Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-461-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-461-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Attenuation of plasmaspheric hiss associated with the enhanced magnetospheric electric field
Institute of Space Science and Technology, Nanchang University,
Nanchang, China
Center for Space Physics, Boston University, Boston, MA, USA
Center for Space Physics, Boston University, Boston, MA, USA
Qianli Ma
Department of Atmospheric and Oceanic Sciences, University of
California, Los Angeles, CA, USA
Center for Space Physics, Boston University, Boston, MA, USA
Yukitoshi Nishimura
Center for Space Physics, Boston University, Boston, MA, USA
Zhigang Yuan
School of Electronic Information, Wuhan University, Wuhan, China
Alex J. Boyd
New Mexico Consortium, Los Alamos, NM, USA
Space Sciences Department, The Aerospace Corporation, Chantilly, VA,
USA
Xiaochen Shen
Center for Space Physics, Boston University, Boston, MA, USA
Rongxin Tang
Institute of Space Science and Technology, Nanchang University,
Nanchang, China
Xiaohua Deng
Institute of Space Science and Technology, Nanchang University,
Nanchang, China
Related authors
Zhanrong Yang, Haimeng Li, Zhigang Yuan, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 673–685, https://doi.org/10.5194/angeo-40-673-2022, https://doi.org/10.5194/angeo-40-673-2022, 2022
Short summary
Short summary
From the statistical analysis of potential plasmaspheric plume, we find that there is almost no correlation between plume width and the level of geomagnetic storm intensity. However, for plumes in the recovery phase after improved sifting, there is a negative correlation between the plume width and absolute value of minimum Dst during the storm. We suggest that the plasmaspheric particles may escape quickly during intense storms, causing plume to be relatively narrow during the recovery phase.
Haimeng Li, Tongxing Fu, Rongxin Tang, Zhigang Yuan, Zhanrong Yang, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 167–177, https://doi.org/10.5194/angeo-40-167-2022, https://doi.org/10.5194/angeo-40-167-2022, 2022
Short summary
Short summary
The plasmaspheric plume is an important region of detached plasma elements and provides an effective coupling channel of energy/mass between the inner magnetospheric plasmasphere and outer magnetosphere. In this study, using Van Allen Probe data, we present a statistical result of plasmaspheric plumes in the inner magnetosphere, which implies that the plumes tend to occur during the recovery phase of geomagnetic storms, and the occurrence rate is larger during stronger geomagnetic activity.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
EGUsphere, https://doi.org/10.5194/egusphere-2024-2174, https://doi.org/10.5194/egusphere-2024-2174, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and experienced technological disruptions during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Zhanrong Yang, Haimeng Li, Zhigang Yuan, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 673–685, https://doi.org/10.5194/angeo-40-673-2022, https://doi.org/10.5194/angeo-40-673-2022, 2022
Short summary
Short summary
From the statistical analysis of potential plasmaspheric plume, we find that there is almost no correlation between plume width and the level of geomagnetic storm intensity. However, for plumes in the recovery phase after improved sifting, there is a negative correlation between the plume width and absolute value of minimum Dst during the storm. We suggest that the plasmaspheric particles may escape quickly during intense storms, causing plume to be relatively narrow during the recovery phase.
Haimeng Li, Tongxing Fu, Rongxin Tang, Zhigang Yuan, Zhanrong Yang, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 167–177, https://doi.org/10.5194/angeo-40-167-2022, https://doi.org/10.5194/angeo-40-167-2022, 2022
Short summary
Short summary
The plasmaspheric plume is an important region of detached plasma elements and provides an effective coupling channel of energy/mass between the inner magnetospheric plasmasphere and outer magnetosphere. In this study, using Van Allen Probe data, we present a statistical result of plasmaspheric plumes in the inner magnetosphere, which implies that the plumes tend to occur during the recovery phase of geomagnetic storms, and the occurrence rate is larger during stronger geomagnetic activity.
