Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-1045-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-1045-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Asymmetries in the Earth's dayside magnetosheath: results from global hybrid-Vlasov simulations
Department of Physics, University of Helsinki, Helsinki, Finland
Vertti Tarvus
Department of Physics, University of Helsinki, Helsinki, Finland
Andrew P. Dimmock
Swedish Institute of Space Physics, Uppsala, Sweden
Markus Battarbee
Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Department of Physics, University of Helsinki, Helsinki, Finland
Andreas Johlander
Department of Physics, University of Helsinki, Helsinki, Finland
Maxime Grandin
Department of Physics, University of Helsinki, Helsinki, Finland
Yann Pfau-Kempf
Department of Physics, University of Helsinki, Helsinki, Finland
Maxime Dubart
Department of Physics, University of Helsinki, Helsinki, Finland
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, Helsinki, Finland
Related authors
Shi Tao, Markku Alho, Ivan Zaitsev, Lucile Turc, Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1340, https://doi.org/10.5194/egusphere-2025-1340, 2025
Short summary
Short summary
Plasma convection is the movement of plasma that drags the magnetic field lines with it. Magnetic field in the solar wind interacts with the Earth's magnetic field and drags the dayside field lines of the Earth's magnetosphere toward nightside, causing the plasma inside the magnetosphere to circulate around the Earth in a process called the Dungey Cycle. Our simulation and methodology desribe this cycle in detail and find features in the convection that are not explained by fluid models.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys., 43, 469–488, https://doi.org/10.5194/angeo-43-469-2025, https://doi.org/10.5194/angeo-43-469-2025, 2025
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space, and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent E. Ledvina
Ann. Geophys., 43, 349–367, https://doi.org/10.5194/angeo-43-349-2025, https://doi.org/10.5194/angeo-43-349-2025, 2025
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to Strong Thermal Emission Velocity Enhancement (STEVE) with white-, pale-pink-, or mauve-coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Shi Tao, Markku Alho, Ivan Zaitsev, Lucile Turc, Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1340, https://doi.org/10.5194/egusphere-2025-1340, 2025
Short summary
Short summary
Plasma convection is the movement of plasma that drags the magnetic field lines with it. Magnetic field in the solar wind interacts with the Earth's magnetic field and drags the dayside field lines of the Earth's magnetosphere toward nightside, causing the plasma inside the magnetosphere to circulate around the Earth in a process called the Dungey Cycle. Our simulation and methodology desribe this cycle in detail and find features in the convection that are not explained by fluid models.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys., 43, 217–240, https://doi.org/10.5194/angeo-43-217-2025, https://doi.org/10.5194/angeo-43-217-2025, 2025
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation through the novel combination of both magnetospheric modelling and atmospheric modelling. We first simulate fluxes of auroral electrons and then use these fluxes to model their atmospheric impact. We find an increase of more than 200 % in thermospheric odd nitrogen and a corresponding decrease in stratospheric ozone of around 0.8 %. The produced auroral electron precipitation is realistic and shows potential for future studies.
