Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.490 IF 1.490
  • IF 5-year value: 1.445 IF 5-year
  • CiteScore value: 2.9 CiteScore
  • SNIP value: 0.789 SNIP 0.789
  • IPP value: 1.48 IPP 1.48
  • SJR value: 0.74 SJR 0.74
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 88 Scimago H
    index 88
  • h5-index value: 21 h5-index 21
Volume 31, issue 3
Ann. Geophys., 31, 419–437, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 31, 419–437, 2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 05 Mar 2013

Regular paper | 05 Mar 2013

A new method for solving the MHD equations in the magnetosheath

C. Nabert1, K.-H. Glassmeier1,2, and F. Plaschke3 C. Nabert et al.
  • 1Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Germany
  • 2Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany
  • 3Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA

Abstract. We present a new analytical method to derive steady-state magnetohydrodynamic (MHD) solutions of the magnetosheath in different levels of approximation. With this method, we calculate the magnetosheath's density, velocity, and magnetic field distribution as well as its geometry. Thereby, the solution depends on the geomagnetic dipole moment and solar wind conditions only. To simplify the representation, we restrict our model to northward IMF with the solar wind flow along the stagnation streamline. The sheath's geometry, with its boundaries, bow shock and magnetopause, is determined self-consistently. Our model is stationary and time relaxation has not to be considered as in global MHD simulations. Our method uses series expansion to transfer the MHD equations into a new set of ordinary differential equations. The number of equations is related to the level of approximation considered including different physical processes. These equations can be solved numerically; however, an analytical approach for the lowest-order approximation is also presented. This yields explicit expressions, not only for the flow and field variations but also for the magnetosheath thickness, depending on the solar wind parameters. Results are compared to THEMIS data and offer a detailed explanation of, e.g., the pile-up process and the corresponding plasma depletion layer, the bow shock and magnetopause geometry, the magnetosheath thickness, and the flow deceleration.

Publications Copernicus