Articles | Volume 39, issue 2
https://doi.org/10.5194/angeo-39-357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-357-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events
Andrey V. Koval
CORRESPONDING AUTHOR
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg 192007, Russia
Wen Chen
Center for Monsoon System Research, Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing 100029, PR China
Ksenia A. Didenko
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg 192007, Russia
Tatiana S. Ermakova
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg 192007, Russia
Nikolai M. Gavrilov
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Alexander I. Pogoreltsev
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg 192007, Russia
Olga N. Toptunova
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Department of Meteorological Forecasts, Russian State
Hydrometeorological University, Saint Petersburg 192007, Russia
Ke Wei
Center for Monsoon System Research, Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing 100029, PR China
Anna N. Yarusova
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Anton S. Zarubin
Atmospheric Physics Department, Saint Petersburg State University,
Saint Petersburg 198504, Russia
Related authors
Kseniia A. Didenko, Andrey V. Koval, Tatiana S. Ermakova, Aleksey S. Fadeev, Luyang Xu, and Ke Wei
EGUsphere, https://doi.org/10.5194/egusphere-2025-813, https://doi.org/10.5194/egusphere-2025-813, 2025
Short summary
Short summary
The main patterns of tropical oscillations influence on atmospheric planetary waves were investigated by numerical simulation of atmospheric circulation.
The results showed that the joint effect of the considered tropical oscillations, originating in low latitudes, significantly affect the structure of planetary waves, not only in the regions of their climatic maxima but also throughout the middle atmosphere and thermosphere of both hemispheres.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Kseniia A. Didenko, Andrey V. Koval, Tatiana S. Ermakova, Aleksey S. Fadeev, Luyang Xu, and Ke Wei
EGUsphere, https://doi.org/10.5194/egusphere-2025-813, https://doi.org/10.5194/egusphere-2025-813, 2025
Short summary
Short summary
The main patterns of tropical oscillations influence on atmospheric planetary waves were investigated by numerical simulation of atmospheric circulation.
The results showed that the joint effect of the considered tropical oscillations, originating in low latitudes, significantly affect the structure of planetary waves, not only in the regions of their climatic maxima but also throughout the middle atmosphere and thermosphere of both hemispheres.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022, https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Short summary
We make high-resolution simulations of poorly understood decays of nonlinear atmospheric acoustic–gravity waves (AGWs) after deactivations of the wave forcing. The standard deviations of AGW perturbations, after fast dispersions of traveling modes, experience slower exponential decreases. AGW decay times are estimated for the first time and are 20–100 h in the stratosphere and mesosphere. This requires slow, quasi-standing and secondary modes in parameterizations of AGW impacts to be considered.
Chen Schwartz, Chaim I. Garfinkel, Priyanka Yadav, Wen Chen, and Daniela I. V. Domeisen
Weather Clim. Dynam., 3, 679–692, https://doi.org/10.5194/wcd-3-679-2022, https://doi.org/10.5194/wcd-3-679-2022, 2022
Short summary
Short summary
Eleven operational forecast models that run on subseasonal timescales (up to 2 months) are examined to assess errors in their simulated large-scale stationary waves in the Northern Hemisphere winter. We found that models with a more finely resolved stratosphere generally do better in simulating the waves in both the stratosphere (10–50 km) and troposphere below. Moreover, a connection exists between errors in simulated time-mean convection in tropical regions and errors in the simulated waves.
Xiadong An, Wen Chen, Peng Hu, Shangfeng Chen, and Lifang Sheng
Atmos. Chem. Phys., 22, 6507–6521, https://doi.org/10.5194/acp-22-6507-2022, https://doi.org/10.5194/acp-22-6507-2022, 2022
Short summary
Short summary
The intraseasonal NAAA usually establishes quickly on day −3 with a life span of 8 days. Further results revealed that the probability of regional PM2.5 pollution related to the NAAA for at least 2 days in the NCP is 80% in NDJ period 2000–2021. Particularly, air quality in the NCP tends to deteriorate on day 2 prior to the peak day of the NAAA and reaches a peak on day −1 with a life cycle of 4 days. The corresponding meteorological conditions support these conclusions.
