Articles | Volume 33, issue 6
https://doi.org/10.5194/angeo-33-725-2015
https://doi.org/10.5194/angeo-33-725-2015
Regular paper
 | 
12 Jun 2015
Regular paper |  | 12 Jun 2015

The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

M. O. Archer, T. S. Horbury, P. Brown, J. P. Eastwood, T. M. Oddy, B. J. Whiteside, and J. G. Sample

Abstract. We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

Download
Short summary
The first in-flight results from a new design of miniaturised magnetometer (MAGIC - MAGnetometer from Imperial College), aboard the first CINEMA (Cubesat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit, are presented. Not only can this sensor be used for determining attitude, but it is also able to detect the extremely small (20-40 nT) magnetic field signatures of field-aligned currents at the auroral oval. Thus, there are science capabilities with such sensors.