Anton Fetzer, Mikko Savola, Adnane Osmane, Vili-Arttu Ketola, Philipp Oleynik, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-1279, https://doi.org/10.5194/egusphere-2025-1279, 2025
Short summary
Short summary
Extreme events can pose serious risks to satellites, potentially disrupting communication, navigation, and power systems. Our study estimates the worst-case radiation levels during such an event and assesses their impact on electronics and solar panels.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Cited articles
Anagnostopoulos, G. C., Vassiliadis, E. S., and Karanikola, I.: Dawn
dusk asymmetry in spatial distribution and origin of energetic ion events
upstream the Earth's bow shock, Planet. Space Sci., 53, 53–58,
https://doi.org/10.1016/j.pss.2004.09.028, 2005. a
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Battarbee, M., Ganse, U., Pfau-Kempf, Y., Turc, L., Brito, T., Grandin, M., Koskela, T., and Palmroth, M.: Non-locality of Earth's quasi-parallel bow shock: injection of thermal protons in a hybrid-Vlasov simulation, Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, 2020. a
Bieber, J. W. and Stone, S. C.: Energetic electron bursts in the
magnetopause electron layer and in interplanetary space., in: Magnetospheric
Boundary Layers, edited by: Battrick, B., Mort, J., Haerendel, G., and
Ortner, J., Vol. 148, European Space Agency, Paris, 131–135,
1979. a
Blanco-Cano, X., Omidi, N., and Russell, C. T.: Macrostructure of
collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath,
J. Geophys. Res.-Space, 111, A10205,
https://doi.org/10.1029/2005JA011421, 2006. a
Burgess, D.: Foreshock-shock interaction at collisionless quasi-parallel
shocks, Adv. Space Res., 15, 159–169,
https://doi.org/10.1016/0273-1177(94)00098-L, 1995. a
Chapman, J. F., Cairns, I. H., Lyon, J. G., and Boshuizen, C. R.: MHD
simulations of Earth's bow shock: Interplanetary magnetic field orientation
effects on shape and position, J. Geophys. Res.-Space, 109, A04215, https://doi.org/10.1029/2003JA010235, 2004. a
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D.,
Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T.,
Sanderson, A., Garth, C., Bethel, E. W., Camp, D., Rübel, O., Durant, M.,
Favre, J. M., and Navrátil, P.: VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data, in: High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, 357–372, Chapman and Hall/CRC, New York,
2012. a
Cohen, I. J., Mauk, B. H., Anderson, B. J., Westlake, J. H., Sibeck,
D. G., Turner, D. L., Fennell, J. F., Blake, J. B., Jaynes, A. N.,
Leonard, T. W., Baker, D. N., Spence, H. E., Reeves, G. D., Giles,
B. J., Strangeway, R. J., Torbert, R. B., and Burch, J. L.:
Statistical analysis of MMS observations of energetic electron escape
observed at/beyond the dayside magnetopause, J. Geophys. Res.-Space, 122, 9440–9463, https://doi.org/10.1002/2017JA024401, 2017. a
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya,
J., Markidis, S., and Brackbill, J. U.: Two-way coupling of a global
Hall magnetohydrodynamics model with a local implicit particle-in-cell
model, J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Dimmock, A. P., Nykyri, K., and Pulkkinen, T. I.: A statistical study of
magnetic field fluctuations in the dayside magnetosheath and their dependence
on upstream solar wind conditions, J. Geophys. Res.-Space, 119, 6231–6248, https://doi.org/10.1002/2014JA020009, 2014. a
Dimmock, A. P., Nykyri, K., Karimabadi, H., Osmane, A., and
Pulkkinen, T. I.: A statistical study into the spatial distribution and
dawn-dusk asymmetry of dayside magnetosheath ion temperatures as a function
of upstream solar wind conditions, J. Geophys. Res.-Space, 120, 2767–2782, https://doi.org/10.1002/2014JA020734, 2015a. a, b, c, d, e
Dimmock, A. P., Osmane, A., Pulkkinen, T. I., and Nykyri, K.: A
statistical study of the dawn-dusk asymmetry of ion temperature anisotropy
and mirror mode occurrence in the terrestrial dayside magnetosheath using
THEMIS data, J. Geophys. Res.-Space, 120,
5489–5503, https://doi.org/10.1002/2015JA021192, 2015b. a, b
Dimmock, A. P., Nykyri, K., Osmane, A., and Pulkkinen, T. I.:
Statistical mapping of ULF Pc3 velocity fluctuations in the Earth's dayside
magnetosheath as a function of solar wind conditions, Adv. Space
Res., 58, 196–207, https://doi.org/10.1016/j.asr.2015.09.039, 2016a. a, b
Dimmock, A. P., Nykyri, K., Osmane, A., Karimabadi, H., and Pulkkinen, T. I.:
Dawn-Dusk Asymmetries of the Earth's Dayside Magnetosheath in the
Magnetosheath Interplanetary Medium Reference Frame, chap. 5, 49–72,
American Geophysical Union (AGU), https://doi.org/10.1002/9781119216346.ch5,
2017. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Dubart, M., Ganse, U., Osmane, A., Johlander, A., Battarbee, M., Grandin, M., Pfau-Kempf, Y., Turc, L., and Palmroth, M.: Resolution dependence of magnetosheath waves in global hybrid-Vlasov simulations, Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-24, in review, 2020. a, b
