Articles | Volume 43, issue 1
https://doi.org/10.5194/angeo-43-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-43-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Investigation of the occurrence of significant deviations in the magnetopause location: solar-wind and foreshock effects
Niklas Grimmich
CORRESPONDING AUTHOR
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Adrian Pöppelwerth
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Martin Owain Archer
Department of Physics, Imperial College London, London, UK
David Gary Sibeck
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
Ferdinand Plaschke
Institut für Geophysik und Extraterrestrische Physik, Technische Universität Braunschweig, Braunschweig, Germany
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
Vicki Toy-Edens
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
Drew Lawson Turner
Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA
Hyangpyo Kim
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Related authors
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814, https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Heliophysics spans a wide range of disciplines covering the study of the Sun and the different Solar System bodies, such as Earth and other planets, moons, comets, and asteroids, and their interactions with the Sun, focusing on plasma and atmospheric processes. A grass-roots effort has been recently started toward establishing a European Heliophysics Community (https://www.heliophysics.eu/). This white paper outlines the motivation, priorities, and a future vision of Heliophysics in Europe.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Livia R. Alves, Márcio E. S. Alves, Ligia A. da Silva, Vinicius Deggeroni, Paulo R. Jauer, and David G. Sibeck
Ann. Geophys., 41, 429–447, https://doi.org/10.5194/angeo-41-429-2023, https://doi.org/10.5194/angeo-41-429-2023, 2023
Short summary
Short summary
We derive the wave–particle interaction time (IT) equation considering the effects of special relativity theory for whistler-mode chorus waves and relativistic electrons in Earth's radiation belt. Results show that IT has a non-linear dependence on the wave group velocity, electrons' energy, and initial pitch angle. Our results show that the interaction time is generally longer when applying the complete relativistic approach compared to a non-relativistic calculation.
Martin O. Archer, Cara L. Waters, Shafiat Dewan, Simon Foster, and Antonio Portas
Geosci. Commun., 5, 119–123, https://doi.org/10.5194/gc-5-119-2022, https://doi.org/10.5194/gc-5-119-2022, 2022
Short summary
Short summary
Educational research highlights that improved careers education is needed to increase participation in science, technology, engineering, and mathematics (STEM). Current UK careers resources in the space sector, however, are found to perhaps not best reflect the diversity of roles present and may in fact perpetuate misconceptions about the usefulness of science. We, therefore, compile a more diverse set of space-related jobs, which will be used in the development of a new space careers resource.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin O. Archer, Jennifer DeWitt, Charlotte Thorley, and Olivia Keenan
Geosci. Commun., 4, 147–168, https://doi.org/10.5194/gc-4-147-2021, https://doi.org/10.5194/gc-4-147-2021, 2021
Short summary
Short summary
We explore how best to support school students to experience undertaking research-level physics by evaluating provision in the PRiSE framework of
research in schoolsprojects. These experiences are received by students and teachers much more positively than typical forms of outreach. The intensive support offered is deemed necessary, with all elements appearing equally important. We suggest the framework could be adopted at other institutions applied to their own areas of scientific research.
Martin O. Archer and Jennifer DeWitt
Geosci. Commun., 4, 169–188, https://doi.org/10.5194/gc-4-169-2021, https://doi.org/10.5194/gc-4-169-2021, 2021
Short summary
Short summary
The impacts upon a diverse range of students, teachers, and schools from participating in a programme of protracted university-mentored projects based on cutting-edge physics research are assessed. The lasting impacts on confidence, skills, aspirations, and practice suggest that similar
research in schoolsinitiatives may have a role to play in aiding the increased uptake and diversity of physics/STEM in higher education as well as meaningfully enhancing the STEM environment within schools.
Martin O. Archer
Geosci. Commun., 4, 189–208, https://doi.org/10.5194/gc-4-189-2021, https://doi.org/10.5194/gc-4-189-2021, 2021
Short summary
Short summary
An evaluation of the accessibility and equity of a programme of independent research projects shows that, with the right support from both teachers and active researchers, schools' ability to succeed at undertaking cutting-edge research appears independent of typical societal inequalities.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Martin O. Archer, Natt Day, and Sarah Barnes
Geosci. Commun., 4, 57–67, https://doi.org/10.5194/gc-4-57-2021, https://doi.org/10.5194/gc-4-57-2021, 2021
Short summary
Short summary
We show that integrating evaluation tools both before and after a drop-in engagement activity enables the demonstration of change and, thus, short-term impact. In our case, young families who listened to space sounds exhibited changed language and conceptions about space in their graffiti wall responses afterwards, exemplifying the power of sound in science communication. We suggest that evaluation tools be adopted both before and after drop-in activities in general.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Galina Korotova, David Sibeck, Mark Engebretson, Michael Balikhin, Scott Thaller, Craig Kletzing, Harlan Spence, and Robert Redmon
Ann. Geophys., 38, 1267–1281, https://doi.org/10.5194/angeo-38-1267-2020, https://doi.org/10.5194/angeo-38-1267-2020, 2020
Short summary
Short summary
We used multipoint magnetic field, electric field, plasma, and energetic particle observations to study the spatial, temporal, and spectral characteristics of compressional Pc5 pulsations observed deep within the magnetosphere at the end of a strong magnetic storm. We investigated the mode of the waves and their nodal structure. The energetic particles responded directly to the compressional Pc5 pulsations. We interpret the compressional Pc5 waves in terms of drift-mirror instability.
Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 9, 451–469, https://doi.org/10.5194/gi-9-451-2020, https://doi.org/10.5194/gi-9-451-2020, 2020
Short summary
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Cited articles
Aghabozorgi Nafchi, M., Němec, F., Pi, G., Němeček, Z., Šafránková, J., Grygorov, K., Šimůnek, J., and Tsai, T. C.: Magnetopause location modeling using machine learning: inaccuracy due to solar wind parameter propagation, Front. Astron. Space Sci., 11, 1390427, https://doi.org/10.3389/fspas.2024.1390427, 2024. a, b, c, d
Angelopoulos, V.: The THEMIS Mission, Space Sci. Rev., 141, 5–34, https://doi.org/10.1007/s11214-008-9336-1, 2008. a
Archer, M. O., Hartinger, M. D., Walsh, B. M., Plaschke, F., and Angelopoulos, V.: Frequency variability of standing Alfvén waves excited by fast mode resonances in the outer magnetosphere, Geophys. Res. Lett., 42, 10150–10159, https://doi.org/10.1002/2015GL066683, 2015a. a
Archer, M. O., Turner, D. L., Eastwood, J. P., Schwartz, S. J., and Horbury, T. S.: Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations, Planet. Space Sci., 106, 56–66, https://doi.org/10.1016/j.pss.2014.11.026, 2015b. a, b
Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F., and Angelopoulos, V.: Direct observations of a surface eigenmode of the dayside magnetopause, Nat. Commun., 10, 615, https://doi.org/10.1038/s41467-018-08134-5, 2019. a
Archer, M. O., Pilipenko, V. A., Li, B., Sorathia, K., Nakariakov, V. M., Elsden, T., and Nykyri, K.: Magnetopause MHD surface wave theory: progress & challenges, Front. Astron. Space Sci., 11, 1407172, https://doi.org/10.3389/fspas.2024.1407172, 2024a. a, b
Archer, M. O., Shi, X., Walach, M.-T., Hartinger, M. D., Gillies, D. M., Di Matteo, S., Staples, F., and Nykyri, K.: Crucial future observations and directions for unveiling magnetopause dynamics and their geospace impacts, Front. Astron. Space Sci., 11, 1430099, https://doi.org/10.3389/fspas.2024.1430099, 2024b. a
Aubry, M. P., Russell, C. T., and Kivelson, M. G.: Inward motion of the magnetopause before a substorm, J. Geophys. Res., 75, 7018, https://doi.org/10.1029/JA075i034p07018, 1970. a
Boardsen, S. A., Eastman, T. E., Sotirelis, T., and Green, J. L.: An empirical model of the high-latitude magnetopause, J. Geophys. Res., 105, 23193–23220, https://doi.org/10.1029/1998JA000143, 2000. a, b, c
Borovsky, J. E.: The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1, J. Atmos. Solar-Terr. Phy., 177, 2–11, https://doi.org/10.1016/j.jastp.2017.03.014, 2018a. a
Borovsky, J. E.: On the Origins of the Intercorrelations Between Solar Wind Variables, J. Geophys. Res.-Space Phys., 123, 20–29, https://doi.org/10.1002/2017JA024650, 2018b. a, b, c
Borovsky, J. E.: What magnetospheric and ionospheric researchers should know about the solar wind, J. Atmos. Solar-Terr. Phy., 204, 105271, https://doi.org/10.1016/j.jastp.2020.105271, 2020. a, b
Branduardi-Raymont, G., Wang, C., C.P. Escoubet, C. P., Adamovic, M., Agnolon, D., Berthomier, M., Carter, J. A., Chen, W., Colangeli, L., Collier, M., Connor, H. K., Dai, L., Dimmock, A., Djazovski, O., Donovan, E., Eastwood, J. P., Enno, G., Giannini, F., Huang, L., Kataria, D., Kuntz, K., Laakso, H., Li, J., Li, L., Lui, T., Loicq, J., Masson, A., Manuel, J., Parmar, A., Piekutowski, T., Read, A. M., Samsonov, A., Sembay, S., Raab, W., Ruciman, C., Shi, J. K., Sibeck, D. G., Spanswick, E. L., Sun, T., Symonds, K., Tong, J., Walsh, B., Wei, F., Zhao, D., Zheng, J., Zhu, X., and Zhu, Z.: SMILE definition study report, European Space Agency, ESA/SCI, 1, 2018. a
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric Multiscale Overview and Science Objectives, Space Sci. Rev., 199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016. a