Linye Song, Shangfeng Chen, Wen Chen, Jianping Guo, Conglan Cheng, and Yong Wang
Atmos. Chem. Phys., 22, 1669–1688, https://doi.org/10.5194/acp-22-1669-2022, https://doi.org/10.5194/acp-22-1669-2022, 2022
Short summary
Short summary
This study shows that in most years when haze pollution (HP) over the North China Plain (NCP) is more (less) serious in winter, air conditions in the following spring are also worse (better) than normal. Conversely, there are some years when HP in the following spring is opposed to that in winter. It is found that North Atlantic sea surface temperature (SST) anomalies play important roles in HP evolution over the NCP. Thus North Atlantic SST is an important preceding signal for NCP HP evolution.
Mykhaylo Grygalashvyly, Alexander I. Pogoreltsev, Alexey B. Andreyev, Sergei P. Smyshlyaev, and Gerd R. Sonnemann
Ann. Geophys., 39, 255–265, https://doi.org/10.5194/angeo-39-255-2021, https://doi.org/10.5194/angeo-39-255-2021, 2021
Short summary
Short summary
Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl emissions at mid-latitudes compared to those at low latitudes. This differs from the annual cycle at high latitudes. We found that this shift in the semi-annual cycle is determined mainly by the superposition of annual variations of T and O concentration. The winter peak for emission is determined exclusively by atomic oxygen concentration, whereas the summer peak is the superposition of all impacts.
Cited articles
Andrews, D. G. and McIntyre, M. E.: Planetary waves in horizontal and
vertical shear: The generalized Eliassen–Palm relation and the mean zonal
acceleration, J. Atmos. Sci., 33, 2031–2048, 1976.
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics,
Academic Press, Orlando, Florida, USA, 1987.
Bal, S., Schimanke, S., Spangehl, T., and Cubasch, U.: Enhanced residual
mean circulation during the evolution of split type sudden stratospheric
warming in observations and model simulations, J. Earth Syst. Sci., 127, 68, https://doi.org/10.1007/s12040-018-0972-x, 2017.
Birner, T. and Bönisch, H.: Residual circulation trajectories and transit times into the extratropical lowermost stratosphere, Atmos. Chem. Phys., 11, 817–827, https://doi.org/10.5194/acp-11-817-2011, 2011.
Brewer, A. W.: Evidence for a world circulation provided by measurements of
helium and water vapour distribution in the stratosphere,
Q. J. Roy. Meteor. Soc., 75, 351–363, https://doi.org/10.1002/qj.49707532603, 1949.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184,
https://doi.org/10.1002/2013RG000448, 2014.
Chandran, A., Collins, R. L., Garcia, R. R., Marsh, D. R., Harvey, V. L.,
Yue, J., and de la Torre, L.: A climatology of elevated stratopause events in
the whole atmosphere community climate model, J. Geophys. Res.-Atmos., 118,
1234–1246, https://doi.org/10.1002/jgrd.50123, 2013.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden warmings, Part I: Climatology and modelling benchmarks, J. Climate, 20, 449–469, 2007.
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere, J. Geophys. Res., 66,
83–109, 1961.
de la Camara, A., Abalos, M., and Hitchcock, P.: Changes in Stratospheric
Transport and Mixing During Sudden Stratospheric Warmings,
J. Geophys. Res.-Atmos., 123, 3356–3373, https://doi.org/10.1002/2017JD028007, 2018.
Dickinson, R. E.: Planetary Rossby waves propagating vertically through weak
westerly wave guides, J. Atmos. Sci., 25, 984–1002, 1968.
Dobson, G. M. B.: Origin and distribution of polyatomic molecules in the
atmosphere, P. Roy. Soc. A-Math. Phy., 236, 187–193, 1956.
Dobson, G. M. B., Harrison, D. N., and Lawrence, J.: Measurements of the
amount of ozone in the Earth's atmosphere and its relation to other
geophysical conditions, P. Roy. Soc. A-Math. Phy., 122, 456–486, 1929.
Eluszkiewicz, J., Crisp, D., Zurek, R., Elson, L., Fishbein, E., Froidevaux, L., Waters, J., Grainger, R.G., Lambert, A., Harwood, R., and Peckham, G.: Residual
circulation in the Stratosphere and lower Mesosphere as diagnosed from
Microwave Limb Sounder Data, J. Atmos. Sci., 53. 217–240, 1996.
