Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-983-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-983-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Induced currents due to 3D ground conductivity play a major role in the interpretation of geomagnetic variations
Finnish Meteorological Institute, Helsinki, Finland
Heikki Vanhamäki
Space Physics and Astronomy Research Unit, University of Oulu, Oulu, Finland
Ari Viljanen
Finnish Meteorological Institute, Helsinki, Finland
Maxim Smirnov
Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden
Related authors
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
Ann. Geophys., 43, 271–301, https://doi.org/10.5194/angeo-43-271-2025, https://doi.org/10.5194/angeo-43-271-2025, 2025
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Abiyot Bires Workayehu, Minna Palmroth, Maxime Grandin, Liisa Juusola, Markku Alho, Ivan Zaitsev, Venla Koikkalainen, Konstantinos Horaites, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, and Jonas Suni
EGUsphere, https://doi.org/10.5194/egusphere-2025-2282, https://doi.org/10.5194/egusphere-2025-2282, 2025
Short summary
Short summary
We investigate the ionospheric signatures of BBFs in the magnetotail utilising a global 6D hybrid-Vlasov simulation coupled with an ionospheric model. We analyse changes in the magnitudes of ionospheric observables and use them as the ionospheric manifestations of bursty bulk flows. Our results reveal that reconnection-driven BBF induce vortices that generate FACs, which map to the ionosphere with distinct east-west alignment and exhibit a characteristic westward drift.
Karl M. Laundal, Andreas S. Skeidsvoll, Beatrice Popescu Braileanu, Spencer M. Hatch, Nils Olsen, and Heikki Vanhamäki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2051, https://doi.org/10.5194/egusphere-2025-2051, 2025
Short summary
Short summary
The ionosphere is where Earth’s atmosphere overlaps with a gas of charged particles in space. There, collisions with neutral air and electromagnetic forces driven by the solar wind control plasma motion. We created a global model that includes magnetic induction, explaining how electric currents and fields are altered, offering a more accurate view of atmosphere–space coupling than conventional models based on electric circuits.
Venla Koikkalainen, Maxime Grandin, Emilia Kilpua, Abiyot Workayehu, Ivan Zaitsev, Liisa Juusola, Shi Tao, Markku Alho, Lauri Pänkäläinen, Giulia Cozzani, Konstantinos Horaites, Jonas Suni, Yann Pfau-Kempf, Urs Ganse, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2265, https://doi.org/10.5194/egusphere-2025-2265, 2025
Short summary
Short summary
We use a numerical simulation to study phenomena that occur between the Earth’s dipolar magnetic field and the nightside of near-Earth space. We observe the formation of large-scale vortex flows with scales of several Earth radii. On the ionospheric grid of the simulation we find that the field-aligned currents formed in the simulation reflect the vortex flow in the transition region. The main finding is that the vortex flow is a result of a combination of flow dynamics and a plasma instability.
Liisa Juusola, Ilkka Virtanen, Spencer Mark Hatch, Heikki Vanhamäki, Maxime Grandin, Noora Partamies, Urs Ganse, Ilja Honkonen, Abiyot Workayehu, Antti Kero, and Minna Palmroth
EGUsphere, https://doi.org/10.5194/egusphere-2025-2394, https://doi.org/10.5194/egusphere-2025-2394, 2025
Short summary
Short summary
Key properties of the ionospheric electrodynamics are electric fields, currents, and conductances. They provide a window to the vast and distant near-Earth space, cause Joule heating that affect satellite orbits, and drive geomagnetically induced currents (GICs) in technological conductor networks. We have developed a new method for solving the key properties of ionospheric electrodynamics from ground-based magnetic field observations.
