Articles | Volume 38, issue 4
https://doi.org/10.5194/angeo-38-845-2020
https://doi.org/10.5194/angeo-38-845-2020
Regular paper
 | 
14 Jul 2020
Regular paper |  | 14 Jul 2020

Horizontal electric fields from flow of auroral O+(2P) ions at sub-second temporal resolution

Sam Tuttle, Betty Lanchester, Björn Gustavsson, Daniel Whiter, Nickolay Ivchenko, Robert Fear, and Mark Lester

Related authors

Effect of Ionospheric Variability on the Electron Energy Spectrum estimated from Incoherent Scatter Radar Measurements
Oliver Stalder, Björn Gustavsson, and Ilkka Virtanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2340,https://doi.org/10.5194/egusphere-2025-2340, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Time-dependent modeling of Alfvénic precipitation observed in the ionosphere
Etienne Gavazzi, Andres Spicher, Björn Gustavsson, James Clemmons, Robert Pfaff, and Douglas Rowland
EGUsphere, https://doi.org/10.5194/egusphere-2025-2098,https://doi.org/10.5194/egusphere-2025-2098, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Joint observations of oxygen atmospheric band emissions using OSIRIS and the MATS satellite
Björn Linder, Jörg Gumbel, Donal P. Murtagh, Linda Megner, Lukas Krasauskas, Doug Degenstein, Ole Martin Christensen, and Nickolay Ivchenko
EGUsphere, https://doi.org/10.5194/egusphere-2025-493,https://doi.org/10.5194/egusphere-2025-493, 2025
Short summary
The MATS satellite: Limb image data processing and calibration
Linda Megner, Jörg Gumbel, Ole Martin Christensen, Björn Linder, Donal Patrick Murtagh, Nickolay Ivchenko, Lukas Krasauskas, Jonas Hedin, Joachim Dillner, Gabriel Giono, Georgi Olentsenko, Louis Kern, and Jacek Stegman
EGUsphere, https://doi.org/10.5194/egusphere-2025-265,https://doi.org/10.5194/egusphere-2025-265, 2025
Short summary
Simulation of interferometric imaging with EISCAT_3D for fine-scale in-beam incoherent scatter spectra measurements
Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, Matthew Zettergren, John Swoboda, Ilkka Virtanen, Spencer M. Hatch, and Karl M. Laundal
Ann. Geophys., 43, 99–113, https://doi.org/10.5194/angeo-43-99-2025,https://doi.org/10.5194/angeo-43-99-2025, 2025
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Electric fields and currents
Determination of vertical profiles of shell currents in the ionosphere
Evgeny Romashets and Marek Vandas
Ann. Geophys., 43, 193–200, https://doi.org/10.5194/angeo-43-193-2025,https://doi.org/10.5194/angeo-43-193-2025, 2025
Short summary
Testing the electrodynamic method to derive height-integrated ionospheric conductances
Daniel Weimer and Thom Edwards
Ann. Geophys., 39, 31–51, https://doi.org/10.5194/angeo-39-31-2021,https://doi.org/10.5194/angeo-39-31-2021, 2021
Short summary
High-latitude crochet: solar-flare-induced magnetic disturbance independent from low-latitude crochet
Masatoshi Yamauchi, Magnar G. Johnsen, Carl-Fredrik Enell, Anders Tjulin, Anna Willer, and Dmitry A. Sormakov
Ann. Geophys., 38, 1159–1170, https://doi.org/10.5194/angeo-38-1159-2020,https://doi.org/10.5194/angeo-38-1159-2020, 2020
Short summary
Induced currents due to 3D ground conductivity play a major role in the interpretation of geomagnetic variations
Liisa Juusola, Heikki Vanhamäki, Ari Viljanen, and Maxim Smirnov
Ann. Geophys., 38, 983–998, https://doi.org/10.5194/angeo-38-983-2020,https://doi.org/10.5194/angeo-38-983-2020, 2020
Short summary

Cited articles

Aikio, A., Lakkal, T., Kozlovsky, A., and Williams, P.: Electric fields and currents of stable drifting auroral arcs in the evening sector, J. Geophys. Res., 107, 1424, doi:10.1029/2001JA009172, 2002. a
Ashrafi, M., Lanchester, B. S., Lummerzheim, D., Ivchenko, N., and Jokiaho, O.: Modelling of N21P emission rates in aurora using various cross sections for excitation, Ann. Geophys., 27, 2545–2553, https://doi.org/10.5194/angeo-27-2545-2009, 2009. a, b
Birk, G. and Otto, A.: A three-dimensional plasma-neutral gas fluid mode, J. Comput. Phys., 125, 513–525, 1996. a
Blixt, E., Semeter, J., and Ivchenko, N.: Optical flow analysis of the aurora borealis, IEEE T. Geosci. Remote, 3, 159–163, 2006. a, b
Chisham, G., Lester, M., Milan, S., Freeman, M., Bristow, W., Grocott, A., Mcwilliams, K., Ruohoniemi, J., Yeoman, T., Dyson, P., Greenwald, R., Kikuchi, T., Pinnock, M., Rash, J., Sato, N., Sofko, G., Villain, J. P., and Walker, A.: A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions, Surv. Geophys., 28, 33–109, https://doi.org/10.1007/s10712-007-9017-8, 2007. a
Download
Short summary
Electric fields in the atmosphere near dynamic aurora are important in the physics of the electric circuit within the Earth's magnetic field. Oxygen ions emit light as they move under the influence of these electric fields; the flow of this emission is used to find the electric field at high temporal resolution. The solution needs two other simultaneous measurements of auroral emissions to give key parameters such as the auroral energy. The electric fields increase with brightness of the aurora.
Share