Articles | Volume 37, issue 2
https://doi.org/10.5194/angeo-37-215-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-215-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Local time extent of magnetopause reconnection using space–ground coordination
Department of Astronomy and Center for Space Physics, Boston University,
Massachusetts, USA
Cooperative Programs for the Advancement of Earth System Science,
University Corporation for Atmospheric Research, Boulder, Colorado, USA
Brian M. Walsh
Department of Mechanical Engineering and Center for Space Physics, Boston
University, Boston, Massachusetts, USA
Yukitoshi Nishimura
Department of Electrical and Computer Engineering and Center for Space
Sciences, Boston University, Boston, Massachusetts, USA
Department of Atmospheric and Oceanic Sciences, University of California,
Los Angeles, California, USA
Vassilis Angelopoulos
Department of Earth, Planetary and Space Sciences, University of
California, Los Angeles, California, USA
J. Michael Ruohoniemi
The Bradley Department of Electrical and Computer Engineering, Virginia
Tech, Blacksburg, Virginia, USA
Kathryn A. McWilliams
Institute of Space and Atmospheric Studies, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
Nozomu Nishitani
Center for International Collaborative Research, Institute for
Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Related authors
No articles found.
Daniel D. Billett, Kathryn A. McWilliams, Robert B. Kerr, Jonathan J. Makela, Alex T. Chartier, J. Michael Ruohoniemi, Sudha Kapali, Mike A. Migliozzi, and Juanita Riccobono
Ann. Geophys., 40, 571–583, https://doi.org/10.5194/angeo-40-571-2022, https://doi.org/10.5194/angeo-40-571-2022, 2022
Short summary
Short summary
Sub-auroral polarisation streams (SAPSs) are very fast plasma flows that occur at mid-latitudes, which can affect the atmosphere. In this paper, we use four ground-based radars to obtain a wide coverage of SAPSs that occurred over the USA, along with interferometer cameras in Virginia and Massachusetts to measure winds. The winds are strongly affected but in different ways, implying that the balance forces on the atmosphere is strongly dependent on proximity to the disturbance.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Michael Gedalin, Xiaoyan Zhou, Christopher T. Russell, and Vassilis Angelopoulos
Ann. Geophys., 38, 17–26, https://doi.org/10.5194/angeo-38-17-2020, https://doi.org/10.5194/angeo-38-17-2020, 2020
Short summary
Short summary
High-resolution measurements of the magnetic profiles of collisionless shocks in space show that large amplitude oscillations appear on the high-magnetic field side. The positions and relative amplitude of these oscillations are shown theoretically to vary in accordance with the potential jump at the shock crossing. The theoretically predicted variety is confirmed by observations.
Galina Korotova, David Sibeck, Scott Thaller, John Wygant, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 36, 1319–1333, https://doi.org/10.5194/angeo-36-1319-2018, https://doi.org/10.5194/angeo-36-1319-2018, 2018
Short summary
Short summary
We employ multipoint observations of the Van Allen Probes, THEMIS, GOES and Cluster to present case and statistical studies of the electromagnetic field, plasma and particle response to interplanetary (IP) shocks observed by Wind. We perform a statistical study of Ey variations of the electric field and associated plasma drift flow velocities for 60 magnetospheric events during the passage of interplanetary shocks.
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
Galina Korotova, David Sibeck, Mark Engebretson, John Wygant, Scott Thaller, Harlan Spence, Craig Kletzing, Vassilis Angelopoulos, and Robert Redmon
Ann. Geophys., 34, 985–998, https://doi.org/10.5194/angeo-34-985-2016, https://doi.org/10.5194/angeo-34-985-2016, 2016
H. Y. Fu, W. A. Scales, P. A. Bernhardt, S. J. Briczinski, M. J. Kosch, A. Senior, M. T. Rietveld, T. K. Yeoman, and J. M. Ruohoniemi
Ann. Geophys., 33, 983–990, https://doi.org/10.5194/angeo-33-983-2015, https://doi.org/10.5194/angeo-33-983-2015, 2015
Short summary
Short summary
This paper reports the first experimental observation of stimulated Brillouin scattering near the third electron gyro-harmonic induced by high-frequency, high-power radio waves at EISCAT. The stimulated Brillouin scattering has also been correlated with simultaneous observations of the
field-aligned irregularities and electron temperature. The observed stimulated Brillouin scattering becomes enhanced for pumping near electron gyro-harmonics.
P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd, P. T. Jayachandran, D. W. Danskin, E. Spanswick, Y. Zhang, Y. Jiao, and Y. T. Morton
Ann. Geophys., 33, 637–656, https://doi.org/10.5194/angeo-33-637-2015, https://doi.org/10.5194/angeo-33-637-2015, 2015
Short summary
Short summary
Rapid fluctuations in amplitude and phase of radio waves passing through the ionosphere degrade GPS positional accuracy and can lead to navigational errors, particularly during geomagnetic storms. As a function of magnetic latitude and local time, regions of GPS phase scintillation at high latitudes are identified in the context of coupling between the solar wind and the magnetosphere-ionosphere system, which primarily depends on the interplanetary magnetic field magnitude and orientation.
P. Prikryl, R. Ghoddousi-Fard, L. Spogli, C. N. Mitchell, G. Li, B. Ning, P. J. Cilliers, V. Sreeja, M. Aquino, M. Terkildsen, P. T. Jayachandran, Y. Jiao, Y. T. Morton, J. M. Ruohoniemi, E. G. Thomas, Y. Zhang, A. T. Weatherwax, L. Alfonsi, G. De Franceschi, and V. Romano
Ann. Geophys., 33, 657–670, https://doi.org/10.5194/angeo-33-657-2015, https://doi.org/10.5194/angeo-33-657-2015, 2015
Short summary
Short summary
A series of interplanetary coronal mass ejections in the period 7–17 March 2012 caused geomagnetic storms that strongly affected the high-latitude ionosphere in the Northern and Southern Hemisphere. Interhemispheric comparison of GPS phase scintillation reveals commonalities as well as asymmetries, as a consequence of the coupling between the solar wind and magnetosphere. The interhemispheric asymmetries are primarily caused by the dawn-dusk component of the interplanetary magnetic field.
