Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-1063-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-1063-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simultaneous ground-based and in situ Swarm observations of equatorial F-region irregularities over Jicamarca
Mbarara University of Science and Technology, Department of Physics, Mbarara, Uganda
Stephan Buchert
Swedish Institute of Space Physics, Uppsala, Sweden
Edward Jurua
Mbarara University of Science and Technology, Department of Physics, Mbarara, Uganda
Marco Milla
Radio Observatorio de Jicamarca, Instituto Geofísico del Perú, Lima, Peru
Related authors
No articles found.
Stelios Tourgaidis, Dimitrios Baloukidis, Theodoros Sarris, Stephan Buchert, Panagiotis Pirnaris, and Konstantinos Papadakis
EGUsphere, https://doi.org/10.5194/egusphere-2025-4315, https://doi.org/10.5194/egusphere-2025-4315, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
The Lower Thermosphere-Ionosphere energy balance is driven by complex interactions between ions, neutrals and electrons. These processes are understood theoretically, but their estimates show large discrepancies between models. We calculate the storm-time energy budget according to the neutrals, ions and electrons using TIE-GCM using two different external drivers. Discrepancies between the model runs are discussed and the way forward to close the gaps in present knowledge is highlighted.
Joachim Vogt, Octav Marghitu, Adrian Blagau, Leonie Pick, Nele Stachlys, Stephan Buchert, Theodoros Sarris, Stelios Tourgaidis, Thanasis Balafoutis, Dimitrios Baloukidis, and Panagiotis Pirnaris
Geosci. Instrum. Method. Data Syst., 12, 239–257, https://doi.org/10.5194/gi-12-239-2023, https://doi.org/10.5194/gi-12-239-2023, 2023
Short summary
Short summary
Motivated by recent community interest in a satellite mission to the atmospheric lower thermosphere and ionosphere (LTI) region (100–200 km altitude), the DIPCont project is concerned with the reconstruction quality of vertical profiles of key LTI variables using dual- and single-spacecraft observations. The report introduces the probabilistic DIPCont modeling framework, demonstrates its usage by means of a set of self-consistent parametric non-isothermal models, and discusses first results.
Filomena Catapano, Stephan Buchert, Enkelejda Qamili, Thomas Nilsson, Jerome Bouffard, Christian Siemes, Igino Coco, Raffaella D'Amicis, Lars Tøffner-Clausen, Lorenzo Trenchi, Poul Erik Holmdahl Olsen, and Anja Stromme
Geosci. Instrum. Method. Data Syst., 11, 149–162, https://doi.org/10.5194/gi-11-149-2022, https://doi.org/10.5194/gi-11-149-2022, 2022
Short summary
Short summary
The quality control and validation activities performed by the Swarm data quality team reveal the good-quality LPs. The analysis demonstrated that the current baseline plasma data products are improved with respect to previous baseline. The LPs have captured the ionospheric plasma variability over more than half of a solar cycle, revealing the data quality dependence on the solar activity. The quality of the LP data will further improve promotion of their application to a broad range of studies.
Joshua Dreyer, Noora Partamies, Daniel Whiter, Pål G. Ellingsen, Lisa Baddeley, and Stephan C. Buchert
Ann. Geophys., 39, 277–288, https://doi.org/10.5194/angeo-39-277-2021, https://doi.org/10.5194/angeo-39-277-2021, 2021
Short summary
Short summary
Small-scale auroral features are still being discovered and are not well understood. Where aurorae are caused by particle precipitation, the newly reported fragmented aurora-like emissions (FAEs) seem to be locally generated in the ionosphere (hence,
aurora-like). We analyse data from multiple instruments located near Longyearbyen to derive their main characteristics. They seem to occur as two types in a narrow altitude region (individually or in regularly spaced groups).