Liisa Juusola, Heikki Vanhamäki, Elena Marshalko, Mikhail Kruglyakov, and Ari Viljanen
Ann. Geophys., 43, 271–301, https://doi.org/10.5194/angeo-43-271-2025, https://doi.org/10.5194/angeo-43-271-2025, 2025
Short summary
Short summary
Interaction between the magnetic field of the rapidly varying electric currents in space and the conducting ground produces an electric field at the Earth's surface. This geoelectric field drives geomagnetically induced currents in technological conductor networks, which can affect the performance of critical ground infrastructure such as electric power transmission grids. We have developed a new method suitable for monitoring the geoelectric field based on ground magnetic field observations.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev., 18, 511–527, https://doi.org/10.5194/gmd-18-511-2025, https://doi.org/10.5194/gmd-18-511-2025, 2025
Short summary
Short summary
Vlasiator is a kinetic space plasma model that simulates the behavior of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations have been run without any interaction with the ionosphere, the uppermost layer of Earth's atmosphere. In this paper, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space plasma and Earth's ionosphere interact.
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
Noora Partamies, Bas Dol, Vincent Teissier, Liisa Juusola, Mikko Syrjäsuo, and Hjalmar Mulders
Ann. Geophys., 42, 103–115, https://doi.org/10.5194/angeo-42-103-2024, https://doi.org/10.5194/angeo-42-103-2024, 2024
Short summary
Short summary
Auroral imaging produces large amounts of image data that can no longer be analyzed by visual inspection. Thus, every step towards automatic analysis tools is crucial. Previously supervised learning methods have been used in auroral physics, with a human expert providing ground truth. However, this ground truth is debatable. We present an unsupervised learning method, which shows promising results in detecting auroral breakups in the all-sky image data.
Liisa Juusola, Ari Viljanen, Noora Partamies, Heikki Vanhamäki, Mirjam Kellinsalmi, and Simon Walker
Ann. Geophys., 41, 483–510, https://doi.org/10.5194/angeo-41-483-2023, https://doi.org/10.5194/angeo-41-483-2023, 2023
Short summary
Short summary
At times when auroras erupt on the sky, the magnetic field surrounding the Earth undergoes rapid changes. On the ground, these changes can induce harmful electric currents in technological conductor networks, such as powerlines. We have used magnetic field observations from northern Europe during 28 such events and found consistent behavior that can help to understand, and thus predict, the processes that drive auroras and geomagnetically induced currents.
Liisa Juusola, Ari Viljanen, Andrew P. Dimmock, Mirjam Kellinsalmi, Audrey Schillings, and James M. Weygand
Ann. Geophys., 41, 13–37, https://doi.org/10.5194/angeo-41-13-2023, https://doi.org/10.5194/angeo-41-13-2023, 2023
Short summary
Short summary
We have examined events during which the measured magnetic field on the ground changes very rapidly, causing a risk to technological conductor networks. According to our results, such events occur when strong electric currents in the ionosphere at 100 km altitude are abruptly modified by sudden compression or expansion of the magnetospheric magnetic field farther in space.
Mirjam Kellinsalmi, Ari Viljanen, Liisa Juusola, and Sebastian Käki
Ann. Geophys., 40, 545–562, https://doi.org/10.5194/angeo-40-545-2022, https://doi.org/10.5194/angeo-40-545-2022, 2022
Short summary
Short summary
Eruptions from the Sun can pose a hazard to Earth's power grids via, e.g., geomagnetically induced currents (GICs). We study magnetic measurements from Fennoscandia to find ways to understand and forecast GIC. We find that the direction of the time derivative of the magnetic field has a short
reset time, about 2 min. We conclude that this result gives insight on the current systems high in Earth’s atmosphere, which are the main driver behind the time derivative’s behavior and GIC formation.