A. P. Walsh, S. Haaland, C. Forsyth, A. M. Keesee, J. Kissinger, K. Li, A. Runov, J. Soucek, B. M. Walsh, S. Wing, and M. G. G. T. Taylor
Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, https://doi.org/10.5194/angeo-32-705-2014, 2014
F. Plaschke, H. Hietala, and V. Angelopoulos
Ann. Geophys., 31, 1877–1889, https://doi.org/10.5194/angeo-31-1877-2013, https://doi.org/10.5194/angeo-31-1877-2013, 2013
J. Liang, F. Jiang, E. Donovan, E. Spanswick, V. Angelopoulos, and R. Strangeway
Ann. Geophys., 31, 1077–1101, https://doi.org/10.5194/angeo-31-1077-2013, https://doi.org/10.5194/angeo-31-1077-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Solar wind–magnetosphere interactions
The Cluster spacecraft's view of the motion of the high-latitude magnetopause
Velocity of magnetic holes in the solar wind from Cluster multipoint measurements
Storm time polar cap expansion: interplanetary magnetic field clock angle dependence
Solar wind magnetic holes can cross the bow shock and enter the magnetosheath
Comment on
From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm
GUMICS-4 analysis of interplanetary coronal mass ejection impact on Earth during low and typical Mach number solar winds
The asymmetric geospace as displayed during the geomagnetic storm on 17 August 2001
Transfer entropy and cumulant-based cost as measures of nonlinear causal relationships in space plasmas: applications to Dst
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1087, https://doi.org/10.5194/egusphere-2024-1087, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and in the polar regions.
Henriette Trollvik, Tomas Karlsson, and Savvas Raptis
Ann. Geophys., 41, 327–337, https://doi.org/10.5194/angeo-41-327-2023, https://doi.org/10.5194/angeo-41-327-2023, 2023
Short summary
Short summary
The solar wind is in a plasma state and can exhibit a range of phenomena like waves and instabilities. One observed phenomenon in the solar wind is magnetic holes (MHs). They are localized depressions in the magnetic field. We studied the motion of MHs using the multispacecraft ESA Cluster mission. We derived their velocities in the solar wind frame and found that both linear and rotational MHs are convected with the solar wind.
Beket Tulegenov, Joachim Raeder, William D. Cramer, Banafsheh Ferdousi, Timothy J. Fuller-Rowell, Naomi Maruyama, and Robert J. Strangeway
Ann. Geophys., 41, 39–54, https://doi.org/10.5194/angeo-41-39-2023, https://doi.org/10.5194/angeo-41-39-2023, 2023
Short summary
Short summary
We study how the polar regions of the Earth connect to space along magnetic field lines. While the Earth's magnetic field is mostly the shape of a dipole, at high latitudes the field lines tend to be open and connect to interplanetary space. This area of open field line is called the polar cap, and it is highly dynamic. Through data analysis and computer simulations, we find that the shape of the polar cap is closely controlled by the magnetic field embedded in the solar wind.
Tomas Karlsson, Henriette Trollvik, Savvas Raptis, Hans Nilsson, and Hadi Madanian
Ann. Geophys., 40, 687–699, https://doi.org/10.5194/angeo-40-687-2022, https://doi.org/10.5194/angeo-40-687-2022, 2022
Short summary
Short summary
Magnetic holes are curious localized dropouts of magnetic field strength in the solar wind (the flow of ionized gas continuously streaming out from the sun). In this paper we show that these magnetic holes can cross the bow shock (where the solar wind brake down to subsonic velocity) and enter the region close to Earth’s magnetosphere. These structures may therefore represent a new type of non-uniform solar wind–magnetosphere interaction.
Invariability of relationship between the polar cap magnetic activity and geoeffective interplanetary electric fieldby Troshichev et al. (2011)
Peter Stauning
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-52, https://doi.org/10.5194/angeo-2020-52, 2020
Preprint withdrawn
Short summary
Short summary
In Troshichev et al. (2006) an error was made in the calculations of Polar Cap (PC) index scaling parameters. For the publication commented here, Troshichev et al. (2011), the authors state having used scaling parameters of the invalid PC index version but have actually substituted parameters from another version instead. The mingling of PC index versions has resulted in erroneous illustrations in Figs. 1, 2, 3, 6, 7, and 8 and the issuing of non-substantiated statements.
Mirko Piersanti, Paola De Michelis, Dario Del Moro, Roberta Tozzi, Michael Pezzopane, Giuseppe Consolini, Maria Federica Marcucci, Monica Laurenza, Simone Di Matteo, Alessio Pignalberi, Virgilio Quattrociocchi, and Piero Diego
Ann. Geophys., 38, 703–724, https://doi.org/10.5194/angeo-38-703-2020, https://doi.org/10.5194/angeo-38-703-2020, 2020
Short summary
Short summary
This paper presents a comprehensive analysis of the solar event that occurred on 25 August 2018. This kind of comprehensive analysis plays a key role in better understanding the complexity of the processes occurring in the Sun–Earth system determining the geoeffectiveness of manifestations of solar activity. The analysis presented here shows for the first time a direct link between characteristics of solar perturbation, the magnetosphere–ionosphere system response and space weather effects.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Nikolai Østgaard, Jone P. Reistad, Paul Tenfjord, Karl M. Laundal, Theresa Rexer, Stein E. Haaland, Kristian Snekvik, Michael Hesse, Stephen E. Milan, and Anders Ohma
Ann. Geophys., 36, 1577–1596, https://doi.org/10.5194/angeo-36-1577-2018, https://doi.org/10.5194/angeo-36-1577-2018, 2018
Short summary
Short summary
In this paper we take advantage of having two auroral imaging missions giving simultaneous data of both the southern and northern aurora. Combined with all available in situ measurements from space and global ground-based networks, we explore the asymmetric behavior of geospace. We find large auroral asymmetries and different reconnection geometry in the two hemispheres. During substorm expansion phase asymmetries are reduced.
Jay R. Johnson, Simon Wing, and Enrico Camporeale
Ann. Geophys., 36, 945–952, https://doi.org/10.5194/angeo-36-945-2018, https://doi.org/10.5194/angeo-36-945-2018, 2018
Short summary
Short summary
The magnetospheric response to the solar wind is nonlinear. Information theoretical tools are able to characterize the nonlinearities in the system. We show that nonlinear significance of Dst peaks at lags of 3–12 hours which can be attributed to VBs, which also exhibits similar behavior. However, the nonlinear significance that peaks at lags of 25, 50, and 90 hours can be attributed to internal dynamics, which may be related to the relaxation of the ring current.
Cited articles
Amm, O., Grocott, A., Lester, M., and Yeoman, T. K.: Local determination of
ionospheric plasma convection from coherent scatter radar data using the
SECS technique, J. Geophys. Res., 115, A03304, https://doi.org/10.1029/2009JA014832,
2010.
Angelopoulos, V.: The THEMIS mission, Space Sci. Rev., 141, 5–34,
https://doi.org/10.1007/s11214-008-9336-1, 2008.
Archer, M. O. and Horbury, T. S.: Magnetosheath dynamic pressure
enhancements: occurrence and typical properties, Ann. Geophys., 31, 319–331,
https://doi.org/10.5194/angeo-31-319-2013, 2013.
Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W.,
Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., Harvey, P.,
Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka,
K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., and
Wiedemann, M.: The THEMIS fluxgate magnetometer, Space Sci. Rev., 141,
235–264, 2008.