Eyring, V., Harris, N. R. P., Rex, M., Shepherd, T. G., Fahey, D. W., Amanatidis, G. T., Austin, J., Chipperfield, M. P., Dameris, M., Forster, P. M. De. F., Gettelman, A., Graf, H. F., Nagashima, T., Newman, P. A., Pawson, S., Prather, M. J., Pyle, J. A., Salawitch, R. J., Santer, B. D., and Waugh, D. W.: A Strategy for process-oriented validation of coupled
chemistry-climate models, B. Am. Meteorol. Soc., 86, 1117–1133,
https://doi.org/10.1175/BAMS-86-8-1117, 2005.
Fishman, J. and Crutzen, P. J.: The origin of ozone in the troposphere, Nature, 274, 855–857, 1978.
Fröhlich, K., Pogoreltsev, A., and Jacobi, C.: Numerical simulation of
tides, Rossby and Kelvin waves with the COMMA-LIM
model, Adv. Space Res., 32, 863–868, 2003.
Fuller-Rowell, T., Wu, F., Akmaev, R., Fang, T.-W., and Araujo-Pradere, E.: A
whole atmosphere model simulation of the impact of a sudden stratospheric
warming on thermosphere dynamics and electrodynamics, J. Geophys. Res.-Space, 115, A00G08, https://doi.org/10.1029/2010JA015524, 2010.
Funke, B., Lopez-Puertas, M., Bermejo-Pantaleon, D., Garcia-Comas, M.,
Stiller, G. P., von Clarmann, T., Kiefer, M., and Linden, A.: Evidence for
dynamical coupling from the lower atmosphere to the thermosphere during a
major stratospheric warming, Geophys. Res. Lett., 37, L13803, https://doi.org/10.1029/2010GL043619, 2010.
Garny, H., Birner, T., Bönisch, H., and Bunzel, F.: The effects of
mixing on age of air, J. Geophys. Res.-Atmos., 119, 7015–7034,
https://doi.org/10.1002/2013JD021417, 2014.
Gavrilov, N. M. and Koval, A. V.: Parameterization of mesoscale stationary orographic wave forcing for use in numerical models of atmospheric dynamics, Izvestiya Atmospheric and Ocean Physics, 49, 244–251, 2013.
Gavrilov, N. M., Pogoreltsev, A. I., and Jacobi, C.: Numerical modeling of the effect of latitude-inhomogeneous gravity waves on the circulation of the
middle atmosphere, Izv. Atmos. Ocean. Phy+., 41, 9–18, 2005.
Gavrilov, N. M., Koval, A. V., Pogoreltsev, A. I., and Savenkova, E. N.: Simulating
influences of QBO phases and orographic gravity wave forcing on planetary
waves in the middle atmosphere, Earth Planets Space, 67, 86,
https://doi.org/10.1186/s40623-015-0259-2, 2015.
Gavrilov, N. M., Koval, A. V., Pogoreltsev, A. I., and Savenkova, E. N.: Simulating
planetary wave propagation to the upper atmosphere during stratospheric
warming events at different mountain wave scenarios, Adv. Space Res., 61, 1819–1836, https://doi.org/10.1016/j.asr.2017.08.022, 2018.
Gavrilov, N. M., Kshevetskii, S. P., and Koval, A. V.: Thermal effects of nonlinear
acoustic-gravity waves propagating at thermospheric temperatures matching
high and low solar activity,
J. Atmos. Sol.-Terr. Phy., 208, 105381, https://doi.org/10.1016/j.jastp.2020.105381, 2020.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C. A., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The
Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRA-2), J. Climate. 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gerber, E. P., Butler, A., Calvo, N., Charlton-Perez, A., Giorgetta, M., Manzini, E., Perlwitz, J., Polvani, L. M., Sassi, F., Scaife, A. A., Shaw, T. A., Son, S. W., and Watanabe, S.: Assessing and understanding the impact of
stratospheric dynamics and variability on the earth system, B. Am. Meteorol. Soc., 93, 845–859, https://doi.org/10.1175/BAMS-D-11-00145.1, 2012.
Gille, J. C., Lyjak, L. V., and Smith, A.: The Global Residual Mean Circulation
in the Middle Atmosphere for the Northern Winter Period, J. Atmos. Sci.,
44, 1437–1452, 1987.