Burkholder, B. L., Nykyri, K., and Ma, X.: Use of the L1 Constellation as a Multispacecraft Solar Wind Monitor, J. Geophys. Res.-Space Phys., 125, e27978, https://doi.org/10.1029/2020JA027978, 2020. a
Burton, R. K., McPherron, R. L., and Russell, C. T.: An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, https://doi.org/10.1029/JA080i031p04204, 1975. a
Case, N. A. and Wild, J. A.: The location of the Earth's magnetopause: A comparison of modeled position and in situ Cluster data, J. Geophys. Res.-Space Phys., 118, 6127–6135, https://doi.org/10.1002/jgra.50572, 2013. a, b, c, d
Chao, J. K., Wu, D. J., Lin, C. H., Yang, Y. H., Wang, X. Y., Kessel, M., Chen, S. H., and Lepping, R. P.: Models for the Size and Shape of the Earth's Magnetopause and Bow Shock, in: Space Weather Study Using Multipoint Techniques, edited by: Lyu, L.-H., p. 127, Elsevier, https://doi.org/10.1016/S0964-2749(02)80212-8, 2002. a, b
Chu, C., Zhang, H., Sibeck, D., Otto, A., Zong, Q., Omidi, N., McFadden, J. P., Fruehauff, D., and Angelopoulos, V.: THEMIS satellite observations of hot flow anomalies at Earth's bow shock, Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, 2017. a, b
Denton, M. H., Borovsky, J. E., Skoug, R. M., Thomsen, M. F., Lavraud, B., Henderson, M. G., McPherron, R. L., Zhang, J. C., and Liemohn, M. W.: Geomagnetic storms driven by ICME- and CIR-dominated solar wind, J. Geophys. Res.-Space Phys., 111, A07S07, https://doi.org/10.1029/2005JA011436, 2006. a
Dorelli, J. C. and Bhattacharjee, A.: On the generation and topology of flux transfer events, J. Geophys. Res.-Space Phys., 114, A06213, https://doi.org/10.1029/2008JA013410, 2009. a, b
Dušík, Š., Granko, G., Šafránková, J., Němeček, Z., and Jelínek, K.: IMF cone angle control of the magnetopause location: Statistical study, Geophys. Res. Lett., 37, L19103, https://doi.org/10.1029/2010GL044965, 2010. a, b
Eastwood, J. P., Lucek, E. A., Mazelle, C., Meziane, K., Narita, Y., Pickett, J., and Treumann, R. A.: The Foreshock, Space Sci. Rev., 118, 41–94, https://doi.org/10.1007/s11214-005-3824-3, 2005. a
Elphic, R. C.: Observations of Flux Transfer Events: A Review, Geophysical Monograph Series, 90, 225, https://doi.org/10.1029/GM090p0225, 1995. a, b
Escoubet, C. P., Fehringer, M., and Goldstein, M.: Introduction The Cluster mission, Ann. Geophys., 19, 1197–1200, https://doi.org/10.5194/angeo-19-1197-2001, 2001. a
Escoubet, C. P., Masson, A., Laakso, H., Goldstein, M. L., Dimbylow, T., Bogdanova, Y. V., Hapgood, M., Sousa, B., Sieg, D., and Taylor, M. G. G. T.: Cluster After 20 Years of Operations: Science Highlights and Technical Challenges, J. Geophys. Res.-Space Phys., 126, e29474, https://doi.org/10.1029/2021JA029474, 2021. a
Fairfield, D. H.: Average and unusual locations of the Earth's magnetopause and bow shock, J. Geophys. Res., 76, 6700, https://doi.org/10.1029/JA076i028p06700, 1971. a
Fairfield, D. H., Baumjohann, W., Paschmann, G., Luehr, H., and Sibeck, D. G.: Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773–3786, https://doi.org/10.1029/JA095iA04p03773, 1990. a, b, c
Fear, R. C., Trenchi, L., Coxon, J. C., and Milan, S. E.: How Much Flux Does a Flux Transfer Event Transfer?, J. Geophys. Res.-Space Phys., 122, 12310–12327, https://doi.org/10.1002/2017JA024730, 2017. a, b
Formisano, V., Domingo, V., and Wenzel, K. P.: The three-dimensional shape of the magnetopause, Planet. Space Sci., 27, 1137–1149, https://doi.org/10.1016/0032-0633(79)90134-X, 1979. a, b
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Study of Extreme Magnetopause Distortions Under Varying Solar Wind Conditions, J. Geophys. Res.-Space Phys., 128, e2023JA031603, https://doi.org/10.1029/2023JA031603, 2023a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p