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Stephan C. Buchert
Ann. Geophys., 38, 1019–1030, https://doi.org/10.5194/angeo-38-1019-2020, https://doi.org/10.5194/angeo-38-1019-2020, 2020
Short summary
Short summary
Winds in the Earth's upper atmosphere cause magnetic and electric variations both at the ground and in space all over the Earth. According to the model of entangled dynamos the true cause is wind differences between regions in the Northern and Southern Hemispheres that are connected by the Earth's dipole-like magnetic field. The power produced in the southern dynamo heats the northern upper atmosphere and vice versa. The dynamos exist owing to this entanglement, an analogy to quantum mechanics.
Cited articles
Aa, E., Zou, S., Ridley, A., Zhang, S., Coster, A. J., Erickson, P. J., Liu,
S., and Ren, J.: Merging of Storm Time Midlatitude Traveling Ionospheric
Disturbances and Equatorial Plasma Bubbles, Space Weather, 17, 285–298,
https://doi.org/10.1029/2018sw002101, 2019. a
Aa, E., Zou, S., Eastes, R., Karan, D. K., Zhang, S.-R., Erickson, P. J., and
Coster, A. J.: Coordinated Ground-Based and Space-Based Observations of
Equatorial Plasma Bubbles, J. Geophys. Res.,
125, e2019JA027569, https://doi.org/10.1029/2019ja027569, 2020. a, b, c, d
Abdu, M. A.: Outstanding problems in the equatorial ionosphere-thermosphere
electrodynamics relevant to spread F, J. Atmos. Sol.-Terr. Phy., 63, 869–884, https://doi.org/10.1016/S1364-6826(00)00201-7,
2001. a
Abdu, M. A., Batista, I. S., Reinisch, B. W., MacDougall, J. W., Kherani,
E. A., and Sobral, J. H. A.: Equatorial range spread F echoes from coherent
backscatter, and irregularity growth processes, from conjugate point digital
ionograms, Radio Sci., 47, RS6003, https://doi.org/10.1029/2012rs005002, 2012. a, b, c
Alfonsi, L., Spogli, L., Pezzopane, M., Romano, V., Zuccheretti, E.,
Franceschi, G. D., Cabrera, M. A., and Ezquer, R. G.: Comparative analysis of
spread-F signature and GPS scintillation occurrences at Tucumán,
Argentina, J. Geophys. Res., 118, 4483–4502,
https://doi.org/10.1002/jgra.50378, 2013. a
Aol, S., Buchert, S., and Jurua, E.: Traits of sub-kilometre F-region irregularities as seen with the Swarm satellites, Ann. Geophys., 38, 243–261, https://doi.org/10.5194/angeo-38-243-2020, 2020. a, b
Basu, B.: On the linear theory of equatorial plasma instability: Comparison
of different descriptions, J. Geophys. Res.,
107, 1199, https://doi.org/10.1029/2001JA000317, 2002. a
Basu, S., McClure, J. P., Basu, S., Hanson, W. B., and Aarons, J.:
Coordinated study of equatorial scintillation and in situ and radar
observations of nighttime F region irregularities, J. Geophys. Res., 85, 5119–5130, https://doi.org/10.1029/JA085iA10p05119, 1980. a
Booker, H. G. and Wells, H. W.: Scattering of radio waves by the F-region of
the ionosphere, J. Geophys. Res., 43, 249,
https://doi.org/10.1029/te043i003p00249, 1938. a
Buchert, S.: Extended EFI LP data FP release notes, ESA Technical Note,
available at: ftp://swarm-diss.eo.esa.int/Advanced/Plasma_Data/16_Hz_Faceplate_plasma_density (last access: 30 September 2020),
2016. a
Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and
Su, S. Y.: Longitudinal variability of equatorial plasma bubbles observed
by DMSP and ROCSAT-1, J. Geophys. Res., 109,
A12301, https://doi.org/10.1029/2004JA010583, 2004. a