Sebastian Käki, Ari Viljanen, Liisa Juusola, and Kirsti Kauristie
Ann. Geophys., 40, 107–119, https://doi.org/10.5194/angeo-40-107-2022, https://doi.org/10.5194/angeo-40-107-2022, 2022
Short summary
Short summary
During auroral substorms, the ionospheric electric currents change rapidly, and a large amount of energy is dissipated. We combine ionospheric current data derived from the Swarm satellite mission with the substorm database from the SuperMAG ground magnetometer network. We obtain statistics of the strength and location of the currents relative to the substorm onset. Our results show that low-earth orbit satellites give a coherent picture of the main features in the substorm current system.
Cited articles
Amm, O.: Ionospheric elementary current systems in spherical coordinates and
their application, J. Geomagn. Geoelectr., 49, 947–955,
https://doi.org/10.5636/jgg.49.947, 1997. a
Amm, O. and Viljanen, A.: Ionospheric disturbance magnetic field continuation
from the ground to ionosphere using spherical elementary current systems,
Earth Planets Space, 51, 431–440,
https://doi.org/10.1186/BF03352247, 1999. a
Boteler, D. H., Pirjola, R. J., and Nevanlinna, H.: The effects of geomagnetic
disturbances on electrical systems at the Earth's surface, Adv. Space Res.,
22, 17–27, https://doi.org/10.1016/S0273-1177(97)01096-X, 1998. a, b
Cherevatova, M., Smirnov, M. Y., Korja, T., Pedersen, L. B., Ebbing, J.,
Gradmann, S., and Becken, M.: Electrical conductivity structure of north-west
Fennoscandia from three-dimensional inversion of magnetotelluric data,
Tectonophysics, 653, 20–32,
https://doi.org/10.1016/j.tecto.2015.01.008, 2015. a
Davis, T. N. and Sugiura, M.: Auroral electrojet activity index AE and its
universal time variations, J. Geophys. Res., 71, 785–801, 1966. a
Dong, B., Wang, Z., Pirjola, R., Liu, C., and Liu, L.: An Approach to Model
Earth Conductivity Structures with Lateral Changes for Calculating Induced
Currents and Geoelectric Fields during Geomagnetic Disturbances, Math. Probl. Eng., 2015, 761964, https://doi.org/10.1155/2015/761964, 2015. a
Emmert, J. T., Richmond, A. D., and Drob, D. P.: A computationally compact
representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth
base vectors, J. Geophys. Res., 115, A08322, https://doi.org/10.1029/2010JA015326,
2010. a
Fligge, M., Solanki, S. K., and Beer, J.: Determination of solar cycle length
variations using the continuous wavelet transform, Astron.
Astrophys., 346, 313–321, 1999. a
Gaya-Piqué, L. R., Curto, J. J., Torta, J. M., and Chulliat, A.: Equivalent
ionospheric currents for the 5 December 2006 solar flare effect determined
from spherical cap harmonic analysis, J. Geophys. Res., 113, A07304,
https://doi.org/10.1029/2007JA012934, 2008. a
Gilbert, J. L.: Modeling the effect of the ocean‐land interface on induced
electric fields during geomagnetic storms, Space Weather, 3, S04A03,
https://doi.org/10.1029/2004SW000120, 2005. a
Gilbert, J. L.: Simplified Techniques for Treating the Ocean–Land Interface
for Geomagnetically Induced Electric Fields, IEEE T.
Electromagn. C., 57, 688–692, https://doi.org/10.1109/TEMC.2015.2453196,
2015. a
Gregory, R. L., Gommers, R., Wasilewski, F., Wohlfahrt, K., and O'Leary, A.:
PyWavelets: A Python package for wavelet analysis, Journal of Open Source
Software, 4, 1237, https://doi.org/10.21105/joss.01237, 2019. a
Haines, G. V. and Torta, J. M.: Determination of equivalent current sources
from spherical cap harmonic models of geomagnetic field variations, Geophys.