Grimmich, N., Plaschke, F., Archer, M. O., Heyner, D., Mieth, J. Z. D., Nakamura, R., and Sibeck, D. G.: Database: THEMIS magnetopause crossings between 2007 and mid-2022, OSFHome [data set], https://doi.org/10.17605/OSF.IO/B6KUX, 2023b. a, b, c, d
Grimmich, N., Plaschke, F., Grison, B., Prencipe, F., Escoubet, C. P., Archer, M. O., Constantinescu, O. D., Haaland, S., Nakamura, R., Sibeck, D. G., Darrouzet, F., Hayosh, M., and Maggiolo, R.: Database: Cluster Magnetopause Crossings between 2001 and 2020, OSFHome [data set], https://doi.org/10.17605/OSF.IO/PXCTG, 2024a. a, b, c
Grimmich, N., Plaschke, F., Grison, B., Prencipe, F., Escoubet, C. P., Archer, M. O., Constantinescu, O. D., Haaland, S., Nakamura, R., Sibeck, D. G., Darrouzet, F., Hayosh, M., and Maggiolo, R.: The Cluster spacecrafts' view of the motion of the high-latitude magnetopause, Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, 2024b. a, b, c, d, e, f, g, h, i, j, k, l, m
Grimmich, N., Prencipe, F., Turner, D. L., Liu, T. Z., Plaschke, F., Archer, M. O., Nakamura, R., Sibeck, D. G., Mieth, J. Z. D., Auster, H.-U., Constantinescu, O. D., Fischer, D., and Magnes, W.: Multi Satellite Observation of a Foreshock Bubble Causing an Extreme Magnetopause Expansion, J. Geophys. Res.-Space Phys., 129, e2023JA032052, https://doi.org/10.1029/2023JA032052, 2024c. a, b
Grygorov, K., Šafránková, J., Němeček, Z., Pi, G., Přech, L., and Urbář, J.: Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field, Planet. Space Sci., 148, 28–34, https://doi.org/10.1016/j.pss.2017.09.011, 2017. a, b
Guo, W., Tang, B., Zhang, Q., Li, W., Yang, Z., Sun, T., Ma, J., Zhang, X., Liu, Z., Guo, X., and Wang, C.: The Magnetopause Deformation Indicated by Fast Cold Ion Motion, J. Geophys. Res.-Space Phys., 129, e2023JA032121, https://doi.org/10.1029/2023JA032121, 2024. a, b
Henry, Z. W., Nykyri, K., Moore, T. W., Dimmock, A. P., and Ma, X.: On the Dawn-Dusk Asymmetry of the Kelvin-Helmholtz Instability Between 2007 and 2013, J. Geophys. Res.-Space Phys., 122, 11888–11900, https://doi.org/10.1002/2017JA024548, 2017. a, b
Johnson, J. R., Wing, S., and Delamere, P. A.: Kelvin Helmholtz Instability in Planetary Magnetospheres, Space Sci. Rev., 184, 1–31, https://doi.org/10.1007/s11214-014-0085-z, 2014. a, b
Kajdič, P., Blanco-Cano, X., Turc, L., Archer, M., Raptis, S., Liu, T. Z., Pfau-Kempf, Y., LaMoury, A. T., Hao, Y., Escoubet, P. C., Omidi, N., Sibeck, D. G., Wang, B., Zhang, H., and Lin, Y.: Transient upstream mesoscale structures: drivers of solar-quiet space weather, Front. Astron. Space Sci., 11, 1436916, https://doi.org/10.3389/fspas.2024.1436916, 2024. a
Karlsson, T., Raptis, S., Trollvik, H., and Nilsson, H.: Classifying the Magnetosheath Behind the Quasi-Parallel and Quasi-Perpendicular Bow Shock by Local Measurements, J. Geophys. Res.-Space Phys., 126, e29269, https://doi.org/10.1029/2021JA029269, 2021. a, b
Kavosi, S. and Raeder, J.: Ubiquity of Kelvin-Helmholtz waves at Earth's magnetopause, Nat. Commun., 6, 7019, https://doi.org/10.1038/ncomms8019, 2015. a, b, c, d
Kilpua, E. K. J., Balogh, A., von Steiger, R., and Liu, Y. D.: Geoeffective Properties of Solar Transients and Stream Interaction Regions, Space SCi. Rev., 212, 1271–1314, https://doi.org/10.1007/s11214-017-0411-3, 2017. a
Kim, H., Nakamura, R., Connor, H. K., Zou, Y., Plaschke, F., Grimmich, N., Walsh, B. M., McWilliams, K. A., and Ruohoniemi, J. M.: Localized Magnetopause Erosion at Geosynchronous Orbit by Reconnection, Geophys. Res. Lett., 51, e2023GL107085, https://doi.org/10.1029/2023GL107085, 2024. a
King, J. H. and Papitashvili, N. E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res.-Space Phys., 110, A02104, https://doi.org/10.1029/2004JA010649, 2005 (data available at: https://spdf.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/, last access: December 2024). a, b