Shiyong Huang, Pufan Zhao, Jiansen He, Zhigang Yuan, Meng Zhou, Huishan Fu, Xiaohua Deng, Ye Pang, Dedong Wang, Xiongdong Yu, Haimeng Li, Roy Torbert, and James Burch
Ann. Geophys., 36, 1275–1283, https://doi.org/10.5194/angeo-36-1275-2018, https://doi.org/10.5194/angeo-36-1275-2018, 2018
Run Shi, Wen Li, Qianli Ma, Seth G. Claudepierre, Craig A. Kletzing, William S. Kurth, George B. Hospodarsky, Harlan E. Spence, Geoff D. Reeves, Joseph F. Fennell, J. Bernard Blake, Scott A. Thaller, and John R. Wygant
Ann. Geophys., 36, 781–791, https://doi.org/10.5194/angeo-36-781-2018, https://doi.org/10.5194/angeo-36-781-2018, 2018
Song Fu, Shiyong Huang, Meng Zhou, Binbin Ni, and Xiaohua Deng
Ann. Geophys., 36, 373–379, https://doi.org/10.5194/angeo-36-373-2018, https://doi.org/10.5194/angeo-36-373-2018, 2018
Short summary
Short summary
It has been shown that guide fields substantially modify the structure of reconnection layers. In this paper, we studied the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field.
Ying Xiong, Zhigang Yuan, and Jingfang Wang
Ann. Geophys., 34, 249–257, https://doi.org/10.5194/angeo-34-249-2016, https://doi.org/10.5194/angeo-34-249-2016, 2016
Short summary
Short summary
With observations of the Cluster spacecraft, we report in situ evidence of energetic ions scattered into the loss cone during the inbound pass from the plasma sheet into the plasmasphere. Our results suggest that energetic ions scattering into the loss cone in the central plasma sheet and the outer boundary of the plasmaspheric plume are attributed to the field line curvature scattering mechanism and EMIC wave scattering mechanism, respectively.
R. Tang, D. Summers, and X. Deng
Ann. Geophys., 32, 889–898, https://doi.org/10.5194/angeo-32-889-2014, https://doi.org/10.5194/angeo-32-889-2014, 2014
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Wave–particle interactions
Relativistic kinematic effects in the interaction time of whistler-mode chorus waves and electrons in the outer radiation belt
BeiDa Imaging Electron Spectrometer observation of multi-period electron flux modulation caused by localized ultra-low-frequency waves
On heating of solar wind protons by the parametric decay of large-amplitude Alfvén waves
New high-frequency (7–12 kHz) quasi-periodic VLF emissions observed on the ground at L ∼ 5.5
Livia R. Alves, Márcio E. S. Alves, Ligia A. da Silva, Vinicius Deggeroni, Paulo R. Jauer, and David G. Sibeck
Ann. Geophys., 41, 429–447, https://doi.org/10.5194/angeo-41-429-2023, https://doi.org/10.5194/angeo-41-429-2023, 2023
Short summary
Short summary
We derive the wave–particle interaction time (IT) equation considering the effects of special relativity theory for whistler-mode chorus waves and relativistic electrons in Earth's radiation belt. Results show that IT has a non-linear dependence on the wave group velocity, electrons' energy, and initial pitch angle. Our results show that the interaction time is generally longer when applying the complete relativistic approach compared to a non-relativistic calculation.
Xingran Chen, Qiugang Zong, Hong Zou, Xuzhi Zhou, Li Li, Yixin Hao, and Yongfu Wang
Ann. Geophys., 38, 801–813, https://doi.org/10.5194/angeo-38-801-2020, https://doi.org/10.5194/angeo-38-801-2020, 2020
Short summary
Short summary
We present a new in situ observation of energetic electrons in space obtained by a newly available particle detector. In view of the characteristic signatures in the particle flux, we attribute the observational features to the drift-resonance wave–particle interaction between energetic electrons and multiple localized ultra-low-frequency waves. The scenario is substantiated by a numerical calculation based on the revised drift-resonance theory which reproduced the observed particle signatures.