Carter, B. A., Zhang, K., Norman, R., Kumar, V. V., and Kumar, S.:
On the occurrence of equatorial F-region irregularities during solar minimum
using radio occultation measurements, J. Geophys. Res., 118, 892–904, https://doi.org/10.1002/jgra.50089, 2013. a
Chapagain, N.: Dynamics of Equatorial Spread F Using Ground-Based Optical and Radar Measurements (Dissertation for the degree of Doctor of Philosophy in Physics), Utah State University, United States,
available at: https://repositorio.igp.gob.pe/handle/IGP/4468 (last access: 30 September 2020), 202 pp., 2011. a
Chapagain, N. P., Fejer, B. G., and Chau, J. L.: Climatology of
postsunset equatorial spread F over Jicamarca, J. Geophys. Res., 114, A07307, https://doi.org/10.1029/2008JA013911, 2009. a
Cherniak, I., Zakharenkova, I., and Sokolovsky, S.: Multi-Instrumental
Observation of Storm-Induced Ionospheric Plasma Bubbles at Equatorial and
Middle Latitudes, J. Geophys. Res., 124,
1491–1508, https://doi.org/10.1029/2018ja026309, 2019. a
ESA Earth Observations: available at: http://earth.esa.int/swarm, last access: 30 September 2020. a
Fejer, B. G., de Paula, E. R., Scherliess, L., and Batista, I. S.: Incoherent
scatter radar, ionosonde, and satellite measurements of equatorialFregion
vertical plasma drifts in the evening sector, Geophys. Res. Lett.,
23, 1733–1736, https://doi.org/10.1029/96gl01847, 1996. a
Fejer, B. G., Scherliess, L., and de Paula, E. R.: Effects of the vertical
plasma drift velocity on the generation and evolution of equatorial
spreadF, J. Geophys. Res., 104,
19859–19869, https://doi.org/10.1029/1999ja900271, 1999. a, b, c
Galkin, I. A., Khmyrov, G. M., Kozlov, A. V., Reinisch, B. W., Huang, X.,
Paznukhov, V. V., Song, P., Foster, J., Mendillo, M., and Bilitza, D.: The
ARTIST 5, in: AIP Conference Proceedings, AIP, https://doi.org/10.1063/1.2885024,
2008. a, b
Hickey, D. A., Martinis, C. R., Mendillo, M., Baumgardner, J., Wroten, J., and Milla, M.: Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator, Ann. Geophys., 36, 473–487, https://doi.org/10.5194/angeo-36-473-2018, 2018. a
Hocking, W. K., Röttger, J., Palmer, R. D., Sato, T., and Chilson, P. B.:
Atmospheric radar: Application and science of MST radars in the Earth's
mesosphere, stratosphere, troposphere, and weakly ionized regions, Cambridge
University Press, 855 pp., 2016. a
Huang, C.-S.: Effects of the postsunset vertical plasma drift on the generation
of equatorial spread F, Prog. Earth Planet. Sci., 5,
https://doi.org/10.1186/s40645-017-0155-4, 2018. a
Huang, C.-S., La Beaujardiere, O., Roddy, P., Hunton, D., Liu, J., and Chen,
S.: Occurrence probability and amplitude of equatorial ionospheric
irregularities associated with plasma bubbles during low and moderate solar
activities (2008–2012), J. Geophys. Res., 119,
1186–1199, https://doi.org/10.1002/2013ja019212, 2014. a, b, c
Hysell, D. L.: An overview and synthesis of plasma irregularities in
equatorial spread/F, J. Atmos. Sol.-Terr. Phy.,
62, 1037–1056, https://doi.org/10.1016/S1364-6826(00)00095-X, 2000. a, b, c
Hysell, D. L., Larsen, M. F., and Woodman, R. F.: JULIA radar studies of
electric fields in the equatorial electrojet, Geophys. Res. Lett.,
24, 1687–1690, https://doi.org/10.1029/97GL00373, 1997. a, b
Hysell, D. L., Hedden, R. B., Chau, J. L., Galindo, F. R., Roddy,
P. A., and Pfaff, R. F.: Comparing F region ionospheric irregularity