Baker, K. B., Dudeney, J. R., Greenwald, R. A., Pinnock, M., Newell, P. T.,
Rodger, A. S., Mattin, N., and Meng, C.-I.: HF radar signatures of the cusp
and low-latitude boundary layer, J. Geophys. Res., 100, 7671–7695,
https://doi.org/10.1029/94JA01481, 1995.
Baker, K. B., Rodger, A. S., and Lu, G.: HF-radar observations of the dayside
magnetic merging rate: A Geospace Environment Modeling boundary layer
campaign study, J. Geophys. Res., 102, 9603–9617, https://doi.org/10.1029/97JA00288,
1997.
Bobra, M. G., Petrinec, S. M., Fuselier, S. A., Claflin, E. S., and Spence,
H. E.: On the solar wind control of cusp aurora during northward
IMF, Geophys. Res. Lett., 31, L04805, https://doi.org/10.1029/2003GL018417, 2004.
Bristow, W. A., Hampton, D. L., and Otto, A.: High-spatial-resolution
velocity measurements derived using Local Divergence-Free Fitting of
SuperDARN observations, J. Geophys. Res.-Space, 121, 1349–1361,
https://doi.org/10.1002/2015JA021862, 2016.
Carlson, H. C., Oksavik, K., Moen, J., and Pedersen, T.: Ionospheric patch
formation: Direct measurements of the origin of a polar cap patch, Geophys.
Res. Lett., 31, L08806, https://doi.org/10.1029/2003GL018166, 2004.
Chisham, G. and Freeman, M. P.: A technique for accurately determining the
cusp-region polar cap boundary using SuperDARN HF radar measurements, Ann.
Geophys., 21, 983–996, https://doi.org/10.5194/angeo-21-983-2003, 2003.
Chisham, G. and Freeman, M. P.: An investigation of latitudinal transitions
in the SuperDARN Doppler spectral width parameter at different magnetic local
times, Ann. Geophys., 22, 1187–1202,
https://doi.org/10.5194/angeo-22-1187-2004, 2004.
Chisham, G., Coleman, I. J., Freeman, M. P., Pinnock, M., and Lester, M.:
Ionospheric signatures of split reconnection X-lines during conditions of IMF
Bz < 0 and |By|/|Bz|: Evidence for the
antiparallel merging hypothesis, J. Geophys. Res., 107, 1323,
https://doi.org/10.1029/2001JA009124, 2002.
Chisham, G., Freeman, M. P., Coleman, I. J., Pinnock, M., Hairston, M. R.,
Lester, M., and Sofko, G.: Measuring the dayside reconnection rate during an
interval of due northward interplanetary magnetic field, Ann. Geophys., 22,
4243–4258, https://doi.org/10.5194/angeo-22-4243-2004, 2004a.
Chisham, G., Freeman, M. P., and Sotirelis, T.: A statistical comparison of
SuperDARN spectral width boundaries and DMSP particle precipitation
boundaries in the nightside ionosphere, Geophys. Res. Lett., 31, L02804,
https://doi.org/10.1029/2003GL019074, 2004b.
Chisham, G., Freeman, M. P., Sotirelis, T., Greenwald, R. A., Lester, M., and
Villain, J.-P.: A statistical comparison of SuperDARN spectral width
boundaries and DMSP particle precipitation boundaries in the morning sector
ionosphere, Ann. Geophys., 23, 733–743,
https://doi.org/10.5194/angeo-23-733-2005, 2005a.
Chisham, G., Freeman, M. P., Sotirelis, T., and Greenwald, R. A.: The
accuracy of using the spectral width boundary measured in off-meridional
SuperDARN HF radar beams as a proxy for the open-closed field line boundary,
Ann. Geophys., 23, 2599–2604, https://doi.org/10.5194/angeo-23-2599-2005,
2005b.
Chisham, G., Freeman, M. P., Lam, M. M., Abel, G. A., Sotirelis, T.,
Greenwald, R. A., and Lester, M.: A statistical comparison of SuperDARN
spectral width boundaries and DMSP particle precipitation boundaries in the
afternoon sector ionosphere, Ann. Geophys., 23, 3645–3654,
https://doi.org/10.5194/angeo-23-3645-2005, 2005c.
Chisham, G., Freeman, M. P., Abel, G. A., Lam, M. M., Pinnock, M., Coleman,
I. J., Milan, S. E., Lester, M., Bristow, W. A., Greenwald, R. A., Sofko, G.
J., and Villain, J.-P.: Remote sensing of the spatial and temporal structure
of magnetopause and magnetotail reconnection from the ionosphere, Rev.
Geophys., 46, RG1004, https://doi.org/10.1029/2007RG000223, 2008.
Coleman, I. J. and Freeman, M. P.: Fractal reconnection structures on the
magnetopause, Geophys. Res. Lett., 32, L03115, https://doi.org/10.1029/2004GL021779,
2005.
Coleman, I. J., Chisham, G., Pinnock, M., and Freeman, M. P.: An ionospheric
convection signature of antiparallel reconnection, J. Geophys. Res., 106,
28995–29007, 2001.
Cousins, E. D. P. and Shepherd, S. G.: A dynamical model of high–latitude
convection derived from SuperDARN plasma drift measurements, J. Geophys.
Res., 115, A12329, https://doi.org/10.1029/2010JA016017, 2010.
Crooker, N. U.: Dayside merging and cusp geometry, J. Geophys. Res., 84,
951–959, https://doi.org/10.1029/JA084iA03p00951, 1979.
Crooker, N. U., Toffoletto, F. R., and Gussenhoven, M. S.: Opening the cusp,
J. Geophys. Res., 96, 3497–3503, https://doi.org/10.1029/90JA02099, 1991.
Denig, W. F., Burke, W. J., Maynard, N. C., Rich, F. J., Jacobsen, B.,
Sandholt, P. E., Egeland, S., Leontjev, A., and Vorobjev, V. G.: Ionospheric
signatures of dayside magnetopause transients: A case study using satellite
and ground measurements, J. Geophys. Res., 98, 5969–5980,
https://doi.org/10.1029/92JA01541, 1993.
Dorelli, J. C., Bhattacharjee, A., and Raeder, J.: Separator reconnection at
Earth's dayside magnetopause under generic northward interplanetary magnetic
field conditions, J. Geophys. Res., 112, A02202, https://doi.org/10.1029/2006JA011877,
2007.
Dunlop, M. W., Zhang, Q.-H., Bogdanova, Y. V., Trattner, K. J., Pu, Z.,
Hasegawa, H., Berchem, J., Taylor, M. G. G. T., Volwerk, M., Eastwood, J. P.,
Lavraud, B., Shen, C., Shi, J.-K., Wang, J., Constantinescu, D., Fazakerley,
A. N., Frey, H., Sibeck, D., Escoubet, P., Wild, J. A., Liu, Z. X., and Carr,
C.: Magnetopause reconnection across wide local time, Ann. Geophys., 29,
1683–1697, https://doi.org/10.5194/angeo-29-1683-2011, 2011.