Eastwood, J. P., Nakamura, R., Turc, L., Mejnertsen, L., and Hesse,
M.: The Scientific Foundations of Forecasting Magnetospheric Space Weather,
Space Sci. Rev., 212, 1221–1252, https://doi.org/10.1007/s11214-017-0399-8,
2017. a
Formisano, V., Hedgecock, P. C., Moreno, G., Palmiotto, F., and Chao,
J. K.: Solar wind interaction with the Earth's magnetic field: 2.
Magnetohydrodynamic bow shock, J. Geophys. Res., 78, 3731,
https://doi.org/10.1029/JA078i019p03731, 1973. a
Génot, V., Budnik, E., Hellinger, P., Passot, T., Belmont, G., Trávníček, P. M., Sulem, P.-L., Lucek, E., and Dandouras, I.: Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations, Ann. Geophys., 27, 601–615, https://doi.org/10.5194/angeo-27-601-2009, 2009. a
Hannuksela, O. and the Vlasiator team: Analysator: python analysis toolkit,
Github repository, available at: https://github.com/fmihpc/analysator/,
last access: 9 March 2020. a
Henry, Z. W., Nykyri, K., Moore, T. W., Dimmock, A. P., and Ma, X.:
On the Dawn-Dusk Asymmetry of the Kelvin–Helmholtz Instability Between 2007
and 2013, J. Geophys. Res.-Space, 122,
11888–11900, https://doi.org/10.1002/2017JA024548, 2017. a
Herčík, D., Trávníček, P. M., Johnson, J. R.,
Kim, E.-H., and Hellinger, P.: Mirror mode structures in the asymmetric
Hermean magnetosheath: Hybrid simulations, J. Geophys. Res.-Space, 118, 405–417, https://doi.org/10.1029/2012JA018083, 2013. a
Hoilijoki, S., Palmroth, M., Walsh, B. M., Pfau-Kempf, Y., von
Alfthan, S., Ganse, U., Hannuksela, O., and Vainio, R.: Mirror modes
in the Earth's magnetosheath: Results from a global hybrid-Vlasov
simulation, J. Geophys. Res.-Space, 121,
4191–4204, https://doi.org/10.1002/2015JA022026, 2016. a, b, c
Hoilijoki, S., Ganse, U., Sibeck, D. G., Cassak, P. A., Turc, L.,
Battarbee, M., Fear, R. C., Blanco-Cano, X., Dimmock, A. P.,
Kilpua, E. K. J., Jarvinen, R., Juusola, L., Pfau-Kempf, Y., and
Palmroth, M.: Properties of Magnetic Reconnection and FTEs on the Dayside
Magnetopause With and Without Positive IMF Bx Component During Southward
IMF, J. Geophys. Res.-Space, 124, 4037–4048,
https://doi.org/10.1029/2019JA026821, 2019. a, b
Karimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A.,
Scudder, J., Daughton, W., Dimmock, A., Nykyri, K., Wan, M.,
Sibeck, D., Tatineni, M., Majumdar, A., Loring, B., and Geveci, B.:
The link between shocks, turbulence, and magnetic reconnection in
collisionless plasmas, Phys. Plasmas, 21, 062308,
https://doi.org/10.1063/1.4882875, 2014. a, b, c
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and
comparisons of hourly Wind and ACE plasma and magnetic field data, J.