observations from C/NOFS and Jicamarca, J. Geophys. Res., 36,
L00C01, https://doi.org/10.1029/2009GL038983, 2009. a, b
IRF: available at: ftp://swarm-diss.eo.esa.int, last access: 30 September 2020a. a
IRF: available at: https://swarm-diss.eo.esa.int/#swarm%2FLevel2daily%2FLatest_baselines%2FIBI, last access: 30 September 2020b. a
Jayachandran, B., Balan, N., Rao, P. B., Sastri, J. H., and Bailey,
G. J.: HF Doppler and ionosonde observations on the onset conditions of
equatorial spread F, Geophys. Res. Lett., 98, 13,
https://doi.org/10.1029/93JA00302, 1993. a
Jicamarca Radio Observatory: available at: http://jro.igp.gob.pe/madrigal/, last access: 30 September 2020. a
Kelley, M. C., Rodrigues, F. S., Makela, J. J., Tsunoda, R., Roddy,
P. A., Hunton, D. E., Retterer, J. M., de La Beaujardiere, O., de
Paula, E. R., and Ilma, R. R.: C/NOFS and radar observations during a
convective ionospheric storm event over South America, Geophys. Res. Lett., 36, L00C07, https://doi.org/10.1029/2009GL039378, 2009. a, b
Kil, H. and Heelis, R. A.: Global distribution of density irregularities
in the equatorial ionosphere, J. Geophys. Res., 103,
407–418, https://doi.org/10.1029/97JA02698, 1998. a, b, c
Kil, H., Paxton, L. J., and Oh, S.-J.: Global bubble distribution seen from
ROCSAT-1 and its association with the evening prereversal enhancement,
J. Geophys. Res., 114, A06307,
https://doi.org/10.1029/2008ja013672, 2009. a
Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R.,
Wahlund, J.-E., Åhlen, L., Smith, M., and Moffat, B.: Thermal ion imagers
and Langmuir probes in the Swarm electric field instruments, J. Geophys. Res., 2655–2673,
https://doi.org/10.1002/2016ja022571, 2017. a, b
Laundal, K. M. and Richmond, A. D.: Magnetic Coordinate Systems, Space Science
Reviews, 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2016. a
Lühr, H., Rother, M., Maus, S., Mai, W., and Cooke, D.: The diamagnetic
effect of the equatorial Appleton anomaly: Its characteristics and impact on
geomagnetic field modeling, Geophys. Res. Lett., 30, 1906,
https://doi.org/10.1029/2003gl017407, 2003. a
Lühr, H., Xiong, C., Park, J., and Rauberg, J.: Systematic study of
intermediate-scale structures of equatorial plasma irregularities in the
ionosphere based on CHAMP observations, Front. Phys., 2, 15,
https://doi.org/10.3389/fphy.2014.00015, 2014. a, b
Ma, G. and Maruyama, T.: A super bubble detected by dense GPS network at east
Asian longitudes, Geophys. Res. Lett., 33, L21103,
https://doi.org/10.1029/2006GL027512, 2006. a
Morse, F. A., Edgar, B. C., Koons, H. C., Rice, C. J., Heikkila,
W. J., Hoffman, J. H., Tinsley, B. A., Winningham, J. D.,
Christensen, A. B., Woodman, R. F., Pomalaza, J., and Teixeira,
N. R.: Equion, an equatorial ionospheric irregularity experiment, J. Geophys. Res., 82, 578–592, https://doi.org/10.1029/JA082i004p00578, 1977. a
Ngwira, C. M., Seemala, G. K., and Bosco Habarulema, J.: Simultaneous
observations of ionospheric irregularities in the African low-latitude
region, J. Atmos. Sol.-Terr. Phy., 97, 50–57,
https://doi.org/10.1016/j.jastp.2013.02.014, 2013. a, b, c
Nishioka, M., Saito, A., and Tsugawa, T.: Occurrence characteristics of plasma
bubble derived from global ground-based GPS receiver networks, J. Geophys. Res., 113, A05301,
https://doi.org/10.1029/2007ja012605, 2008. a, b, c
Nishioka, M., Basu, S., Basu, S., Valladares, C. E., Sheehan, R. E., Roddy,