Elphic, R. C., Lockwood, M., Cowley, S. W. H., and Sandholt, P. E.: Flux
transfer events at the magnetopause and in the ionosphere, Geophys. Res.
Lett., 17, 2241, https://doi.org/10.1029/GL017i012p02241, 1990.
Fasel, G. J.: Dayside poleward moving auroral forms: A statistical study, J.
Geophys. Res., 100, 11891–11905, https://doi.org/10.1029/95JA00854, 1995.
Fear, R. C., Milan, S. E., Fazakerley, A. N., Lucek, E. A., Cowley, S. W. H.,
and Dandouras, I.: The azimuthal extent of three flux transfer events, Ann.
Geophys., 26, 2353–2369, https://doi.org/10.5194/angeo-26-2353-2008, 2008.
Fear, R. C., Milan, S. E., Lucek, E. A., Cowley, S. W. H., and Fazakerley, A.
N.: Mixed azimuthal scales of flux transfer events, in The Cluster Active
Archive – Studying the Earth's Space Plasma Environment, Astrophys. Space
Sci. Proc., edited by: Laakso, H., Taylor, M., and Escoubet, C. P., Springer,
Dordrecht, Netherlands, 389–398, https://doi.org/10.1007/978-90-481-3499-1_27, 2010.
Freeman, M. P., Chisham, G., and Coleman, I. J.: Remote sensing of
reconnection, in: Reconnection of Magnetic Fields, edited by: Birn, J. and
Priest, E., chap. 4.6, Cambridge Univ. Press, New York, 217–228, 2007.
Fuselier, S. A., Frey, H. U., Trattner, K. J., Mende, S. B., and Burch, J.
L.: Cusp aurora dependence on interplanetary magnetic field Bz, J.
Geophys. Res., 107, 1111, https://doi.org/10.1029/2001JA900165, 2002.
Fuselier, S. A., Mende, S. B., Moore, T. E., Frey, H. U., Petrinec, S. M.,
Claflin, E. S., and Collier, M. R.: Cusp dynamics and ionospheric outflow,
in: Magnetospheric Imaging – The Image Mission, edited by: Burch, J. L.,
Space Sci. Rev., 109, 285–312, https://doi.org/10.1023/B:SPAC.0000007522.71147.b3,
2003.
Fuselier, S. A., Trattner, K. J., Petrinec, S. M., Owen, C. J., and
Rème, H.: Computing the reconnection rate at the Earth's magnetopause
using two spacecraft observations, J. Geophys. Res., 110, A06212,
https://doi.org/10.1029/2004JA010805, 2005.
Fuselier, S. A., Petrinec, S. M., and Trattner, K. J.: Antiparallel magnetic
reconnection rates at the Earth's magnetopause, J. Geophys. Res., 115,
A10207, https://doi.org/10.1029/2010JA015302, 2010.
Glocer, A., Dorelli, J., Toth, G., Komar, C. M., and Cassak, P. A.: Separator
reconnection at the magnetopause for predominantly northward and southward
IMF: Techniques and results, J. Geophys. Res.-Space, 121, 140–156,
https://doi.org/10.1002/2015JA021417, 2016.
Goertz, C. K., Nielsen, E., Korth, A., Glassmeier, K. H., Haldoupis, C.,
Hoeg, P., and Hayward, D.: Observations of a possible ground signature of
flux transfer events, J. Geophys. Res., 90, 4069–4078,
https://doi.org/10.1029/JA090iA05p04069, 1985.
Gonzalez, W. D. and Mozer, F. S.: A quantitative model for the potential
resulting from reconnection with an arbitrary interplanetary magnetic field,
J. Geophys. Res., 79, 4186–4194, https://doi.org/10.1029/JA079i028p04186, 1974.
Gosling, J. T., Thomsen, M. F., Bame, S. J., Onsager, T. G., and Russell, C.
T.: The electron edge of low latitude boundary layer during accelerated flow
events, Geophys. Res. Lett., 17, 1833–1836, https://doi.org/10.1029/GL017i011p01833,
1990.
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B.,
Thomas, E. C., Villain, J.-P., Cerisier, J.-C., Senior, C., Hanuise, C.,
Hunsucker, R. D., Sofko, G., Koehler, J., Nielsen, E., Pellinen, R., Walker,
A. D. M., Sato, N., and Yamagishi, H.: DARN/SuperDARN: A global view of the
dynamics of high-latitude convection, Space Sci. Rev., 71, 761–796, 1995.
Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P.
C.: The frontside boundary layer of the magnetosphere and the problem of
reconnection, J. Geophys. Res., 83, 3195–3216, https://doi.org/10.1029/JA083iA07p03195,
1978.
Hasegawa, H., Kitamura, N., Saito, Y., Nagai, T., Shinohara, I., Yokota, S.,
Pollock, C. J., Giles, B. L., Dorelli, J. C., Gershman, D. J., Avanov, L. A.,
Kreisler, S., Paterson, W. R., Chandler, M. O., Coffey, V., Burch, J. L.,
Torbert, R. B., Moore, T. E., Russell, C. T., Strangeway, R. J., Le, G., Oka,
M., Phan, T. D., Lavraud, B., Zenitani, S., and Hesse, M.: Decay of mesoscale
flux transfer events during quas-spatially extended reconnection at the
magnetopause, Geophys. Res. Lett., 43, 4755–4762,
https://doi.org/10.1002/2016GL069225, 2016.
Haynes, A. L. and Parnell, C. E.: A method for finding three-dimensional
magnetic skeletons, Phys. Plasmas, 17, 092903, https://doi.org/10.1063/1.3467499,
2010.
Hesse, M., Kuznetsova, M., and Birn, J.: Particle-in-cell simulations of
three-dimensional collisionless magnetic reconnection, J. Geophys. Res., 106,
29831–29842, 2001.
Huba, J. D. and Rudakov, L. I.: Three-dimensional Hall magnetic reconnection,
Phys. Plasmas, 9, 4435–4438, https://doi.org/10.1063/1.1514970, 2002.
Hudson, P. D.: Discontinuities in an anisotropic plasma and their
identification in the solar wind, Planet. Space Sci., 18, 1611–1622, 1970.
Jain, N., Büchner, J., Dorfman, S., Ji, H., and Sharma, A. S.: Current
disruption and its spreading in collisionless magnetic reconnection, Phys.
Plasmas, 20, 112101, https://doi.org/10.1063/1.4827828, 2013.
Komar, C. M., Cassak, P. A., Dorelli, J. C., Glocer, A., and Kuznetsova, M.
M.: Tracing magnetic separators and their dependence on IMF clock angle in
global magnetospheric simulations, J. Geophys. Res.-Space, 118, 4998–5007,
https://doi.org/10.1002/jgra.50479, 2013.
Kuo, H., Russell, C. T., and Le, G.: Statistical studies of flux transfer
events, J. Geophys. Res., 100, 3513–3519, https://doi.org/10.1029/94JA02498, 1995.