Geophys. Res.-Space, 110, A02104,
https://doi.org/10.1029/2004JA010649, 2005. a
Lavraud, B. and Borovsky, J. E.: Altered solar wind-magnetosphere
interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res.-Space, 113, A00B08,
https://doi.org/10.1029/2008JA013192, 2008. a
Lavraud, B., Larroque, E., Budnik, E., Génot, V., Borovsky,
J. E., Dunlop, M. W., Foullon, C., Hasegawa, H., Jacquey, C.,
Nykyri, K., Ruffenach, A., Taylor, M. G. G. T., Dandouras, I., and
Rème, H.: Asymmetry of magnetosheath flows and magnetopause shape
during low Alfvén Mach number solar wind, J. Geophys. Res.-Space, 118, 1089–1100, https://doi.org/10.1002/jgra.50145, 2013. a, b
Lin, Y. and Wang, X. Y.: Three-dimensional global hybrid simulation of
dayside dynamics associated with the quasi-parallel bow shock, J. Geophys. Res.-Space, 110, A12216,
https://doi.org/10.1029/2005JA011243, 2005. a
Longmore, M., Schwartz, S. J., Geach, J., Cooling, B. M. A., Dandouras, I.,
Lucek, E. A., and Fazakerley, A. N.: Dawn-dusk asymmetries and sub-Alfvénic
flow in the high and low latitude magnetosheath, Ann. Geophys., 23,
3351–3364, https://doi.org/10.5194/angeo-23-3351-2005, 2005. a, b, c, d, e, f, g
Lucek, E. A., Constantinescu, D., Goldstein, M. L., Pickett, J.,
Pinçon, J. L., Sahraoui, F., Treumann, R. A., and Walker, S. N.: The Magnetosheath, Space Sci. Rev., 118, 95–152,
https://doi.org/10.1007/s11214-005-3825-2, 2005. a
Modolo, R., Hess, S., Génot, V., Leclercq, L., Leblanc, F.,
Chaufray, J. Y., Weill, P., Gangloff, M., Fedorov, A., Budnik, E.,
Bouchemit, M., Steckiewicz, M., André, N., Beigbeder, L.,
Popescu, D., Toniutti, J. P., Al-Ubaidi, T., Khodachenko, M.,
Brain, D., Curry, S., Jakosky, B., and Holmström, M.: The LatHyS
database for planetary plasma environment investigations: Overview and a case
study of data/model comparisons, Planet. Space Sci., 150, 13–21,
https://doi.org/10.1016/j.pss.2017.02.015, 2018. a
Němeček, Z., Šafránková, J., Zastenker, G. N.,
Pišoft, P., and Paularena, K. I.: Spatial distribution of the
magnetosheath ion flux, Adv. Space Res., 30, 2751–2756,
https://doi.org/10.1016/S0273-1177(02)80402-1, 2002. a, b, c
Němeček, Z., M., H., Šafránková, J., Zastenker,
G. N., and Richardson, J. D.: The dawn-dusk asymmetry of the magnetosheath:
INTERBALL-1 observations, Adv. Space Res., 31, 1333–1340,
https://doi.org/10.1016/S0273-1177(03)00007-3, 2003. a, b
Nykyri, K., Ma, X., Dimmock, A., Foullon, C., Otto, A., and Osmane,
A.: Influence of velocity fluctuations on the Kelvin–Helmholtz instability
and its associated mass transport, J. Geophys. Res.-Space, 122, 9489–9512, https://doi.org/10.1002/2017JA024374, 2017. a
Omidi, N., Blanco-Cano, X., and Russell, C. T.: Macrostructure of
collisionless bow shocks: 1. Scale lengths, J. Geophys. Res.-Space, 110, A12212, https://doi.org/10.1029/2005JA011169, 2005. a
Omidi, N., Sibeck, D., Gutynska, O., and Trattner, K. J.: Magnetosheath
filamentary structures formed by ion acceleration at the quasi-parallel bow
shock, J. Geophys. Res.-Space, 119, 2593–2604,
https://doi.org/10.1002/2013JA019587, 2014. a, b, c
Palmroth, M.: Vlasiator, Web site, available at: https://www.helsinki.fi/en/researchgroups/vlasiator/, last
access: 9 March 2020. a
Palmroth, M. and the Vlasiator team: Vlasiator: hybrid-Vlasov simulation
code, Zenodo, https://doi.org/10.5281/zenodo.3640593, 2020. a
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L.,
Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., and von
Alfthan, S.: Vlasov methods in space physics and astrophysics, Living
Rev. Comput. Astrophysi. 4, 1, https://doi.org/10.1007/s41115-018-0003-2,
2018. a, b, c, d
Petrinec, S. M., Mukai, T., Nishida, A., Yamamoto, T., Nakamura,
T. K., and Kokubun, S.: Geotail observations of magnetosheath flow near
the magnetopause, using Wind as a solar wind monitor, J. Geophys.