P. A., and Groves, K. M.: C/NOFS satellite observations of equatorial
ionospheric plasma structures supported by multiple ground-based diagnostics
in October 2008, J. Geophys. Res., 116,
A10323, https://doi.org/10.1029/2011ja016446, 2011. a, b, c, d
Ossakow, S. L.: Ionospheric irregularities, Rev. Geophys., 17,
521–533, https://doi.org/10.1029/RG017i004p00521, 1979. a, b
Otsuka, Y., Shiokawa, K., Ogawa, T., Yokoyama, T., Yamamoto, M., and
Fukao, S.: Spatial relationship of equatorial plasma bubbles and
field-aligned irregularities observed with an all-sky airglow imager and the
Equatorial Atmosphere Radar, Geophys. Res. Lett., 31, L20802,
https://doi.org/10.1029/2004GL020869, 2004. a
Park, J., Noja, M., Stolle, C., and Lühr, H.: The Ionospheric Bubble Index
deduced from magnetic field and plasma observations onboard Swarm, Earth,
Planet Space, 65, 1333–1344, https://doi.org/10.5047/eps.2013.08.005, 2013. a, b
Rastogi, R. G., Koparkar, P. V., Chandra, H., and Vyas, G. D.:
Spread-F and radio wave scintillations near the F-region anomaly crest,
Ann. Geophys., 7, 281–284, 1989. a
Reinisch, B., Huang, X., Galkin, I., Paznukhov, V., and Kozlov, A.: Recent
advances in real-time analysis of ionograms and ionospheric drift
measurements with digisondes, J. Atmos. Sol.-Terr. Phy., 67, 1054–1062, https://doi.org/10.1016/j.jastp.2005.01.009, 2005. a, b
Reinisch, B. W., Scali, J. L., and Haines, D. L.: Ionospheric drift
measurements with ionosondes, Annales of Geophysics, 41, 695–702,
https://doi.org/10.4401/ag-3812, 1998. a
Rino, C. L., Carrano, C. S., Groves, K. M., and Roddy, P. A.: A
characterization of intermediate-scale spread F structure from four years of
high-resolution C/NOFS satellite data, Radio Sci., 51, 779–788,
https://doi.org/10.1002/2015rs005841, 2016. a
Roddy, P. A., Hunton, D. E., Ballenthin, J. O., and Groves, K. M.:
Correlation of in situ measurements of plasma irregularities with
ground-based scintillation observations, J. Geophys. Res., 115, A06303, https://doi.org/10.1029/2010JA015288, 2010. a, b, c, d
Shi, J. K., Wang, G. J., Reinisch, B. W., Shang, S. P., Wang, X., Zherebotsov,
G., and Potekhin, A.: Relationship between strong range spreadFand
ionospheric scintillations observed in Hainan from 2003 to 2007, J. Geophys. Res., 116, A08306,
https://doi.org/10.1029/2011ja016806, 2011. a
Siefring, C. L., Bernhardt, P. A., Roddy, P. A., and Hunton, D. E.:
Comparisons of equatorial irregularities measurements from C/NOFS: TEC using
CERTO and CITRIS with in-situ plasma density, Geophys. Res. Lett.,
36, L00C08, https://doi.org/10.1029/2009GL038985, 2009. a, b
Smith, J. M., Rodrigues, F. S., and de Paula, E. R.: Radar and satellite investigations of equatorial evening vertical drifts and spread F, Ann. Geophys., 33, 1403–1412, https://doi.org/10.5194/angeo-33-1403-2015, 2015. a
Smith, J. M., Rodrigues, F. S., Fejer, B. G., and Milla, M. A.:
Coherent and incoherent scatter radar study of the climatology and
day-to-day variability of mean F region vertical drifts and equatorial spread
F, J. Geophys. Res., 121, 1466–1482,
https://doi.org/10.1002/2015JA021934, 2016. a, b, c, d, e, f, g, h
Space Physics Data Facility: available at: https://cdaweb.gsfc.nasa.gov/, last access: 30 September 2020. a
Sripathi, S., Bose, S., Patra, A. K., Pant, T. K., Kakad, B., and Bhattacharyya, A.: Simultaneous observations of ESF irregularities over Indian region using radar and GPS, Ann. Geophys., 26, 3197–3213, https://doi.org/10.5194/angeo-26-3197-2008, 2008. a, b, c, d
Stolle, C., Lühr, H., Rother, M., and Balasis, G.: Magnetic
signatures of equatorial spread F as observed by the CHAMP satellite,
J. Geophys. Res., 111, A02304,
https://doi.org/10.1029/2005JA011184, 2006. a, b, c, d
Sultan, P. J.: Linear theory and modeling of the Rayleigh-Taylor instability
leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26875–26892, https://doi.org/10.1029/96JA00682, 1996. a, b
Tsunoda, R. T.: On the spatial relationship of 1-m equatorial spread
F-irregularities and plasma bubbles, J. Geophys. Res., 85,
185–190, https://doi.org/10.1029/JA085iA01p00185, 1980. a, b
Tsunoda, R. T., Livingston, R. C., McClure, J. P., and Hanson, W. B.:
Equatorial plasma bubbles – Vertically elongated wedges from the bottomside
F layer, J. Geophys. Res., 87, 9171–9180,
https://doi.org/10.1029/JA087iA11p09171, 1982. a, b
University of Massachusetts Lowell Center for Atmospheric Research (UMLCAR):
available at: http://ulcar.uml.edu/SAO-X/SAO-X.html, last access: 30 September 2020.
a
Wan, X., Xiong, C., Rodriguez-Zuluaga, J., Kervalishvili, G. N.,
Stolle, C., and Wang, H.: Climatology of the Occurrence Rate and
Amplitudes of Local Time Distinguished Equatorial Plasma Depletions Observed
by Swarm Satellite, J. Geophys. Res., 123,
3014–3026, https://doi.org/10.1002/2017JA025072, 2018. a, b, c, d, e, f, g
Wang, G., Shi, J., Wang, X., and Shang, S.: Seasonal variation of spread-F
observed in Hainan, Adv. Space Res., 41, 639–644,
https://doi.org/10.1016/j.asr.2007.04.077, 2008. a
Wang, G. J., Shi, J. K., Reinisch, B. W., Wang, X., and Wang, Z.: Ionospheric
plasma bubbles observed concurrently by multi-instruments over low-latitude
station Hainan, J. Geophys. Res., 120,
2288–2298, https://doi.org/10.1002/2014JA020245, 2015. a, b
Xiong, C., Stolle, C., LÜhr, H., Park, J., Fejer, B. G., and Kervalishvili,
G. N.: Scale analysis of equatorial plasma irregularities derived from Swarm
constellation, Earth Planet Space, 68, 121,
https://doi.org/10.1186/s40623-016-0502-5, 2016. a
Yeh, K. C. and Liu, C.-H.: Radio wave scintillations in the ionosphere,
IEEE Proceedings, 70, 324–360, https://doi.org/10.1109/proc.1982.12313, 1982. a
Zhan, W., Rodrigues, F. S., and Milla, M. A.: On the Genesis of Postmidnight
Equatorial Spread F : Results for the American/Peruvian Sector, Geophys. Res. Lett., 45, 7354–7361, https://doi.org/10.1029/2018gl078822, 2018. a
Zhang, Y., Wan, W., Li, G., Liu, L., Hu, L., and Ning, B.: A comparative study of GPS ionospheric scintillations and ionogram spread F over Sanya, Ann. Geophys., 33, 1421–1430, https://doi.org/10.5194/angeo-33-1421-2015, 2015. a, b, c
Zuo, X., Yu, T., and Xia, C.: A study of simultaneous scintillation
observations by Chinese FY-2 geostationary meteorological satellite and VHF
coherent radar measurements over South China, AGU Fall Meeting Abstracts,
SA13A-2111, 2016. a
Short summary
Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. In this paper, we compared simultaneous observations of plasma plumes by the JULIA radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory, and irregularities observed in situ by Swarm to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground.
Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. In this...