Koller, F., Raptis, S., Temmer, M., and Karlsson, T.: The Effect of Fast Solar Wind on Ion Distribution Downstream of Earth's Bow Shock, The Astrophys. J. Lett., 964, L5, https://doi.org/10.3847/2041-8213/ad2ddf, 2024. a, b
Kuntz, K. D.: Solar wind charge exchange: an astrophysical nuisance, Astron. Astrophys. Rev., 27, 1, https://doi.org/10.1007/s00159-018-0114-0, 2019. a
Laundal, K. M. and Richmond, A. D.: Magnetic Coordinate Systems, Space Sci. Rev., 206, 27–59, https://doi.org/10.1007/s11214-016-0275-y, 2016. a
Lee, S. H., Sibeck, D. G., Weimer, D. R., and Omidi, N.: Orientation of IMF Discontinuity Normals Across the Solar Cycles, J. Geophys. Res.-Space Phys., 129, e2023JA032329, https://doi.org/10.1029/2023JA032329, 2024. a
Levy, R. H., Petschek, H. E., and Siscoe, G. L.: Aerodynamic aspects of the magnetospheric flow, AIAA Journal, 2, 2065–2076, https://doi.org/10.2514/3.2745, 1964. a, b
Lin, R. L., Zhang, X. X., Liu, S. Q., Wang, Y. L., and Gong, J. C.: A three-dimensional asymmetric magnetopause model, J. Geophys. Res.-Space Phys., 115, A04207, https://doi.org/10.1029/2009JA014235, 2010. a, b, c, d
Liu, T. Z., Turner, D. L., Angelopoulos, V., and Omidi, N.: Multipoint observations of the structure and evolution of foreshock bubbles and their relation to hot flow anomalies, J. Geophys. Res.-Space Phys., 121, 5489–5509, https://doi.org/10.1002/2016JA022461, 2016. a
Liu, Z. Q., Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., and Zhao, M. X.: A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation, J. Geophys. Res.-Space Phys., 120, 5645–5666, https://doi.org/10.1002/2014JA020961, 2015. a
Luhmann, J. G., Russell, C. T., and Elphic, R. C.: Spatial distributions of magnetic field fluctuations in the dayside magnetosheath, J. Geophys. Res., 91, 1711–1715, https://doi.org/10.1029/JA091iA02p01711, 1986. a, b
Machková, A., Němec, F., Němeček, Z., and Šafránková, J.: On the Influence of the Earth's Magnetic Dipole Eccentricity and Magnetospheric Ring Current on the Magnetopause Location, J. Geophys. Res.-Space Phys., 124, 905–914, https://doi.org/10.1029/2018JA026070, 2019. a, b, c
Maltsev, I. P. and Liatskii, V. B.: Field-aligned currents and erosion of the dayside magnetosphere, Planet. Space Sci., 23, 1257–1260, https://doi.org/10.1016/0032-0633(75)90149-X, 1975. a
Mann, H. B. and Whitney, D. R.: On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18, 50–60, https://doi.org/10.1214/aoms/1177730491, 1947. a
Masson, A. and Nykyri, K.: Kelvin-Helmholtz Instability: Lessons Learned and Ways Forward, Space Sci. Rev., 214, 71, https://doi.org/10.1007/s11214-018-0505-6, 2018. a
Merka, J., Szabo, A., Šafránková, J., and Němeček, Z.: Earth's bow shock and magnetopause in the case of a field-aligned upstream flow: Observation and model comparison, J. Geophys. Res.-Space Phys., 108, 1269, https://doi.org/10.1029/2002JA009697, 2003. a, b
Němeček, Z., Šafránková, J., and Šimůnek, J.: An examination of the magnetopause position and shape based upon new observations, in: Dayside Magnetosphere Interactions, edited by: Zong, Q., Escoubet, C. P., Sibeck, D. G., Le, G., and Zhang, H., Chap. 8, 135–151 pp., American Geophysical Union (AGU), https://doi.org/10.1002/9781119509592.ch8, 2020. a
Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 4. On the Near-Cusp Magnetopause Indentation, J. Geophys. Res.-Space Phys., 127, e29776, https://doi.org/10.1029/2021JA029776, 2022a. a, b, c, d, e
Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Lavraud, B., and Fontaine, D.: Massive Multi-Mission Statistical Study and Analytical Modeling of the Earth's Magnetopause: 3. An Asymmetric Non Indented Magnetopause Analytical Model, J. Geophys. Res.-Space Phys., 127, e30112, https://doi.org/10.1029/2021JA030112, 2022b. a, b, c, d, e