Res., 102, 26943–26960, https://doi.org/10.1029/97JA01637, 1997. a
Pfau-Kempf, Y., Hietala, H., Milan, S. E., Juusola, L., Hoilijoki, S., Ganse, U., von Alfthan, S., and Palmroth, M.: Evidence for transient, local ion foreshocks caused by dayside magnetopause reconnection, Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, 2016. a
Pfau-Kempf, Y., Battarbee, M., Ganse, U., Hoilijoki, S., Turc, L.,
von Alfthan, S., Vainio, R., and Palmroth, M.: On the importance of
spatial and velocity resolution in the hybrid-Vlasov modeling of
collisionless shocks, Front. Phys., 6, 44–59,
https://doi.org/10.3389/fphy.2018.00044, 2018. a
Pulkkinen, T. I., Dimmock, A. P., Lakka, A., Osmane, A., Kilpua, E.,
Myllys, M., Tanskanen, E. I., and Viljanen, A.: Magnetosheath control
of solar wind-magnetosphere coupling efficiency, J. Geophys. Res.-Space, 121, 8728–8739, https://doi.org/10.1002/2016JA023011, 2016. a
Samsonov, A. A., Pudovkin, M. I., Gary, S. P., and Hubert, D.:
Anisotropic MHD model of the dayside magnetosheath downstream of the oblique
bow shock, J. Geophys. Res., 106, 21689–21700,
https://doi.org/10.1029/2000JA900150, 2001. a
Sandroos, A.: VLSV: file format and tools, Github repository,
available at: https://github.com/fmihpc/vlsv/ (last access: 9 March 2020),
2019. a
Schwartz, S. J., Burgess, D., and Moses, J. J.: Low-frequency waves in the Earth's magnetosheath: present status, Ann. Geophys., 14, 1134–1150, https://doi.org/10.1007/s00585-996-1134-z, 1996. a
Shue, J. H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P.,
Khurana, K. K., and Singer, H. J.: A new functional form to study the
solar wind control of the magnetopause size and shape, J.