Horia Comişel, Yasuhiro Nariyuki, Yasuhito Narita, and Uwe Motschmann
Ann. Geophys., 36, 1647–1655, https://doi.org/10.5194/angeo-36-1647-2018, https://doi.org/10.5194/angeo-36-1647-2018, 2018
Short summary
Short summary
Space plasmas are assumed to be highly active and dynamic systems including waves and turbulence. Electromagnetic waves such as Alfven waves interact with one another, producing daughter waves. In our study based on three-dimensional hybrid simulations, we emphasize the role of obliquely propagating daughter waves in particle heating in low-temperature (or low-beta) plasmas. The evolutions of plasma turbulence, wave dissipation, and heating are essential problems in astrophysics.
Jyrki Manninen, Natalia Kleimenova, Tauno Turunen, and Liudmila Gromova
Ann. Geophys., 36, 915–923, https://doi.org/10.5194/angeo-36-915-2018, https://doi.org/10.5194/angeo-36-915-2018, 2018
Short summary
Short summary
We reveal previously unknown quasi-periodic (QP) VLF emissions at the unusually high-frequency band of ~ 7–11 kHz by applying the digital filtering of strong sferics to the ground-based VLF data recorded at Kannuslehto station (KAN). In one event, the spectral–temporal forms of the emissions looked like a series of giant
bullets, with very abrupt cessation. In the second event, the modulation period was about 3 min under the absence of the simultaneous geomagnetic pulsations.
Cited articles
Blake, J. B., Carranza, P. A., and Claudepierre, S. G.: The Magnetic
Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt
Storm Probes (RBSP) Spacecraft, Space Sci. Rev., 179, 383–421,
https://doi.org/10.1007/s11214-013-9991-8, 2013.
Bortnik, J., Thorne, R. M., and Meredith, N. P.: The unexpected origin of
plasmaspheric hiss from discrete chorus emissions, Nature, 452, 62–66,
https://doi.org/10.1038/nature06741, 2008.
Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Bonnell, J., Contel,
O. L., and Roux, A.: An observation linking the origin of plasmaspheric hiss
to discrete chorus emissions, Science China Technological Sciences, 324,
775–778, https://doi.org/10.1126/science.1171273, 2009.
Burch, J. L.: The magnetosphere, in: Upper Atmosphere and Magnetosphere, National Academy of Sciences, Washington, D.C, 42–56, https://doi.org/10.17226/20335, 1977.
Chan, K.-W. and Holzer, R. E.: ELF hiss associated with plasma density
enhancements in the outer magnetosphere, J. Geophys. Res.,
81, 2267–2274, https://doi.org/10.1029/JA081i013p02267, 1976.
Chen, L., Thorne, R. M., Bortnik, J., Li, W., Horne, R. B., Reeves, G. D.,
Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J.
B., and Fennell, J. F.: Generation of unusually low frequency plasmaspheric
hiss, Geophys. Res. Lett., 41, 5702–5709, https://doi.org/10.1002/2014gl060628,
2014.
Draganov, A. B., Inan, U. S., Sonwalkar, V. S., and Bell, T. F.:
Magnetospherically reflected whistlers as a source of plasmaspheric hiss,
Geophys. Res. Lett., 19, 233–236, 1992.
Ejiri, M.: Trajectory Traces of Charged Particles in the Magnetosphere,
J. Geophys. Res., 83, 4798–4810, https://doi.org/10.1029/JA083iA10p04798,
1978.
Frank, L. A.: Magnetospheric and auroral plasmas. A short survey of
progress, Rev. Geophys. Space Phys., 13, 974–989, https://doi.org/10.1029/RG013i003p00974, 1975.