Němeček, Z., Šafránková, J., Grygorov, K., Mokrý, A., Pi, G., Aghabozorgi Nafchi, M., Němec, F., Xirogiannopoulou, N., and Šimůnek, J.: Extremely Distant Magnetopause Locations Caused by Magnetosheath Jets, Geophys. Res. Lett., 50, e2023GL106131, https://doi.org/10.1029/2023GL106131, 2023. a
Nykyri, K.: Impact of MHD shock physics on magnetosheath asymmetry and Kelvin-Helmholtz instability, J. Geophys. Res.-Space Phys., 118, 5068–5081, https://doi.org/10.1002/jgra.50499, 2013. a
Nykyri, K., Ma, X., Dimmock, A., Foullon, C., Otto, A., and Osmane, A.: Influence of velocity fluctuations on the Kelvin-Helmholtz instability and its associated mass transport, J. Geophys. Res.-Space Phys., 122, 9489–9512, https://doi.org/10.1002/2017JA024374, 2017. a, b
O'Brien, C., Walsh, B. M., Zou, Y., Tasnim, S., Zhang, H., and Sibeck, D. G.: PRIME: a probabilistic neural network approach to solar wind propagation from L1, Front. Astron. Space Sci., 10, 1250779, https://doi.org/10.3389/fspas.2023.1250779, 2023. a
Park, J.-S., Shue, J.-H., Kim, K.-H., Pi, G., Němeček, Z., and Šafránková, J.: Global expansion of the dayside magnetopause for long-duration radial IMF events: Statistical study on GOES observations, J. Geophys. Res.-Space Phys., 121, 6480–6492, https://doi.org/10.1002/2016JA022772, 2016. a, b
Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Sonnerup, B. U. O., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russel, C. T., and Elphic, R. C.: Plasma acceleration at the earth's magnetopause - Evidence for reconnection, Nature, 282, 243–246, https://doi.org/10.1038/282243a0, 1979. a, b
Paschmann, G., Øieroset, M., and Phan, T.: In-Situ Observations of Reconnection in Space, Space Sci. Rev., 178, 385–417, https://doi.org/10.1007/s11214-012-9957-2, 2013. a, b
Petrinec, S. M. and Russell, C. T.: Near-Earth magnetotail shape and size as determined from the magnetopause flaring angle, J. Geophys. Res., 101, 137–152, https://doi.org/10.1029/95JA02834, 1996. a, b, c
Petrinec, S. M., Burch, J. L., Fuselier, S. A., Trattner, K. J., Giles, B. L., and Strangeway, R. J.: On the Occurrence of Magnetic Reconnection Along the Terrestrial Magnetopause, Using Magnetospheric Multiscale (MMS) Observations in Proximity to the Reconnection Site, J. Geophys. Res.-Space Phys., 127, e29669, https://doi.org/10.1029/2021JA029669, 2022. a, b, c, d
Plaschke, F., Glassmeier, K. H., Auster, H. U., Angelopoulos, V., Constantinescu, O. D., Fornaçon, K. H., Georgescu, E., Magnes, W., McFadden, J. P., and Nakamura, R.: Statistical study of the magnetopause motion: First results from THEMIS, J. Geophys. Res.-Space Phys., 114, A00C10, https://doi.org/10.1029/2008JA013423, 2009a. a
Plaschke, F., Glassmeier, K.-H., Sibeck, D. G., Auster, H. U., Constantinescu, O. D., Angelopoulos, V., and Magnes, W.: Magnetopause surface oscillation frequencies at different solar wind conditions, Ann. Geophys., 27, 4521–4532, https://doi.org/10.5194/angeo-27-4521-2009, 2009b. a
Plaschke, F., Angelopoulos, V., and Glassmeier, K. H.: Magnetopause surface waves: THEMIS observations compared to MHD theory, J. Geophys. Res.-Space Phys., 118, 1483–1499, https://doi.org/10.1002/jgra.50147, 2013. a, b
Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdič, P., Karlsson, T., Lee, S. H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., and Sibeck, D.: Jets Downstream of Collisionless Shocks, Space Sci. Rev., 214, 81, https://doi.org/10.1007/s11214-018-0516-3, 2018. a
Russell, C. T., Luhmann, J. G., Odera, T. J., and Stuart, W. F.: The rate of occurrence of dayside Pc 3,4 pulsations: The L-value dependence of the IMF cone angle effect, Geophys. Res. Lett., 10, 663–666, https://doi.org/10.1029/GL010i008p00663, 1983. a, b
Russell, C. T., Petrinec, S. M., Zhang, T. L., Song, P., and Kawano, H.: The effect of foreshock on the motion of the dayside magnetopause, Geophys. Res. Lett., 24, 1439–1441, https://doi.org/10.1029/97GL01408, 1997. a, b, c, d