Laitinen, T. V., Janhunen, P., Pulkkinen, T. I., Palmroth, M., and Koskinen,
H. E. J.: On the characterization of magnetic reconnection in global MHD
simulations, Ann. Geophys., 24, 3059–3069,
https://doi.org/10.5194/angeo-24-3059-2006, 2006.
Laitinen, T. V., Palmroth, M., Pulkkinen, T. I., Janhunen, P., and Koskinen,
H. E. J.: Continuous reconnection line and pressure-dependent energy
conversion on the magnetopause in a global MHD model, J. Geophys. Res.,
112, A11201, https://doi.org/10.1029/2007JA012352, 2007.
Lapenta, G., Krauss-Varban, D., Karimabadi, H., Huba, J. D., Rudakov, L. I.,
and Ricci, P.: Kinetic simulations of X-line expansion in 3D reconnection,
Geophys. Res. Lett., 33, L10102, https://doi.org/10.1029/2005GL025124, 2006.
Lee, L. C. and Fu, Z. F.: A theory of magnetic flux transfer at the earth's
magnetopause, Geophys. Res. Lett., 12, 105–108,
https://doi.org/10.1029/GL012i002p00105, 1985.
Lockwood, M. and Smith, M. F.: Low altitude signatures of the cusp and flux
transfer events, Geophys. Res. Lett., 16, 879–882, 1989.
Lockwood, M. and Smith, M. F.: Low and middle altitude cusp particle
signatures for general magnetopause reconnection rate variations: 1. Theory,
J. Geophys. Res., 99, 8531–8553, https://doi.org/10.1029/93JA03399, 1994.
Lockwood, M. and Wild, M. N.: On the quasi-periodic nature of magnetopause
flux transfer events, J. Geophys. Res., 98, 5935–5940,
https://doi.org/10.1029/92JA02375, 1993.
Lockwood, M., Sandholt, P. E., and Cowley, S. W. H.: Dayside auroral activity
and momentum transfer from the solar wind, Geophys. Res. Lett., 16, 33–36,
https://doi.org/10.1029/GL016i001p00033, 1989.
Lockwood, M., Cowley, S. W. H., Sandholt, P. E., and Lepping, R. P.: The
ionospheric signatures of flux transfer events and solar wind dynamic
pressure changes, J. Geophys. Res., 95, 17113–17135,
https://doi.org/10.1029/JA095iA10p17113, 1990.
Lockwood, M., Fazakerley, A., Opgenoorth, H., Moen, J., van Eyken, A. P.,
Dunlop, M., Bosqued, J.-M., Lu, G., Cully, C., Eglitis, P., McCrea, I. W.,
Hapgood, M. A., Wild, M. N., Stamper, R., Denig, W., Taylor, M., Wild, J. A.,
Provan, G., Amm, O., Kauristie, K., Pulkkinen, T., Strømme, A., Prikryl, P.,
Pitout, F., Balogh, A., Rème, H., Behlke, R., Hansen, T., Greenwald, R.,
Frey, H., Morley, S. K., Alcaydé, D., Blelly, P.-L., Donovan, E.,
Engebretson, M., Lester, M., Watermann, J., and Marcucci, M. F.: Coordinated
Cluster and ground-based instrument observations of transient changes in the
magnetopause boundary layer during an interval of predominantly northward
IMF: relation to reconnection pulses and FTE signatures, Ann. Geophys., 19,
1613–1640, https://doi.org/10.5194/angeo-19-1613-2001, 2001.
Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J.
R., and Stahara, S. S.: Patterns of potential magnetic field merging sites on
the dayside magnetopause, J. Geophys. Res., 89, 1739–1742,
https://doi.org/10.1029/JA089iA03p01739, 1984.
Lui, A. T. Y. and Sibeck, D. G.: Dayside auroral activities and their
implications for impulsive entry processes in the dayside magnetosphere, J.
Atmos. Terr. Phys., 53, 219–229, https://doi.org/10.1016/0021-9169(91)90106-H,
1991.
McFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott,
B., Turin, P., Marckwordt, M., and Angelopoulos, V.: The THEMIS ESA plasma
instrument and in-flight calibration, Space Sci. Rev., 141, 277–302,
2008.
McWilliams, K. A., Yeoman, T. K., and Provan, G.: A statistical survey of
dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar,
Ann. Geophys., 18, 445–453, https://doi.org/10.1007/s00585-000-0445-8,
2000a.
McWilliams, K. A., Yeoman, T. K., and Cowley, S. W. H.: Two-dimensional
electric field measurements in the ionospheric footprint of a flux transfer
event, Ann. Geophys., 18, 1584–1598, https://doi.org/10.1007/s00585-001-1584-2, 2000b.
McWilliams, K. A., Yeoman, T. K., Sigwarth, J. B., Frank, L. A., and
Brittnacher, M.: The dayside ultraviolet aurora and convection responses to a
southward turning of the interplanetary magnetic field, Ann. Geophys., 19,
707–721, https://doi.org/10.5194/angeo-19-707-2001, 2001.
McWilliams, K. A., Sofko, G. J., Yeoman, T. K., Milan, S. E., Sibeck, D. G.,
Nagai, T., Mukai, T., Coleman, I. J., Hori, T., and Rich, F. J.: Simultaneous
observations of magnetopause flux transfer events and of their associated
signatures at ionospheric altitudes, Ann. Geophys., 22, 2181–2199,
https://doi.org/10.5194/angeo-22-2181-2004, 2004.
Milan, S. E., Lester, M., Cowley, S. W. H., and Brittnacher, M.: Convection
and auroral response to a southward turning of the IMF: Polar UVI, CUTLASS,
and IMAGE signatures of transient magnetic flux transfer at the magnetopause,
J. Geophys. Res., 105, 15741–15755, https://doi.org/10.1029/2000JA900022, 2000.
Milan, S. E., Imber, S. M., Carter, J. A., Walach, M.-T., and Hubert, B.:
What controls the local time extent of flux transfer events?, J. Geophys.
Res.-Space, 121, 1391–1401, https://doi.org/10.1002/2015JA022012, 2016.
Moen, J., Carlson, H. C., Milan, S. E., Shumilov, N., Lybekk, B., Sandholt,
P. E., and Lester, M.: On the collocation between dayside auroral activity
and coherent HF radar backscatter, Ann. Geophys., 18, 1531–1549,
https://doi.org/10.1007/s00585-001-1531-2, 2000.
Nakamura, T. K. M., Nakamura, R., Alexandrova, A., Kubota, Y., and Nagai, T.:
Hall magnetohydrodynamic effects for three-dimensional magnetic reconnection
with finite width along the direction of the current, J. Geophys. Res., 117,
A03220, https://doi.org/10.1029/2011JA017006, 2012.
Neudegg, D. A., Yeoman, T. K., Cowley, S. W. H., Provan, G., Haerendel, G.,
Baumjohann, W., Auster, U., Fornacon, K.-H., Georgescu, E., and Owen, C. J.:
A flux transfer event observed at the magnetopause by the Equator-S
spacecraft and in the ionosphere by the CUTLASS HF radar, Ann. Geophys., 17,
707–711, https://doi.org/10.1007/s00585-999-0707-z, 1999.
Neudegg, D. A., Cowley, S. W. H., Milan, S. E., Yeoman, T. K., Lester, M.,
Provan, G., Haerendel, G., Baumjohann, W., Nikutowski, B., Büchner, J.,
Auster, U., Fornacon, K.-H., and Georgescu, E.: A survey of magnetopause FTEs
and associated flow bursts in the polar ionosphere, Ann. Geophys., 18,
416–435, https://doi.org/10.1007/s00585-000-0416-0, 2000.
Nishitani, N., Ogawa, T., Pinnock, M., Freeman, M. P., Dudeney, J. R.,
Villain, J.-P., Baker, K. B., Sato, N., Yamagishi, H., and Matsumoto, H.: A
very large scale flow burst observed by the SuperDARN radars, J. Geophys.
Res., 104, 22469–22486, https://doi.org/10.1029/1999JA900241, 1999.
Newell P. T. and Meng, C.-I.: Ion acceleration at the equatorward edge of the
cusp: Low-altitude observations of patchy merging, Geophys. Res. Lett., 18,
1829–1832, https://doi.org/10.1029/91GL02088, 1991.
Newell, P. T. and Meng, C.-I: Ionospheric projections of magnetospheric
regions under low and high solar wind conditions, J. Geophys. Res., 99,
273–286, https://doi.org/10.1029/93JA02273, 1994.
Newell, P. T., Meng, C.-I., Sibeck, D. G., and Lepping, R.: Some low-altitude
cusp dependencies on the interplanetary magnetic field, J. Geophys. Res., 94,
8921–8927, https://doi.org/10.1029/JA094iA07p08921, 1989.
Newell, P. T., Sotirelis, T., Liou, K., Meng, C.-I., and Rich, F. J.: A
nearly universal solar wind-coupling function inferred from 10 magnetospheric
state variables, J. Geophys. Res., 112, A01206, https://doi.org/10.1029/2006JA012015,
2007.
Oksavik, K., Moen, J., and Carlson, H. C.: High-resolution observations of
the small-scale flow pattern associated with a poleward moving auroral form
in the cusp, Geophys. Res. Lett., 31, L11807, https://doi.org/10.1029/2004GL019838,
2004.
Oksavik, K., Moen, J., Carlson, H. C., Greenwald, R. A., Milan, S. E.,
Lester, M., Denig, W. F., and Barnes, R. J.: Multi-instrument mapping of the
small-scale flow dynamics related to a cusp auroral transient, Ann. Geophys.,
23, 2657–2670, https://doi.org/10.5194/angeo-23-2657-2005, 2005.
Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Sonnerup, B.
U. O., Bame, S. J, Asbridge, J. R., Gosling, J. T., Russell, C. T., and
Elphic, R. C.: Plasma acceleration at the Earth's magnetopause: Evidence for
magnetic reconnection, Nature, 282, 243–246, https://doi.org/10.1038/282243a0, 1979.
Paschmann, G., Papamastorakis, I., Baumjohann, W., Sckopke, N., Carlson, C.
W., Sonnerup, B. U. Ö., and Lühr, H: The magnetopause for large
magnetic shear: AMPTE/IRM observations, J. Geophys. Res., 91,
11099–11115, https://doi.org/10.1029/JA091iA10p11099, 1986.
Petrinec, S. M. and Fuselier, S. A.: On continuous versus discontinuous
neutral lines at the dayside magnetopause for southward interplanetary
magnetic field, Geophys. Res. Lett., 30, 1519, https://doi.org/10.1029/2002GL016565,
2003.
Phan, T., Frey, H. U., Frey, S., Peticolas, L., Fuselier, S., Carlson, C.,
Rème, H., Bosqued, J.-M., Balogh, A., Dunlop, M., Kistler, L., Mouikis,
C., Dandouras, I., Sauvaud, J.-A., Mende, S., McFadden, J., Parks, G.,
Moebius, E., Klecker, B., Paschmann, G., Fujimoto, M., Petrinec, S.,
Marcucci, M. F., Korth, A., and Lundin, R.: Simultaneous Cluster and IMAGE
observations of cusp reconnection and auroral proton spot for northward IMF,
Geophys. Res. Lett., 30, 1509, https://doi.org/10.1029/2003GL016885, 2003.
Phan, T. D. and Paschmann, G.: Low-dayside magnetopause and boundary layer
for high magnetic shear: 1. Structure and motion, J. Geophys. Res., 101,
7801–7815, https://doi.org/10.1029/95JA03752, 1996.
Phan, T. D., Kistler, L. M., Klecker, B., Haerendel, G., Paschmann, G.,
Sonnerup, B. U. Ö., Baumjohann, W., Bavassano-Cattaneo, M. B., Carlson,
C. W., DiLellis, A. M., Fornacon, K.-H., Frank, L. A., Fujimoto, M.,
Georgescu, E., Kokubun, S., Moebius, E., Mukai, T., Øieroset, M.,
Paterson, W. R., and Reme, H.: Extended magnetic reconnection at the Earth's
magnetopause from detection of bi-directional jets, Nature, 404,
848–850, https://doi.org/10.1038/35009050, 2000a.
Phan, T. D., Freeman, M. P., Kistler, L. M., Klecker, B., Haerendel, G.,
Paschmann, G., Sonnerup, B. U. O., Baumjohann, W., Bavassano-Cattaneo, M. B.,
Carlson, C. W., Dilellis, A. M., Fornacon, K. H., Frank, L. A., Fujimoto, M.,
Georgescu, E., Kokubun, S., Mobius, E., Mukai, T., Paterson, W. R., and
Réme, H.: Evidence for an extended reconnection line at the dayside
magnetopause, Earth Planet Sp., 53, 619–625,
https://doi.org/10.1186/BF03353281, 2000b.
Phan, T. D., Hasegawa, H., Fujimoto, M., Oieroset, M., Mukai, T., Lin, R. P.,
and Paterson, W. R.: Simultaneous Geotail and Wind observations of
reconnection at the subsolar and tail flank magnetopause, Geophys. Res.
Lett., 33, L09104, https://doi.org/10.1029/2006GL025756, 2006.
Phan, T. D., Paschmann, G., Gosling, J. T., Oieroset, M., Fujimoto, M.,
Drake, J. F., and Angelopoulos, V.: The dependence of magnetic reconnection
on plasma β and magnetic shear: Evidence from magnetopause
observations, Geophys. Res. Lett., 40, 11–16, https://doi.org/10.1029/2012GL054528,
2013.
Pinnock, M. and Rodger, A. S.: On determining the noon polar cap boundary
from SuperDARN HF radar backscatter characteristics, Ann. Geophys., 18,
1523–1530, https://doi.org/10.1007/s00585-001-1523-2, 2000.
Pinnock, M., Rodger, A. S., Dudeney, J. R., Baker, K. B., Newell, P. T.,
Greenwald, R. A., and Greenspan, M. E.: Observations of an enhanced
convection channel in the cusp ionosphere, J. Geophys. Res., 98, 3767–3776,
1993.
Pinnock, M., Rodger, A. S., Dudeney, J. R., Rich, F., and Baker, K. B.: High
spatial and temporal resolution observations of the ionospheric cusp, Ann.
Geophys., 13, 919–925, https://doi.org/10.1007/s00585-995-0919-9, 1995.
Pinnock, M., Chisham, G., Coleman, I. J., Freeman, M. P., Hairston, M., and
Villain, J.-P.: The location and rate of dayside reconnection during an
interval of southward interplanetary magnetic field, Ann. Geophys., 21,
1467–1482, https://doi.org/10.5194/angeo-21-1467-2003, 2003.
Plaschke, F., Hietala, H., and Angelopoulos, V.: Anti-sunward high-speed jets
in the subsolar magnetosheath, Ann. Geophys., 31, 1877–1889,
https://doi.org/10.5194/angeo-31-1877-2013, 2013.
Ponomarenko, P. V., Waters, C. L., and Menk, F. W.: Factors determining
spectral width of HF echoes from high latitudes, Ann. Geophys., 25, 675–687,
https://doi.org/10.5194/angeo-25-675-2007, 2007.
Provan, G. and Yeoman, T. K.: Statistical observations of the MLT, latitude
and size of pulsed ionospheric flows with the CUTLASS Finland radar, Ann.
Geophys., 17, 855–867, https://doi.org/10.1007/s00585-999-0855-1, 1999.
Provan, G., Yeoman, T. K., and Milan, S. E.: CUTLASS Finland radar
observations of the ionospheric signatures of flux transfer events and the
resulting plasma flows, Ann. Geophys., 16, 1411–1422,
https://doi.org/10.1007/s00585-998-1411-0, 1998.
Ruohoniemi, J. M. and Baker, K. B.: Large-scale imaging of high-latitude
convection with Super Dual Auroral Radar Network HF radar observations, J.
Geophys. Res., 103, 20797–20811, https://doi.org/10.1029/98JA01288, 1998.
Ruohoniemi, J. M., Greenwald, R. A., Baker, K. B., Villain, J.-P., Hanuise,
C., and Kelly, J.: Mapping high-latitude plasma convection with coherent HF
radars, J. Geophys. Res., 94, 13463–13477, https://doi.org/10.1029/JA094iA10p13463,
1989.
Russell, C. T. and Elphic, R. C.: ISEE observations of flux transfer events
at the dayside magnetopause, Geophys. Res. Lett., 6, 33–36,
https://doi.org/10.1029/GL006i001p00033, 1979.
Sandholt, P. E., Deehr, C. S., Egeland, A., Lybekk, B., Viereck, R., and
Romick, G. J.: Signatures in the dayside aurora of plasma transfer from the
magnetosheath, J. Geophys. Res., 91, 10063–10079,
https://doi.org/10.1029/JA091iA09p10063, 1986.
Sandholt, P. E., Lockwood, M., Oguti, T., Cowley, S. W. H., Freeman, K. S.
C., Lybekk, B., Egeland, A., and Willis, D. M.: Midday auroral breakup events
and related energy and momentum transfer from the magnetosheath, J. Geophys.
Res., 95, 1039–1060, https://doi.org/10.1029/JA095iA02p01039, 1990.
Sandholt, P. E., Farrugia, C. J., Burlaga, L. F., Holtet, J. A., Moen, J.,
Lybekk, B., Jacobsen, B., Opsvik, D., Egeland, A., Lepping, R., Lazarus, A.
J., Hansen, T., Brekke, A., and Friis-Christensen, E.: Cusp/cleft auroral
activity in relation to solar wind dynamic pressure, interplanetary magnetic
field Bz and By, J. Geophys. Res., 99, 17323–17342,
https://doi.org/10.1029/94JA00679, 1994.
Scholer, M.: Magnetic flux transfer at the magnetopause based on single x
line bursty reconnection, Geophys. Res. Lett., 15, 291–294.
https://doi.org/10.1029/GL015i004p00291, 1988.
Scholer, M., Sidorenko, I., Jaroschek, C. H., Treumann, R. A., and Zeiler,
A.: Onset of collisionless magnetic reconnection in thin current sheets:
Three-dimensional particle simulations, Phys. Plasmas, 10, 3521–3527,
2003.
Shay, M. A., Drake, J. F., Swisdak, M., Dorland, W., and Rogers, B. N.:
Inherently three dimensional magnetic reconnection: A mechanism for bursty
bulk flows?, Geophys. Res. Lett., 30, 1345, https://doi.org/10.1029/2002GL016267, 2003.
Shepherd, L. S. and Cassak, P. A.: Guide field dependence of 3-D X-line
spreading during collisionless magnetic reconnection, J. Geophys. Res., 117,
A10101, https://doi.org/10.1029/2012JA017867, 2012.
Smith, M., Lockwood, F. M., and Cowley, S. W. H.: The statistical cusp: a
simple flux transfer event model, Planet Space Sci., 40, 1251–1268,
https://doi.org/10.1016/0032-0633(92)90082-Y, 1992.
Sonnerup, B. U.: Magnetopause reconnection rate, J. Geophys. Res., 79,
1546–1549, https://doi.org/10.1029/JA079i010p01546, 1974.
Sonnerup, B. U. Ö. and Cahill Jr., L. J.: Magnetopause structure and
attitude from Explorer 12 observations, J. Geophys. Res., 72,171–183,
1967.
Southwood, D. J.: Theoretical aspects of ionosphere-magnetosphere-solar wind
coupling, Adv. Space Res., 5, 7–14, https://doi.org/10.1016/0273-1177(85)90110-3, 1985.
Southwood, D. J.: The ionospheric signature of flux transfer events, J.
Geophys. Res., 92, 3207, 3207–3213, https://doi.org/10.1029/JA092iA04p03207, 1987.
Southwood, D. J., Farrugia, C. J., and Saunders, M. A.: What are flux
transfer events?, Planet. Space Sci., 36, 503–508, 1988.
Thorolfsson, A., Cerisier, J.-C., Lockwood, M., Sandholt, P. E., Senior, C.,
and Lester, M.: Simultaneous optical and radar signatures of poleward-moving
auroral forms, Ann. Geophys., 18, 1054–1066,
https://doi.org/10.1007/s00585-000-1054-2, 2000.
Trattner, K. J., Fuselier, S. A., and Petrinec, S. M.: Location of the
reconnection line for northward interplanetary magnetic field, J. Geophys.
Res., 109, A03219, https://doi.org/10.1029/2003JA009975, 2004.
Trattner, K. J., Mulcock, J. S., Petrinec, S. M., and Fuselier, S. A.:
Probing the boundary between antiparallel and component reconnection during
southward interplanetary magnetic field conditions, J. Geophys. Res., 112,
A08210, https://doi.org/10.1029/2007JA012270, 2007.
Trattner, K. J., Fuselier, S. A., Petrinec, S. M., Yeoman, T. K., Escoubet,
C. P., and Reme, H.: The reconnection sites of temporal cusp structures, J.
Geophys. Res., 113, A07S14, https://doi.org/10.1029/2007JA012776, 2008.
Trattner, K. J., Burch, J. L., Ergun, R., Eriksson, S., Fuselier, S. A.,
Giles, B. L., Gomez, R. G., Grimes, E. W., Lewis, W. S., Mauk, B., Petrinec,
S. M., Russell, C. T., Strangeway, R. J., Trenchi, L., and Wilder, F. D.: The
MMS dayside magnetic reconnection locations during phase 1 and their relation
to the predictions of the maximum magnetic shear model, J. Geophys.
Res.-Space, 122, 11991–12005, https://doi.org/10.1002/2017JA024488, 2017.
Trenchi, L., Marcucci, M. F., Pallocchia, G., Consolini, G., Bavassano
Cattaneo, M. B., Di Lellis, A. M., Rème, H., Kistler, L., Carr, C. M.,
and Cao, J. B.: Occurrence of reconnection jets at the dayside magnetopause:
Double star observations, J. Geophys. Res., 113, A07S10,
https://doi.org/10.1029/2007JA012774, 2008.
Tsyganenko, N. A.: A magnetospheric magnetic field model with a warped tail
current sheet, Planet. Space Sci., 37, 5–20, 1989.
Tsyganenko, N. A.: Modeling the Earth's magnetospheric magnetic field
confined within a realistic magnetopause, J. Geophys. Res., 100, 5599–5612,
https://doi.org/10.1029/94JA03193, 1995.
Tsyganenko, N. A.: A model of the magnetosphere with a dawn-dusk asymmetry,
1, Mathematical structure, J. Geophys. Res., 107, 1179,
https://doi.org/10.1029/2001JA000219, 2002a.
Tsyganenko, N. A.: A model of the near magnetosphere with a dawn-dusk
asymmetry, 2, Parameterization and fitting to observations, J. Geophys. Res.,
107, 1176, https://doi.org/10.1029/2001JA000220, 2002b.
Walsh, B. M., Foster, J. C., Erickson, P. J., and Sibeck, D. G.: Simultaneous
ground- and space-based observations of the plasmaspheric plume and
reconnection, Science, 343, 1122–1125, https://doi.org/10.1126/science.1247212,
2014a.
Walsh, B. M., Phan, T. D., Sibeck, D. G., and Souza, V. M.: The plasmaspheric
plume and magnetopause reconnection, Geophys. Res. Lett., 41, 223–228,
https://doi.org/10.1002/2013GL058802, 2014b.
Walsh, B. M., Komar, C. M., and Pfau-Kempf, Y.: Spacecraft measurements
constraining the spatial extent of a magnetopause reconnection X line,
Geophys. Res. Lett., 44, 3038–3046, https://doi.org/10.1002/2017GL073379, 2017.
Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J.,
Raeder, J., Russell, C. T., Kawano, H., Zong, Q.-G., Zhang, H., Zhang, X. X.,
and Friedel, R. H.: Initial results of high-latitude magnetopause and
low-latitude flank flux transfer events from 3 years of Cluster observations,
J. Geophys. Res., 110, A11221, https://doi.org/10.1029/2005JA011150, 2005.
Wang, J., Dunlop, M. W., Pu, Z. Y., Zhou, X. Z., Zhang, X. G., Wei, Y., Fu,
S. Y., Xiao, C. J., Fazakerley, A., Laakso, H., Taylor, M. G. G. T.,
Bogdanova, Y., Pitout, F., Davies, J., Zong, Q. G., Shen, C., Liu, Z. X.,
Carr, C., Perry, C., Rème, H., Dandouras, I., Escoubet, P., Owen, C. J.:
TC1 and Cluster observation of an FTE on 4 January 2005: A close conjunction,
Geophys. Res. Lett., 34, L03106, https://doi.org/10.1029/2006GL028241, 2007.
Wild, J. A., Cowley, S. W. H., Davies, J. A., Khan, H., Lester, M., Milan, S.
E., Provan, G., Yeoman, T. K., Balogh, A., Dunlop, M. W., Fornaçon, K.-H.,
and Georgescu, E.: First simultaneous observations of flux transfer events at
the high-latitude magnetopause by the Cluster spacecraft and pulsed radar
signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars, Ann.
Geophys., 19, 1491–1508, https://doi.org/10.5194/angeo-19-1491-2001, 2001.
Wild, J. A., Milan, S. E., Davies, J. A., Cowley, S. W. H., Carr, C. M., and
Balogh, A.: Double Star, Cluster, and ground-based observations of magnetic
reconnection during an interval of duskward oriented IMF: preliminary
results, Ann. Geophys., 23, 2903–2907,
https://doi.org/10.5194/angeo-23-2903-2005, 2005.
Wild, J. A., Milan, S. E., Davies, J. A., Dunlop, M. W., Wright, D. M., Carr,
C. M., Balogh, A., Rème, H., Fazakerley, A. N., and Marchaudon, A.: On the
location of dayside magnetic reconnection during an interval of duskward
oriented IMF, Ann. Geophys., 25, 219–238,
https://doi.org/10.5194/angeo-25-219-2007, 2007.
Zhang, Q.-H., Liu, R. Y., Dunlop, M. W., Huang, J. Y., Hu, H. Q., Lester, M.,
Liu, Y. H., Hu, Z. J., Shi, Q. Q., and Taylor, M. G. G. T.: Simultaneous
tracking of reconnected flux tubes: Cluster and conjugate SuperDARN
observations on 1 April 2004, Ann. Geophys., 26, 1545–1557,
https://doi.org/10.5194/angeo-26-1545-2008, 2008.
Zou, Y., Walsh, B. M., Nishimura, Y., Angelopoulos, V., Ruohoniemi, J. M.,
McWilliams, K. A., and Nishitani, N.: Spreading speed of magnetopause
reconnection X-lines using ground-satellite coordination, Geophys. Res.
Lett., 45, 80–89, https://doi.org/10.1002/2017GL075765, 2018.
Short summary
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the Earth. Whether the process is spatially patchy or spatially continuous and extended has been under long debate. We use space–ground coordination to overcome the limitations of previous studies and reliably interpret spatial extent. Our result strongly indicates that both patchy and extended reconnection is possible and, interestingly, that extended reconnection grows from a localized patch via spreading.
Magnetopause reconnection is a process whereby the Sun explosively transfers energy to the...