Funsten, H. O., Skoug, R. M., Guthrie, A., MacDonald, E. A., and Baldonado,
J. R.: Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the
Radiation Belt Storm Probes Mission, Space Sci. Rev., 179, 423–484,
https://doi.org/10.1007/s11214-013-9968-7, 2013.
Ganushkina, N. Yu., Pulkkinen, T. I., and Fritz, T.: Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys., 23, 579–591, https://doi.org/10.5194/angeo-23-579-2005, 2005.
Goldstein, J., Sandel, B. R., Hairston, M. R., and Reiff, P. H.: Control of
plasmaspheric dynamics by both convection and sub-auroral polarization
stream, Geophys. Res. Lett., 30, 2243, https://doi.org/10.1029/2003gl018390, 2003.
Goldstein, J., Burch, J. L., and Sandel, B. R.: Magnetospheric model of
subauroral polarization stream, J. Geophys. Res.-Space
Phys., 110, A09222, https://doi.org/10.1029/2005ja011135, 2005a.
Goldstein, J., Sandel, B. R., Forrester, W. T., Thomsen, M. F., and
Hairston, M. R.: Global plasmasphere evolution 22–23 April 2001, J. Geophys. Res., 110, A12218, https://doi.org/10.1029/2005ja011282, 2005b.
Green, J. L., Boardsen, S., Garcia, L., Taylor, W. W. L., Fung, S. F., and
Reinisch, B. W.: On the origin of whistler mode radiation in the
plasmasphere, J. Geophys. Res., 110, A03201, https://doi.org/10.1029/2004JA010495, 2005.
Hayakawa, M., Parrot, M., and Lefeuvre, F.: The wave normals of ELF hiss
emissions observed onboard GEOS 1 at the equatorial and off-equatorial
regions of the plasmasphere, J. Geophys. Res., 91, 7989–7999,
https://doi.org/10.1029/JA091iA07p07989, 1986.
He, Z., Chen, L., Liu, X., Zhu, H., Liu, S., Gao, Z., and Cao, Y.: Local
Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen
Probes, Geophys. Res. Lett., 46, 1141–1148, https://doi.org/10.1029/2018gl081578,
2019.
Huang, C.-S., Sazykin, S., Chau, J. L., Maruyama, N., and Kelley, M. C.:
Penetration electric fields: Efficiency and characteristic time scale,
J. Atmos. Sol.-Terr. Phys., 69, 1135–1146,
https://doi.org/10.1016/j.jastp.2006.08.016, 2007.
Kennel, C. F. and Petschek, H. E.: Limit on stably trapped particle fluxes,
J. Geophys. Res., 71, 1–28, https://doi.org/10.1029/JZ071i001p00001, 1966.
Khazanov, G. V., Liemohn, M. W., Newman, T. S., M.-C. Fok, and Ridley, A.
J.: Magnetospheric convection electric field dynamics and stormtime particle
energization: Case study of the magnetic storm of 4 May 1998, Ann.
Geophys,, 22, 497–510, 2004.
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B.,
Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., Connerney, J.,
Crawford, D., Dolan, J. S., Dvorsky, R., Hospodarsky, G. B., Howard, J.,
Jordanova, V., Johnson, R. A., Kirchner, D. L., Mokrzycki, B., Needell, G.,
Odom, J., Mark, D., Pfaff, R., Phillips, J. R., Piker, C. W., Remington, S.
L., Rowland, D., Santolik, O., Schnurr, R., Sheppard, D., Smith, C. W.,
Thorne, R. M., and Tyler, J.: The Electric and Magnetic Field Instrument
Suite and Integrated Science (EMFISIS) on RBSP, Space Sci. Rev., 179,
127–181, https://doi.org/10.1007/s11214-013-9993-6, 2013.
Kletzing, C., Kurth, W. S., Bounds, S. R., Hospodarsky, G. B., and Santolik,
O.: Evidence for significant local generation of plasmaspheric hiss, AGU
Fall Meeting Abstracts, 2014, 15–19, 2014.
Laakso, H., Santolik, O., Horne, R., Kolmasová, I., Escoubet, P.,
Masson, A., and Taylor, M.: Identifying the source region of plasmaspheric
hiss, Geophys. Res. Lett., 42, 3141–3149, https://doi.org/10.1002/2015gl063755,
2015.
Lei, W., Gendrin, R., Higel, B., and Berchem, J.: Relationships between the
solar wind electric field and the magnetospheric convection electric field,
Geophys. Res. Lett., 8, 1099–1102, https://doi.org/10.1029/GL008i010p01099, 1981.
Li, H., Yuan, Z., Yu, X., Huang, S., Wang, D., Wang, Z., Qiao, Z., and
Wygant, J. R.: The enhancement of cosmic radio noise absorption due to
hiss-driven energetic electron precipitation during substorms, J. Geophys. Res.-Space Phys., 120, 5393–5407, https://doi.org/10.1002/2015ja021113,
2015.
Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth,
W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., Fennell, J. F.,
Claudepierre, S. G., Wygant, J. R., and Thaller, S. A.: An unusual
enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere
associated with substorm-injected electrons, Geophys. Res. Lett.,
40, 3798–3803, https://doi.org/10.1002/grl.50787, 2013.
Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C.
A., Kurth, W. S., and Hospodarsky, G. B.: First evidence for chorus at a
large geocentric distance as a source of plasmaspheric hiss: Coordinated
THEMIS and Van Allen Probes observation, Geophys. Res. Lett., 42,
241–248, https://doi.org/10.1002/2014gl062832, 2015a.
Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., and Nishimura, Y.: Statistical properties of
plasmaspheric hiss derived from Van Allen Probes data and their effects on
radiation belt electron dynamics, J. Geophys. Res.-Space
Phys., 120, 3393–3405, https://doi.org/10.1002/2015ja021048, 2015b.
Liu, N., Su, Z., Gao, Z., Reeves, G. D., Zheng, H., Wang, Y., and Wang, S.:
Shock-Induced Disappearance and Subsequent Recovery of Plasmaspheric Hiss:
Coordinated Observations of RBSP, THEMIS, and POES Satellites, J. Geophys. Res.-Space Phys., 122, 10421–10435,
https://doi.org/10.1002/2017ja024470, 2017a.
Liu, N., Su, Z., Gao, Z., Zheng, H., Wang, Y., Wang, S., Spence, H. E.,
Reeves, G. D., Baker, D. N., Blake, J. B., Funsten, H. O., and Wygant, J.
R.: Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus
waves triggered by a sudden decrease in solar wind dynamic pressure,
Geophys. Res. Lett., 44, 52–61, https://doi.org/10.1002/2016gl071987, 2017b.
Ma, Q., Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A.,
Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Baker, D. N., Blake, J. B.,
Fennell, J. F., Claudepierre, S. G., and Angelopoulos, V.: Characteristic
energy range of electron scattering due to plasmaspheric hiss, J. Geophys. Res.-Space Phys., 121, 11737–11749,
https://doi.org/10.1002/2016ja023311, 2016.
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and
Ukhorskiy, A.: Science Objectives and Rationale for the Radiation Belt Storm
Probes Mission, Space Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y,
2012.
Meredith, N. P.: Substorm dependence of plasmaspheric hiss, J. Geophys. Res., 109, A06209, https://doi.org/10.1029/2004ja010387, 2004.
Meredith, N. P., Horne, R. B., Glauert, S. A., Thorne, R. M., Summers, D.,
Albert, J. M., and Anderson, R. R.: Energetic outer zone electron loss
timescales during low geomagnetic activity, J. Geophys. Res.,
111, A05212, https://doi.org/10.1029/2005ja011516, 2006.
Meredith, N. P., Horne, R. B., Glauert, S. A., and Anderson, R. R.: Slot
region electron loss timescales due to plasmaspheric hiss and
lightning-generated whistlers, J. Geophys. Res.-Space
Phys., 112, A08214, https://doi.org/10.1029/2007ja012413, 2007.
Meredith, N. P., Horne, R. B., Glauert, S. A., Baker, D. N., Kanekal, S. G.,
and Albert, J. M.: Relativistic electron loss timescales in the slot region,
J. Geophys. Res.-Space Phys., 114, A03222,
https://doi.org/10.1029/2008ja013889, 2009.
Minnesota Institute for Astrophysics: RBSP/EFW Data, available at: http://www.space.umn.edu/rbspefw-data/, last access: 28 April 2021.
Mishin, E. V. and Mishin, V. M.: Prompt response of SAPS to stormtime
substorms, J. Atmos. Sol.-Terr. Phys., 69,
1233–1240, https://doi.org/10.1016/j.jastp.2006.09.009, 2007.
NASA: Coordinated Data Analysis Web (CDAWeb), available at: (http://cdaweb.gsfc.nasa.gov, last access: 28 April 2021.
Ni, B., Bortnik, J., Thorne, R. M., Ma, Q., and Chen, L.: Resonant
scattering and resultant pitch angle evolution of relativistic electrons by
plasmaspheric hiss, J. Geophys. Res.-Space Phys., 118,
7740–7751, https://doi.org/10.1002/2013ja019260, 2013.
Ni, B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., Chen, L., Kletzing, C.
A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., Spence, H. E., Bernard
Blake, J., Fennell, J. F., and Claudepierre, S. G.: Resonant scattering of
energetic electrons by unusual low-frequency hiss, Geophys. Res. Lett., 41, 1854–1861, https://doi.org/10.1002/2014gl059389, 2014.
RBSP-ECT: RBSP-ECT Science Data Products, available at: https://www.rbsp-ect.lanl.gov/science/DataDirectories.php, last access: 28 April 2021.
Rich, F. J. and Hairston, M.: Large-scale convection patterns observed by
DMSP, J. Geophys. Res., 99, 3827–3844, https://doi.org/10.1029/93ja03296, 1994.
Roederer, J. G.: Dynamics of geomagnetically trapped radiation, New York:
Springer-Verlag, 166 pp., https://doi.org/10.1007/978-3-642-49300-3, 1970.
Russell, C. T., Holzer, R. E., and Smith, E. J.: OGO 3 observations of ELF
noise in the magnetosphere: 1. Spatial extent and frequency of occurrence,
J. Geophys. Res., 74, 755–777, https://doi.org/10.1029/JA074i003p00755, 1969.
Shi, R., Li, W., Ma, Q., Green, A., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., Claudepierre, S. G., Spence, H. E., and Reeves, G. D.:
Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes,
J. Geophys. Res.-Space Phys., 124, 1035–1051,
https://doi.org/10.1029/2018ja026041, 2019.
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M.,
Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., Cravens,
J. P., Elkington, S. R., Fennell, J. F., Friedel, R. H. W., Funsten, H. O.,
Goldstein, J., Green, J. C., Guthrie, A., Henderson, M. G., Horne, R. B.,
Hudson, M. K., Jahn, J. M., Jordanova, V. K., Kanekal, S. G., Klatt, B. W.,
Larsen, B. A., Li, X., MacDonald, E. A., Mann, I. R., Niehof, J., O'Brien,
T. P., Onsager, T. G., Salvaggio, D., Skoug, R. M., Smith, S. S., Suther, L.
L., Thomsen, M. F., and Thorne, R. M.: Science Goals and Overview of the
Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and
Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission, Space Sci. Rev., 179, 311–336, https://doi.org/10.1007/s11214-013-0007-5, 2013.
Su, Z., Xiao, F., Zheng, H., and Wang, S.: CRRES observation and STEERB
simulation of the 9 October 1990 electron radiation belt dropout event,
Geophys. Res. Lett., 38, L06106, https://doi.org/10.1029/2011gl046873, 2011.