J. Int., 118, 499–514, https://doi.org/10.1111/j.1365-246X.1994.tb03981.x, 1994. a
Hjelt, S., Korja, T., Kozlovskaya, E., Lahti, I., Yliniemi, J., and Varentsov,
I.: Electrical conductivity and seismic velocity structures of the
lithosphere beneath the Fennoscandian Shield, Geological Society, London,
Memoirs, 32, 541–559, https://doi.org/10.1144/GSL.MEM.2006.032.01.33, 2006. a
Honkonen, I., Kuvshinov, A., Rastätter, L., and Pulkkinen, A.: Predicting
global ground geoelectric field with coupled geospace and th ree-dimensional
geomagnetic induction models, Space Weather, 16, 1028–1041,
https://doi.org/10.1029/2018SW001859, 2018. a
IMAGE: International Monitor for Auroral Geomagnetic Effects, available at: https://space.fmi.fi/image, last access: 10 September 2020. a
Ivannikova, E., Kruglyakov, M., Kuvshinov, A., Rastätter, L., and
Pulkkinen, A. A.: Regional 3-D modeling of ground electromagnetic field due
to realistic geomagnetic disturbances, Space Weather, 16, 476–500,
https://doi.org/10.1002/2017SW001793, 2018. a
Jacobs, J. A., Kato, Y., Matsushita, S., and Troitskaya, V. A.: Classification
of geomagnetic micropulsations, J. Geophys. Res., 69, 180–181,
https://doi.org/10.1029/JZ069i001p00180, 1964. a, b
Janhunen, P. and Viljanen, A.: Application of conformal mapping to 2-D
conductivity structures with non-uniform primary sources, Geophys. J. Int.,
105, 185–190, https://doi.org/10.1111/j.1365-246X.1991.tb03454.x, 1991. a
Juusola, L., Kauristie, K., Vanhamäki, H., and Aikio, A.: Comparison of
auroral ionospheric and field-aligned currents derived from Swarm and
ground magnetic field measurements, J. Geophys. Res.-Space, 121, 9256–9283,
https://doi.org/10.1002/2016JA022961, 2016. a, b
Kauristie, K., Pulkkinen, T. I., Pellinen, R. J., and Opgenoorth, H. J.: What can we tell about global auroral-electrojet activity from a single meridional magnetometer chain?, Ann. Geophys., 14, 1177–1185, https://doi.org/10.1007/s00585-996-1177-1, 1996. a
Kelbert, A.: The Role of Global/Regional Earth Conductivity Models in Natural
Geomagnetic Hazard Mitigation, Surv. Geophys., 41, 115–166,
https://doi.org/10.1007/s10712-019-09579-z, 2020. a
Korja, T., Engels, M., Zhamaletdinov, A. A., Kovtun, A. A., Palshin, N. A.,
Smirnov, M. Y., Tokarev, A. D., Asming, V. E., Vanyan, L. L., Vardaniants,
I. L., and the BEAR Working Group: Crustal conductivity in Fennoscandia
– a compilation of a database on crustal conductance in the Fennoscandian
Shield, Earth Planets Space, 54, 535–558,
https://doi.org/10.1186/BF03353044, 2002. a, b, c, d, e, f, g, h
Kuvshinov, A. V.: 3-D Global Induction in the Oceans and Solid Earth: Recent
Progress in Modeling Magnetic and Electric Fields from Sources of
Magnetospheric, Ionospheric and Oceanic Origin, Surv. Geophys., 29, 139–186,
https://doi.org/10.1007/s10712-008-9045-z, 2008. a
Lee, G. R., Gommers, R., Wohlfahrt, K., Wasilewski, F., O'Leary, A., Nahrstaedt, H., Menéndez Hurtado, D., Sauvé, A., Arildsen, T., Oliveira, H., Pelt, D. M., Agrawal, A., SylvainLan, Pelletier, M., Brett, M., Yu, F., Choudhary, S., Tricoli, D., Craig, L. M., Ravindranathan, L., Dan, J., jakirkham, Antonello, J., Laszuk, D., Goertzen, D., Goldberg, C., Reczey, B., 0-tree, Smith, A., and asnt: PyWavelets/pywt: PyWavelets 1.1.1 (Version v1.1.1), Zenodo, https://doi.org/10.5281/zenodo.3510098, 2019. a
Lucas, G., Love, J. J., Kelbert, A., Bedrosian, P. A., and Rigler, E. J.: A
100-year geoelectric hazard analysis for the U.S. high-voltage power grid,
Space Weather, 18, e2019SW002329, https://doi.org/10.1029/2019SW002329, 2020. a
Marsal, S., Torta, J. M., Segarra, A., and Araki, T.: Use of spherical
elementary currents to map the polar current systems associated with the
geomagnetic sudden commencements on 2013 and 2015 St. Patrick's Day storms,
J. Geophys. Res., 122, 194–211, https://doi.org/10.1002/2016JA023166, 2017. a, b
Marsal, S., Torta, J. M., Pavón-Carrasco, F. J., Blake, S. P., and Piersanti,
M.: Including the Temporal Dimension in the SECS Technique, Space Weather, https://doi.org/10.1029/2020SW002491, online first, 2020. a, b
McLay, S. A. and Beggan, C. D.: Interpolation of externally-caused magnetic fields over large sparse arrays using Spherical Elementary Current Systems, Ann. Geophys., 28, 1795–1805, https://doi.org/10.5194/angeo-28-1795-2010, 2010. a
Parkinson, W.: Directions of rapid geomagnetic fluctuations, Geophys. J. Roy.
Astr. S., 2, 1–14, 1959. a
Parkinson, W. and Jones, F.: The geomagnetic coast effect, Rev. Geophys., 17, 1999–2015, 1979. a
Pirjola, R.: Practical Model Applicable to Investigating the Coast Effect on
the Geoelectric Field in Connection with Studies of Geomagnetically Induced
Currents, Adv. Appl. Phys., 1, 9–28, 2013. a
Pulkkinen, A. and Engels, M.: The role of 3-D geomagnetic induction in the determination of the ionospheric currents from the ground geomagnetic data, Ann. Geophys., 23, 909–917, https://doi.org/10.5194/angeo-23-909-2005, 2005. a, b, c
Pulkkinen, A., Amm, O., Viljanen, A., and BEAR Working Group: Ionospheric
equivalent current distributions determined with the method of spherical
elementary current systems, J. Geophys. Res., 108, 1053,
https://doi.org/10.1029/2001JA005085, 2003a. a
Pulkkinen, A., Klimas, A., Vassiliadis, D., Uritsky, V., and Tanskanen, E.:
Spatiotemporal scaling properties of the ground geomagnetic field variations,
J. Geophys. Res., 111, A03305, https://doi.org/10.1029/2005JA011294, 2006. a, b, c, d
Pulkkinen, A., Rastätter, L., Kuznetsova, M., Singer, H., Balch, C.,
Weimer, D., Toth, G., Ridley, A., Gombosi, T., Wiltberger, M., Raeder, J.,
and Weigel, R.: Community-wide validation of geospace model ground magnetic
field perturbation predictions to support model transition to operations,
Space Weather, 11, 369–385, https://doi.org/10.1002/swe.20056, 2013. a, b
Richmond, A. D.: Ionospheric Electrodynamics Using Magnetic Apex Coordinates,
J. Geomagn. Geoelectr., 47, 191–212,
https://doi.org/10.5636/jgg.47.191, 1995. a
Rosenqvist, L. and Hall, J. O.: Regional 3D modelling and verification of
geomagnetically induced currents in Sweden, Space Weather, 17, 27–36,
https://doi.org/10.1029/2018sw002084, 2019. a
Sillanpää, I., Lühr, H., Viljanen, A., and Ritter, P.: Quiet-time
magnetic variations at high latitude observatories, Earth Planets Space, 56,
47–65, https://doi.org/10.1186/BF03352490, 2004. a
Stening, R. J., Reztsova, T., Ivers, D., Turner, J., and Winch, D. E.:
Spherical cap harmonic analysis of magnetic variations data from mainland
Australia, Earth Planet Space, 60, 1177–1186,
https://doi.org/10.1186/BF03352875, 2008. a, b
Thébault, E., Schott, J. J., and Mandea, M.: Revised spherical cap
harmonic analysis (R-SCHA): Validation and properties, J. Geophys. Res.,
111, B01102, https://doi.org/10.1029/2005JB003836, 2006. a
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois,
O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut,
A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter,
I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M.,
Kuang, W., Lalanne, X., Langlais, B., Léger, J.-M., Lesur, V., Lowes,
F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V.,
Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R.,
Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P.,
Wardinski, I., and Zvereva, T.: International Geomagnetic Reference
Field: the 12th generation, Earth Planets Space, 67, 79,
https://doi.org/10.1186/s40623-015-0228-9, 2015. a
Torrence, C. and Compo, G. P.: A Practical Guide to Wavelet Analysis, B.
Am. Meteorol. Soc., 79, 61–78,
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998. a
Torta, J. M.: Modelling by Spherical Cap Harmonic Analysis: A Literature
review, Surv. Geophys., 41, 201–247, https://doi.org/10.1007/s10712-019-09576-2, 2020. a
Torta, J. M. and Santis, A. D.: On the derivation of the Earth's conductivity
structure by means of spherical cap harmonic analysis, Geophys. J. Int., 127,
441–451, https://doi.org/10.1111/j.1365-246X.1996.tb04732.x, 1996. a
van de Kamp, M.: Harmonic quiet-day curves as magnetometer baselines for ionospheric current analyses, Geosci. Instrum. Method. Data Syst., 2, 289–304, https://doi.org/10.5194/gi-2-289-2013, 2013. a
van der Meeren, C. and Burrell, A. G.: Apex Python library, available at: https://apexpy.readthedocs.io/en/latest/ (last access: 10 September 2020), 2018. a
Vanhamäki, H. and Juusola, L.: Introduction to Spherical Elementary
Current Systems, in: Ionospheric Multi-Spacecraft Analysis Tools,
5–33, ISSI Scientific Report Series 17,
https://doi.org/10.1007/978-3-030-26732-2, 2020. a, b
Viljanen, A., Tanskanen, E. I., and Pulkkinen, A.: Relation between substorm characteristics and rapid temporal variations of the ground magnetic field, Ann. Geophys., 24, 725–733, https://doi.org/10.5194/angeo-24-725-2006, 2006. a
Welling, D. T., Ngwira, C. M., Opgenoorth, H., Haiducek, J. D., Savani, N. P.,
Morley, S. K., Cid, C., Weigel, R., Weygand, J. M., Woodroffe, J. R., Singer,
H. J., Rosenqvist, L., and Liemohn, M.: Recommendations for next-generation
ground magnetic perturbation validation, Space Weather, 16, 1912–1920,
https://doi.org/10.1029/2018SW002064, 2018.
a
Weygand, J. M., Amm, O., Viljanen, A., Angelopoulos, V., Murr, D., Engebretson,
M. J., Gleisner, H., and Mann, I.: Application and validation of the
spherical elementary currents systems technique for deriving ionospheric
equivalent currents with the North American and Greenland ground
magnetometer arrays, J. Geophys. Res., 116, A03305,
https://doi.org/10.1029/2010JA016177, 2011. a
Short summary
Rapid variations of the magnetic field measured on the ground can be used to estimate space weather risks to power grids, but forecasting the variations remains a challenge. We show that part of this problem stems from the fact that, in addition to electric currents in space, the magnetic field variations are strongly affected by underground electric currents. We suggest that separating the measured field into its space and underground parts could improve our understanding of space weather.
Rapid variations of the magnetic field measured on the ground can be used to estimate space...