for the seasonal variation in theM2 am-
plitudes in EPB zonal drift is quite complex due to the com-
plexity of the dynamics involved in the motion of the F-
region plasma, which is strictly related to the E-region dy-
namo, primarily during the daytime. The M2 is mainly com-
posed of the migrating component with a secondary contribu-
tion of the non-migrating ones, which can play an important
role in the global structure of the lunar tide (Paulino et al.,
2013). Maybe better conditions for propagation of some tidal
non-migrating components could be the reason for the en-
hancement of M2 in zonal and vertical drifts. This hypoth-
esis could be sustained by the observed large M2 ampli-
tudes in the mesosphere and lower-thermosphere tempera-
tures (Paulino et al., 2013) and zonal wind (Paulino et al.,
2015). Forbes and Zhang (2019) showed large M2 ampli-
tudes in the electron concentration during the summer; how-
ever, there were slight amplitudes near the Equator. Stening
et al. (1999) also found large amplitudes in the vertical drift
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during the Southern Hemisphere summer, primarily in the
nighttime period.

Furthermore, sudden stratospheric warmings, which are
more frequently observed during the Southern Hemisphere
summer, have been pointed out as a mechanism capable of
enhancing the amplitudes of semidiurnal tides in the equa-
torial region (e.g., Fejer et al., 2011; Stening, 2011; Forbes
and Zhang, 2012; Park et al., 2012; Paulino et al., 2012;
Pedatella et al., 2012; Yamazaki et al., 2012; Chau et al.,
2015; Maute et al., 2016). During the period of this study,
four sudden stratospheric warmings were observed (see Ta-
ble 2 of Yamazaki, 2014). Thus, it could also contribute to
the M2 amplitudes in the F-region drifts during the Southern
Hemisphere summer.

Although in the equatorial region, the neutral winds are
less dependent on the solar cycle, consequently, one could
expect that the lunar tide will not present a reasonable solar
cycle dependency. However, the results from Fig. 3 showed
the M2 amplitudes in the EPB zonal drifts to be 4 times
larger during the HSA. It is expected that our results will
have a weak influence on the E region dynamo because dur-
ing the nighttime the recombination acts quickly to suppress
the E region. Complementarily, it is established that the ver-
tical penetration of the semidiurnal lunar tide into the iono-
sphere from the E region depends on the solar cycle due to
the molecular viscosity, which filters some wave components
with small vertical wavelengths (Forbes, 1982; Forbes et al.,
2014). Yamazaki and Kosch (2014) showed a clear solar de-
pendence of the geomagnetic lunar tide over the last century,
and other works have also shown solar dependence of the
lunar tide modulation in the equatorial electrojet (e.g., Ec-
cles et al., 2011; Lühr et al., 2012; Yizengaw and Carter,
2017). Additionally, Eccles et al. (2011) showed M2 oscil-
lation modulation parameters of the F region as well. Those
results contribute to understanding that the lunar tide is solar
dependent in some ionospheric parameters. Thus, these are
reasons to believe that the M2 in the EPB zonal drifts can
also be solar dependent.

The present work showed that the M2 modulated the EPB
zonal drifts in the equatorial region over Brazil from 2000
to 2007, and the main results are summarized as follows.

– The amplitude of the semidiurnal lunar tide in the equa-
torial plasma bubble zonal drifts was 3.1 m s−1, which
is 5.6 % of the mean drifts.

– A clear seasonal variability for the M2 amplitudes was
observed, with high values during the summer of the
Southern Hemisphere when they were compared to the
equinox months.

– The amplitudes of the semidiurnal lunar tide in the
equatorial plasma bubble zonal drifts were solar cycle
dependent, reaching values 4 times larger during the
high solar activity.
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