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine, K. P.: On the “downward control” of extratropical diabatic circulations by
eddy-induced mean zonal forces, J. Atmos. Sci., 48, 651–678, 1991.
Holton, J. R.: An Introduction to Dynamic Meteorology, 4th edn.,
Elsevier Academic Press, Washington, 553 pp., 2004.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglas, A. R., Rood, R. B., and Pfister, L.: Stratosphere-troposphere exchange, Rev. Geophys., 33, 403–439, 1995.
Iwasaki, T., Hamada, H., and Miyazaki, K.: Comparisons of Brewer-Dobson
circulations diagnosed from reanalyses, J. Meteorol. Soc. Jpn., 87,
997–1006, https://doi.org/10.2151/jmsj.87.997, 2009.
Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University
Press, New Jersey, 280 pp., 1999.
Kobayashi, C. and Iwasaki, T.: Brewer-Dobson circulation diagnosed from JRA-55, J. Geophys. Res., 121, 1493–1510, 2016.
Kobayashi, S., Ota, Y., and Harada, H.: The JRA-55 Reanalysis: General
specifications and basic characteristics,
J. Meteorol. Soc. Jpn., 93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Drobashevskaya, E. A.:
Numerical simulation of the mean meridional circulation in the middle
atmosphere at different phases of stratospheric warmings and mountain wave
scenarios, J. Atmos. Sol.-Terr. Phy., 183, 11–18,
https://doi.org/10.1016/j.jastp.2018.12.012, 2019a.
Koval, A. V., Gavrilov, N. M., Pogoreltsev, A. I., and Shevchuk, N. O.:
Reactions of the middle atmosphere circulation and stationary planetary
waves on the solar activity effects in the
thermosphere, J. Geophys. Res.-Space, 124, 10645–10658 https://doi.org/10.1029/2019JA027392, 2019b.
Laskar, F. I., McCormack, J. P., Chau, J. L., Pallamraju, D., Hoffmann, P., and Singh, R. P.: Interhemispheric Meridional Circulation During Sudden
Stratospheric Warming, J. Geophys. Res.-Space, 124, 7112–7122, https://doi.org/10.1029/2018JA026424, 2019.
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal
breakdown, J. Geophys. Res., 86, 9707–9714, 1981.
Liu, H., Doornbos, E., Yamamoto, M., and Ram, S. T.: Strong thermospheric cooling during the 2009 major stratosphere warming, Geophys. Res. Lett., 38, L12102, https://doi.org/10.1029/2011GL047898, 2011.
McIntyre, M. E.: How well do we understand the dynamics of stratospheric
warmings, J. Meteorol. Soc. Jpn., 60, 37–64, 1982.
Nath, D., Chen, W., Zelin, C., Pogoreltsev, A. I., and Wei, K.: Dynamics of 2013
Sudden Stratospheric Warming event and its impact on cold weather over
Eurasia: Role of planetary wave reflection, Sci. Rep.-UK, 6, 24174, https://doi.org/10.1038/srep24174, 2016.
Pawson, S., Kodera, K., Hamilton, K., Shepherd, T. G., Beagley, S. R., Boville, B. A., Farrara, J. D., Fairlie, T. D. A., Kitoh, A., Lahoz, W. A., Langematz, U., Manzini, E., Rind, D. H., Scaife, A. A., Shibata, K., Simon, P., Swinbank, R., Takacs, L., Wilson, R. J., Al-Saadi, J. A., Amodei, M., Chiba, M., Coy, L., de Grandpré, J., Eckman, R. S., Fiorino, M., Grose, W. L., Koide, H., Koshyk, J. N., Li, D., Lerner, J., Mahlman, J. D., McFarlane, N. A., Mechoso, C. R., Molod, A., O'Neill, A., Pierce, R. B., Randel, W. J., Rood, R. B., and Wu, F.: The GCM-Reality Intercomparison Project for SPARC
(GRIPS): Scientific issues and initial results, B. Am. Meteorol. Soc., 81,
781–796, https://doi.org/10.1175/1520-0477(2000)081<0781:TGIPFS>2.3.CO;2, 2000.
Pogoreltsev, A. I., Vlasov, A. A., Froehlich, K., and Jacobi, C.: Planetary waves
in coupling the lower and upper atmosphere, J. Atmos. Sol.-Terr. Phy., 69,
2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014, 2007.