Šafránková, J., Nĕmeček, Z., Dušík, Š., Přech, L., Sibeck, D. G., and Borodkova, N. N.: The magnetopause shape and location: a comparison of the Interball and Geotail observations with models, Ann. Geophys., 20, 301–309, https://doi.org/10.5194/angeo-20-301-2002, 2002. a, b, c
Šafránková, J., Dušík, Š., and Němeček, Z.: The shape and location of the high-latitude magnetopause, Adv. Space Res., 36, 1934–1939, https://doi.org/10.1016/j.asr.2004.05.009, 2005. a
Samsonov, A., Milan, S., Buzulukova, N., Sibeck, D., Forsyth, C., Branduardi-Raymont, G., and Dai, L.: Time Sequence of Magnetospheric Responses to a Southward IMF Turning, J. Geophys. Res.-Space Phys., 129, e2023JA032378, https://doi.org/10.1029/2023JA032378, 2024. a
Samsonov, A. A., Němeček, Z., Šafránková, J., and Jelínek, K.: Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res.-Space Phys., 117, A05221, https://doi.org/10.1029/2011JA017429, 2012. a, b, c
Schwartz, S. J.: Hot flow anomalies near the Earth's bow shock, Adv. Space Res., 15, 107–116, https://doi.org/10.1016/0273-1177(95)00025-A, 1995. a
Shue, J. H. and Chao, J. K.: The role of enhanced thermal pressure in the earthward motion of the Earth's magnetopause, J. Geophys. Res.-Space Phys., 118, 3017–3026, https://doi.org/10.1002/jgra.50290, 2013. a
Shue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., Vaisberg, O. L., Kokubun, S., Singer, H. J., Detman, T. R., and Kawano, H.: Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17691–17700, https://doi.org/10.1029/98JA01103, 1998. a, b, c, d, e, f
Shue, J. H., Chao, J. K., Song, P., McFadden, J. P., Suvorova, A., Angelopoulos, V., Glassmeier, K. H., and Plaschke, F.: Anomalous magnetosheath flows and distorted subsolar magnetopause for radial interplanetary magnetic fields, Geophys. Res. Lett., 36, L18112, https://doi.org/10.1029/2009GL039842, 2009. a
Sibeck, D. G., Borodkova, N. L., Schwartz, S. J., Owen, C. J., Kessel, R., Kokubun, S., Lepping, R. P., Lin, R., Liou, K., Lühr, H., McEntire, R. W., Meng, C. I., Mukai, T., Němeček, Z., Parks, G., Phan, T. D., Romanov, S. A., Šafránková, J., Sauvaud, J. A., Singer, H. J., Solovyev, S. I., Szabo, A., Takahashi, K., Williams, D. J., Yumoto, K., and Zastenker, G. N.: Comprehensive study of the magnetospheric response to a hot flow anomaly, J. Geophys. Res., 104, 4577–4594, https://doi.org/10.1029/1998JA900021, 1999. a, b
Sibeck, D. G., Kudela, K., Lepping, R. P., Lin, R., Němeček, Z., Nozdrachev, M. N., Phan, T. D., Prech, L., Šafránková, J., Singer, H., and Yermolaev, Y.: Magnetopause motion driven by interplanetary magnetic field variations, J. Geophys. Res., 105, 25155–25170, https://doi.org/10.1029/2000JA900109, 2000. a
Song, P., Elphic, R. C., and Russell, C. T.: ISEE 1 & 2 observations of the oscillating magnetopause, Geophys. Res. Lett., 15, 744–747, https://doi.org/10.1029/GL015i008p00744, 1988. a, b
Staples, F. A., Rae, I. J., Forsyth, C., Smith, A. R. A., Murphy, K. R., Raymer, K. M., Plaschke, F., Case, N. A., Rodger, C. J., Wild, J. A., Milan, S. E., and Imber, S. M.: Do Statistical Models Capture the Dynamics of the Magnetopause During Sudden Magnetospheric Compressions?, J. Geophys. Res.-Space Phys., 125, e27289, https://doi.org/10.1029/2019JA027289, 2020. a, b, c
Suvorova, A. V., Shue, J. H., Dmitriev, A. V., Sibeck, D. G., McFadden, J. P., Hasegawa, H., Ackerson, K., Jelínek, K., Šafránková, J., and Němeček, Z.: Magnetopause expansions for quasi-radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res.-Space Phys., 115, A10216, https://doi.org/10.1029/2010JA015404, 2010. a, b, c
Toy-Edens, V., Mo, W., Raptis, S., and Turner, D. L.: 8 years of dayside magnetospheric multiscale (MMS) unsupervised clustering plasma regions classifications, Zenodo [data set], https://doi.org/10.5281/zenodo.10491877, 2024a. a, b, c