Geophys. Res.-Space, 102, 9497–9512,
https://doi.org/10.1029/97JA00196, 1997. a
Soucek, J., Lucek, E., and Dandouras, I.: Properties of magnetosheath
mirror modes observed by Cluster and their response to changes in plasma
parameters, J. Geophys. Res.-Space, 113, A04203,
https://doi.org/10.1029/2007JA012649, 2008. a
Soucek, J., Escoubet, C. P., and Grison, B.: Magnetosheath plasma
stability and ULF wave occurrence as a function of location in the
magnetosheath and upstream bow shock parameters, J. Geophys. Res.-Space, 120, 2838–2850, https://doi.org/10.1002/2015JA021087, 2015. a, b
Spreiter, J. R., Summers, A. L., and Alksne, A. Y.: Hydromagnetic flow
around the magnetosphere, Planet. Space Sci., 14, 223–250,
https://doi.org/10.1016/0032-0633(66)90124-3, 1966. a
Tátrallyay, M. and Erdős, G.: Statistical investigation of
mirror type magnetic field depressions observed by ISEE-1, Planet. Space
Sci., 53, 33–40, https://doi.org/10.1016/j.pss.2004.09.026, 2005. a
Trávníček, P., Hellinger, P., Taylor, M. G. G. T.,
Escoubet, C. P., Dand ouras, I., and Lucek, E.: Magnetosheath plasma
expansion: Hybrid simulations, Geophys. Res. Lett., 34, L15104,
https://doi.org/10.1029/2007GL029728, 2007. a
Treumann, R. A.: Fundamentals of collisionless shocks for astrophysical
application, 1. Non-relativistic shocks, Astron. Astrophys. Rev.,
17, 409–535, https://doi.org/10.1007/s00159-009-0024-2, 2009. a, b, c
Turc, L., Fontaine, D., Savoini, P., and Kilpua, E. K. J.: A model of the magnetosheath magnetic field during magnetic clouds, Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, 2014. a
Turc, L., Fontaine, D., Savoini, P., and Modolo, R.: 3D hybrid
simulations of the interaction of a magnetic cloud with a bow shock, J.
Geophys. Res.-Space, 120, 6133–6151,
https://doi.org/10.1002/2015JA021318, 2015. a, b
Turc, L., Escoubet, C. P., Fontaine, D., Kilpua, E. K. J., and
Enestam, S.: Cone angle control of the interaction of magnetic clouds with
the Earth's bow shock, Geophys. Res. Lett., 43, 4781–4789,
https://doi.org/10.1002/2016GL068818, 2016. a, b
Turc, L., Ganse, U., Pfau-Kempf, Y., Hoilijoki, S., Battarbee, M.,
Juusola, L., Jarvinen, R., Brito, T., Grandin, M., and Palmroth,
M.: Foreshock Properties at Typical and Enhanced Interplanetary Magnetic
Field Strengths: Results From Hybrid-Vlasov Simulations, J.
Geophys. Res.-Space, 123, 5476–5493,
https://doi.org/10.1029/2018JA025466, 2018. a
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen,
I., Sandroos, A., and Palmroth, M.: Vlasiator: First global
hybrid-Vlasov simulations of Earth's foreshock and magnetosheath, J. Atmos. Sol.-Terr. Phy., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a, b
Walsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., Runov, A., Soucek, J., Walsh, B. M., Wing, S., and Taylor, M. G. G. T.: Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review, Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, 2014. a, b
Walters, G. K.: Effect of Oblique Interplanetary Magnetic Field on Shape and
Behavior of the Magnetosphere, Journal of Geophysical Research, 69,
1769–1783, https://doi.org/10.1029/JZ069i009p01769, 1964.
a, b
Wang, Y. L., Raeder, J., and Russell, C. T.: Plasma depletion layer: Magnetosheath flow structure and forces, Ann. Geophys., 22, 1001–1017, https://doi.org/10.5194/angeo-22-1001-2004, 2004. a
Wing, S., Johnson, J. R., Newell, P. T., and Meng, C. I.: Dawn-dusk
asymmetries, ion spectra, and sources in the northward interplanetary
magnetic field plasma sheet, J. Geophys. Res.-Space, 110, A08205, https://doi.org/10.1029/2005JA011086, 2005. a
Winterhalter, D. and Kivelson, M. G.: Observations of the Earth's bow shock
under high Mach number/high plasma beta solar wind conditions, Geophys.
Res. Lett., 15, 1161–1164, https://doi.org/10.1029/GL015i010p01161, 1988. a
Zwan, B. J. and Wolf, R. A.: Depletion of solar wind plasma near a
planetary boundary, J. Geophys. Res., 81, 1636,
https://doi.org/10.1029/JA081i010p01636, 1976. a
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Using global computer simulations, we study properties of the magnetosheath, the region of...