Pogoreltsev, A. I., Kanukhina, A. Y., Suvorova, E. V., and Savenkova, E. N.:
Variability of Planetary Waves as a Signature of Possible Climatic Changes,
J. Atmos. Sol.-Terr. Phy., 71, 1529–1539, https://doi.org/10.1016/j.jastp.2009.05.011,
2009.
Pogoreltsev, A. I., Savenkova, E. N., and Pertsev, N. N.: Sudden stratopheric
warmings: the role of normal atmospheric modes, Geomagn. Aeronomy+,
54, 357–372, 2014.
Rice, J. A.: Mathematical statistics and data analysis, edn. 3, Pacific
Grove. Duxbury Press, Belmont, USA, 603 pp., ISBN 10:0534399428, 2006.
Savenkova, E. N., Gavrilov, N. M., and Pogoreltsev, A. I.: On statistical
irregularity of stratospheric warming occurrence during northern winters,
J. Atmos. Sol.-Terr. Phy., 163, 14–22, https://doi.org/10.1016/j.jastp.2017.06.007, 2017.
Seviour, W. J. M., Butchart, N., and Hardiman, S. C.: The Brewer-Dobson
circulation inferred from ERA-Interim, Q. J. Roy. Meteor. Soc., 138,
878–888, https://doi.org/10.1002/qj.966, 2012.
Shepherd T. G.: Transport in the middle atmosphere, J. Meteorol. Soc. Jpn.,
85, 165–191, 2007.
Siskind, D. E., Eckermann, S. D., McCormack, J. P., Coy, L., Hoppel, K. W.,
and Baker, N. L.: Case studies of the mesospheric response to recent minor, major and extended stratospheric warmings, J. Geophys. Res., 115, D00N03, https://doi.org/10.1029/2010JD014114, 2010.
Song, B.-G. and Chun, H.-Y.: Residual Mean Circulation and Temperature Changes during the Evolution of Stratospheric Sudden Warming Revealed in MERRA, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2016-729, 2016.
SPARC CCMVal: SPARC report on the evaluation of chemistry-climate models,
in: SPARC Report No. 5, WCRP-132, WMO/TD-No, edited by: Eyring, V.,
Shepherd, T. G., and Waugh, D. W., available at: https://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-5/ (last access: November 2020), 2010.
Stray, N. H., Orsolini, Y. J., Espy, P. J., Limpasuvan, V., and Hibbins, R. E.: Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events, Atmos. Chem. Phys., 15, 4997–5005, https://doi.org/10.5194/acp-15-4997-2015, 2015.
Sun, L. and Robinson, W. A.: Downward influence of stratospheric final warming events in an idealized model, Geophys. Res. Lett., 36, L03819, https://doi.org/10.1029/2008GL036624, 2009.
Suvorova, E. V. and Pogoreltsev, A. I.: Modeling of nonmigrating tides in the
middle atmosphere, Geomagn. Aeronomy+, 51, 105–115, 2011.
Swinbank, R. and O'Neill, A.: Stratosphere-troposphere assimilation system,
Mon. Weather Rev., 122, 686–702, 1994.
Tao, M. C., Liu, Y., and Zhang, Y. L.: Variation in Brewer–Dobson circulation
during three sudden stratospheric major warming events in the 2000's, Adv.
Atmos. Sci., 34, 1415–1425, https://doi.org/10.1007/s00376-017-6321-1, 2017.
Tegtmeier, S., Krüger, K., Wohltmann, I., Schoellhammer, K., and Rex, M.:
Variations of the residual circulation in the Northern Hemispheric winter,
J. Geophys. Res., 113, D16109, https://doi.org/10.1029/2007JD009518, 2008.
Yigit, E. and Medvedev, A. S.: Heating and cooling of the thermo-sphere by
internal gravity waves, Geophys. Res. Lett., 36, L14807,
https://doi.org/10.1029/2009GL038507, 2009.
Yuan, T., Thurairajah, B., She, C.-Y., Chandran, A., Collins, R. L., and Krueger, D. A.: Wind and temperature response of midlatitude mesopause region to the 2009 sudden stratospheric warming, J. Geophys. Res., 117, D09114, https://doi.org/10.1029/2011JD017142, 2012.
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean...