Articles | Volume 38, issue 2
https://doi.org/10.5194/angeo-38-319-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-319-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relation between the interannual variability in the stratospheric Rossby wave forcing and zonal mean fields suggesting an interhemispheric link in the stratosphere
Yuki Matsushita
CORRESPONDING AUTHOR
Department of Earth and Planetary Science, University of Tokyo,
Tokyo, 113-0033, Japan
Daiki Kado
Research Center for Advanced Science and Technology, University of
Tokyo, Tokyo, 153-8904, Japan
Masashi Kohma
Department of Earth and Planetary Science, University of Tokyo,
Tokyo, 113-0033, Japan
Kaoru Sato
Department of Earth and Planetary Science, University of Tokyo,
Tokyo, 113-0033, Japan
Related authors
No articles found.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Dai Koshin, Kaoru Sato, Masashi Kohma, and Shingo Watanabe
Geosci. Model Dev., 15, 2293–2307, https://doi.org/10.5194/gmd-15-2293-2022, https://doi.org/10.5194/gmd-15-2293-2022, 2022
Short summary
Short summary
The 4D ensemble Kalman filter data assimilation system for the whole neutral atmosphere has been updated. The update includes the introduction of a filter to reduce the generation of spurious waves, change in the order of horizontal diffusion of the forecast model to reproduce more realistic tidal amplitudes, and use of additional satellite observations. As a result, the analysis performance has been greatly improved, even for disturbances with periods of less than 1 d.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Arata Amemiya and Kaoru Sato
Atmos. Chem. Phys., 20, 13857–13876, https://doi.org/10.5194/acp-20-13857-2020, https://doi.org/10.5194/acp-20-13857-2020, 2020
Short summary
Short summary
The spatial pattern of subseasonal variability of the Asian monsoon anticyclone (AMA) is analyzed using long-term reanalysis data, integrating two different views using potential vorticity and the geopotential height anomaly. This study provides a link between two existing description of the Asian monsoon anticyclone, which is important for the understanding of the whole life cycle of its characteristic subseasonal variability pattern.
Dai Koshin, Kaoru Sato, Kazuyuki Miyazaki, and Shingo Watanabe
Geosci. Model Dev., 13, 3145–3177, https://doi.org/10.5194/gmd-13-3145-2020, https://doi.org/10.5194/gmd-13-3145-2020, 2020
Short summary
Short summary
A new data assimilation system with a 4D local ensemble transform Kalman filter for the whole neutral atmosphere is developed using a T42L124 general circulation model. A conventional observation dataset and bias-corrected satellite temperature data are assimilated. After the improvements of the forecast model, the assimilation parameters are optimized. The minimum optimal number of ensembles is also examined. Results are evaluated using the reanalysis data and independent radar observations.
Miho Yamamori, Yasuhiro Murayama, Kazuo Shibasaki, Isao Murata, and Kaoru Sato
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-837, https://doi.org/10.5194/acp-2019-837, 2019
Preprint withdrawn
Short summary
Short summary
The contribution of vertical and horizontal advection to the production of small-scale vertical ozone structures in the stratosphere is investigated using data from an ozonesonde observation performed at intervals of 3 h in Fairbanks, Alaska. A case is reported in which horizontal advection due to an inertia gravity wave with near-inertial frequency mainly contributes to the formation of a small-scale vertical ozone structure in the middle stratosphere.
Kaoru Sato and Soichiro Hirano
Atmos. Chem. Phys., 19, 4517–4539, https://doi.org/10.5194/acp-19-4517-2019, https://doi.org/10.5194/acp-19-4517-2019, 2019
Short summary
Short summary
The climatology of the Brewer–Dobson circulation and the potential contribution of gravity waves (GWs) are examined using four modern reanalysis datasets for the annual mean and each season. In this study, unresolved waves are designated as GWs. GWs are essential to determine the high-latitude extension and the turn-around latitude except in summer, although their contribution to the upward mass flux is relatively small. Plausible deficiencies of the current GW parameterizations are discussed.
Ryosuke Shibuya and Kaoru Sato
Atmos. Chem. Phys., 19, 3395–3415, https://doi.org/10.5194/acp-19-3395-2019, https://doi.org/10.5194/acp-19-3395-2019, 2019
Short summary
Short summary
The first long-term simulation using the high-top non-hydrostatic general circulation model (NICAM) was executed to analyze mesospheric gravity waves. A new finding in this paper is that the spectrum of the vertical fluxes of the zonal momentum has an isolated peak at frequencies slightly lower than f at latitudes from 30 to 75° S at a height of 70 km. This study discusses the physical mechanism for an explanation of the existence of the isolated spectrum peak in the mesosphere.
Ryosuke Shibuya, Kaoru Sato, Masaki Tsutsumi, Toru Sato, