Articles | Volume 37, issue 1
https://doi.org/10.5194/angeo-37-111-2019
https://doi.org/10.5194/angeo-37-111-2019
Regular paper
 | 
12 Feb 2019
Regular paper |  | 12 Feb 2019

Mitigation of ionospheric signatures in Swarm GPS gravity field estimation using weighting strategies

Lucas Schreiter, Daniel Arnold, Veerle Sterken, and Adrian Jäggi

Related authors

AIUB-GRACE gravity field solutions for G3P: processing strategies and instrument parameterization
Neda Darbeheshti, Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Earth Syst. Sci. Data, 16, 1589–1599, https://doi.org/10.5194/essd-16-1589-2024,https://doi.org/10.5194/essd-16-1589-2024, 2024
Short summary
GOCO06s – a satellite-only global gravity field model
Andreas Kvas, Jan Martin Brockmann, Sandro Krauss, Till Schubert, Thomas Gruber, Ulrich Meyer, Torsten Mayer-Gürr, Wolf-Dieter Schuh, Adrian Jäggi, and Roland Pail
Earth Syst. Sci. Data, 13, 99–118, https://doi.org/10.5194/essd-13-99-2021,https://doi.org/10.5194/essd-13-99-2021, 2021
Short summary
Benchmark data for verifying background model implementations in orbit and gravity field determination software
Martin Lasser, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, and Jakob Flury
Adv. Geosci., 55, 1–11, https://doi.org/10.5194/adgeo-55-1-2020,https://doi.org/10.5194/adgeo-55-1-2020, 2020
Short summary
Stochastic noise modelling of kinematic orbit positions in the Celestial Mechanics Approach
Martin Lasser, Ulrich Meyer, Daniel Arnold, and Adrian Jäggi
Adv. Geosci., 50, 101–113, https://doi.org/10.5194/adgeo-50-101-2020,https://doi.org/10.5194/adgeo-50-101-2020, 2020
Short summary
Description of the multi-approach gravity field models from Swarm GPS data
João Teixeira da Encarnação, Pieter Visser, Daniel Arnold, Aleš Bezdek, Eelco Doornbos, Matthias Ellmer, Junyi Guo, Jose van den IJssel, Elisabetta Iorfida, Adrian Jäggi, Jaroslav Klokocník, Sandro Krauss, Xinyuan Mao, Torsten Mayer-Gürr, Ulrich Meyer, Josef Sebera, C. K. Shum, Chaoyang Zhang, Yu Zhang, and Christoph Dahle
Earth Syst. Sci. Data, 12, 1385–1417, https://doi.org/10.5194/essd-12-1385-2020,https://doi.org/10.5194/essd-12-1385-2020, 2020
Short summary

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Ionospheric disturbances
Observations of ionospheric disturbances associated with the 2020 Beirut explosion by Defense Meteorological Satellite Program and ground-based ionosondes
Rezy Pradipta and Pei-Chen Lai
Ann. Geophys., 42, 301–312, https://doi.org/10.5194/angeo-42-301-2024,https://doi.org/10.5194/angeo-42-301-2024, 2024
Short summary
Effects of the super-powerful tropospheric western Pacific phenomenon of September–October 2018 on the ionosphere over China: results from oblique sounding
Leonid F. Chernogor, Kostiantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 41, 173–195, https://doi.org/10.5194/angeo-41-173-2023,https://doi.org/10.5194/angeo-41-173-2023, 2023
Short summary
Ionospheric effects of the 5–6 January 2019 eclipse over the People's Republic of China: results from oblique sounding
Leonid F. Chernogor, Kostyantyn P. Garmash, Qiang Guo, Victor T. Rozumenko, and Yu Zheng
Ann. Geophys., 40, 585–603, https://doi.org/10.5194/angeo-40-585-2022,https://doi.org/10.5194/angeo-40-585-2022, 2022
Short summary
Study of the equatorial and low-latitude total electron content response to plasma bubbles during solar cycle 24–25 over the Brazilian region using a Disturbance Ionosphere indeX
Giorgio Arlan Silva Picanço, Clezio Marcos Denardini, Paulo Alexandre Bronzato Nogueira, Laysa Cristina Araujo Resende, Carolina Sousa Carmo, Sony Su Chen, Paulo França Barbosa-Neto, and Esmeralda Romero-Hernandez
Ann. Geophys., 40, 503–517, https://doi.org/10.5194/angeo-40-503-2022,https://doi.org/10.5194/angeo-40-503-2022, 2022
Short summary
Diagnostic study of geomagnetic storm-induced ionospheric changes over very low-frequency signal propagation paths in the mid-latitude D region
Victor U. J. Nwankwo, William Denig, Sandip K. Chakrabarti, Olugbenga Ogunmodimu, Muyiwa P. Ajakaiye, Johnson O. Fatokun, Paul I. Anekwe, Omodara E. Obisesan, Olufemi E. Oyanameh, and Oluwaseun V. Fatoye
Ann. Geophys., 40, 433–461, https://doi.org/10.5194/angeo-40-433-2022,https://doi.org/10.5194/angeo-40-433-2022, 2022
Short summary

Cited articles

Beutler, G., Jäggi, A., Mervart, L., and Meyer, U.: The celestial mechanics approach: theoretical foundations, J. Geodesy, 84, 605–624, https://doi.org/10.1007/s00190-010-0401-7, 2010. a
Bock, H., Jäggi, A., Beutler, G., and Meyer, U.: GOCE: precise orbit determination for the entire mission, J. Geodesy, 88, 1047–1060, https://doi.org/10.1007/s00190-014-0742-8, 2014. a
Dahle, C., Arnold, D., and Jäggi, A.: Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery, Adv. Space Res., 59, 2843–2854, https://doi.org/10.1016/j.asr.2017.03.003, 2017. a, b, c
Gurtner, W. and Estey, L.: RINEX, The Receiver Independent Exchange Format, Version 3.00, IGS Data Format description, available at: ftp://igs.org/pub/data/format/rinex300.pdf (last access: 21 November 2018), 2007. a
Jäggi, A., Bock, H., Prange, L., Meyer, U., and Beutler, G.: GPS-only gravity field recovery with GOCE, CHAMP, and GRACE, Adv. Space Res., 47, 1020–1028, https://doi.org/10.1016/j.asr.2010.11.008, 2011a. a, b
Download
Short summary
Comparing Swarm GPS-only gravity fields to the ultra-precise GRACE K-Band gravity field schematic errors occurs around the geomagnetic equator. Due to the end of the GRACE mission, and the gap to the GRACE-FO mission, only Swarm can provide a continuous time series of gravity fields. We present different and assess different approaches to remove the schematic errors and thus improve the quality of the Swarm gravity fields.