Su, Z., Zhu, H., Xiao, F., Zheng, H., Wang, Y., Shen, C., Zhang, M., Wang,
S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E.,
Reeves, G. D., Funsten, H. O., Blake, J. B., Baker, D. N., and Wygant, J.
R.: Disappearance of plasmaspheric hiss following interplanetary shock,
Geophys. Res. Lett., 42, 3129–3140, https://doi.org/10.1002/2015gl063906, 2015.
Su, Z., Liu, N., Zheng, H., Wang, Y., and Wang, S.: Large-Amplitude
Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes, Geophys. Res. Lett., 45, 565–577, https://doi.org/10.1002/2017gl076754, 2018.
Summers, D., Tang, R., and Thorne, R. M.: Limit on stably trapped particle
fluxes in planetary magnetospheres, J. Geophys. Res.-Space Phys., 114, A10210, https://doi.org/10.1029/2009ja014428, 2009.
Summers, D., Omura, Y., Nakamura, S., and Kletzing, C. A.: Fine structure of
plasmaspheric hiss, J. Geophys. Res.-Space Phys., 119,
9134–9149, https://doi.org/10.1002/2014ja020437, 2014.
Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E.: Plasmaspheric
hiss, J. Geophys. Res., 78, 1581–1596,
https://doi.org/10.1029/JA078i010p01581, 1973.
Thorne, R. M., Church, S. R., and Gorney, D. J.: On the origin of
plasmaspheric hiss: The importance of wave propagation and the plasmapause,
J. Geophys. Res., 84, 5241–5247, https://doi.org/10.1029/JA084iA09p05241, 1979.
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Baker, D. N., Spence, H.
E., Reeves, G. D., Henderson, M. G., Kletzing, C. A., Kurth, W. S.,
Hospodarsky, G. B., Turner, D., and Angelopoulos, V.: Evolution and slow
decay of an unusual narrow ring of relativistic electrons near L
∼ 3.2 following the September 2012 magnetic storm, Geophys. Res. Lett., 40, 3507–3511, https://doi.org/10.1002/grl.50627, 2013.
Toffoletto, F. R. and Hill, T. W.: Mapping of the solar wind electric field
to the Earth's polar caps, J. Geophys. Res., 94, 329–347,
https://doi.org/10.1029/JA094iA01p00329, 1989.
Walsh, B. M., Sibeck, D. G., Nishimura, Y., and Angelopoulos, V.:
Statistical analysis of the plasmaspheric plume at the magnetopause, J. Geophys. Res.-Space Phys., 118, 4844–4851, https://doi.org/10.1002/jgra.50458,
2013.
Yuan, Z., Xiong, Y., Pang, Y., Zhou, M., Deng, X., Trotignon, J. G., Lucek,
E., and Wang, J.: Wave-particle interaction in a plasmaspheric plume
observed by a Cluster satellite, J. Geophys. Res.-Space Phys., 117, A03205, https://doi.org/10.1029/2011ja017152, 2012.
Yue, C., Chen, L., Bortnik, J., Ma, Q., Thorne, R. M., Angelopoulos, V., Li,
J., An, X., Zhou, C., Kletzing, C., Reeves, G. D., and Spence, H. E.: The
Characteristic Response of Whistler Mode Waves to Interplanetary Shocks,
J. Geophys. Res.-Space Phys., 122, 10047–10057,
https://doi.org/10.1002/2017ja024574, 2017.
Short summary
We report an event where hiss wave intensity decreased, associated with the enhanced convection and a substorm. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons. This leads to the decrease of energetic electron fluxes on the duskside, which provide free energy for hiss amplification. The study reveals the important role of magnetospheric electric field in the variation of the energetic electron flux and hiss wave intensity.
We report an event where hiss wave intensity decreased, associated with the enhanced convection...