Toy-Edens, V., Mo, W., Raptis, S., and Turner, D. L.: Classifying 8 Years of MMS Dayside Plasma Regions via Unsupervised Machine Learning, J. Geophys. Res.-Space Phys., 129, e2024JA032431, https://doi.org/10.1029/2024JA032431, 2024b. a
Turner, D. L., Eriksson, S., Phan, T. D., Angelopoulos, V., Tu, W., Liu, W., Li, X., Teh, W. L., McFadden, J. P., and Glassmeier, K. H.: Multispacecraft observations of a foreshock-induced magnetopause disturbance exhibiting distinct plasma flows and an intense density compression, J. Geophys. Res.-Space Phys., 116, A04230, https://doi.org/10.1029/2010JA015668, 2011. a, b
Turner, D. L., Omidi, N., Sibeck, D. G., and Angelopoulos, V.: First observations of foreshock bubbles upstream of Earth's bow shock: Characteristics and comparisons to HFAs, J. Geophys. Res.-Space Phys., 118, 1552–1570, https://doi.org/10.1002/jgra.50198, 2013. a
Vu, A., Liu, T. Z., Zhang, H., and Pollock, C.: Statistical Study of Foreshock Bubbles, Hot Flow Anomalies, and Spontaneous Hot Flow Anomalies and Their Substructures Observed by MMS, J. Geophys. Res.-Space Phys., 127, e2021JA030029, https://doi.org/10.1029/2021JA030029, 2022. a, b
Vuorinen, L., LaMoury, A. T., Hietala, H., and Koller, F.: Magnetosheath Jets Over Solar Cycle 24: An Empirical Model, J. Geophys. Res.-Space Phys., 128, e2023JA031493, https://doi.org/10.1029/2023JA031493, 2023. a
Walsh, A. P., Haaland, S., Forsyth, C., Keesee, A. M., Kissinger, J., Li, K., Runov, A., Soucek, J., Walsh, B. M., Wing, S., and Taylor, M. G. G. T.: Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review, Ann. Geophys., 32, 705–737, https://doi.org/10.5194/angeo-32-705-2014, 2014. a
Walsh, B. M., Bhakyapaibul, T., and Zou, Y.: Quantifying the Uncertainty of Using Solar Wind Measurements for Geospace Inputs, J. Geophys. Res.-Space Phys., 124, 3291–3302, https://doi.org/10.1029/2019JA026507, 2019. a, b, c
Wang, C. and Sun, T.: Methods to derive the magnetopause from soft X-ray images by the SMILE mission, Geosci. Lett., 9, 30, https://doi.org/10.1186/s40562-022-00240-z, 2022. a
Wang, X., Lu, J., Wang, M., Zhou, Y., and Hao, Y.: Simultaneous Observation of Magnetopause Expansion Under Radial IMF and Indention by HSJ, Geophys. Res. Lett., 50, e2023GL105270, https://doi.org/10.1029/2023GL105270, 2023. a
Wilson, L. B.: Low Frequency Waves at and Upstream of Collisionless Shocks, Washington DC American Geophysical Union Geophysical Monograph Series, 216, 269–291, https://doi.org/10.1002/9781119055006.ch16, 2016. a, b, c
Wing, S., Sibeck, D. G., Wiltberger, M., and Singer, H.: Geosynchronous magnetic field temporal response to solar wind and IMF variations, J. Geophys. Res.-Space Phys., 107, 1222, https://doi.org/10.1029/2001JA009156, 2002. a
Xirogiannopoulou, N., Goncharov, O., Šafránková, J., and Němeček, Z.: Characteristics of Foreshock Subsolar Compressive Structures, J. Geophys. Res.-Space Phys., 129, e2023JA032033, https://doi.org/10.1029/2023JA032033, 2024. a, b
Yang, Z., Jarvinen, R., Guo, X., Sun, T., Koutroumpa, D., Parks, G. K., Huang, C., Tang, B., Lu, Q., and Wang, C.: Deformations at Earth's dayside magnetopause during quasi-radial IMF conditions: Global kinetic simulations and Soft X-ray Imaging, Earth Planet. Phys., 8, 59–69, https://doi.org/10.26464/epp2023059, 2024. a
Zhang, H., Zong, Q., Connor, H., Delamere, P., Facskó, G., Han, D., Hasegawa, H., Kallio, E., Kis, Á., Le, G., Lembège, B., Lin, Y., Liu, T., Oksavik, K., Omidi, N., Otto, A., Ren, J., Shi, Q., Sibeck, D., and Yao, S.: Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere, Space Sci. Rev., 218, 40, https://doi.org/10.1007/s11214-021-00865-0, 2022. a, b, c
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind,...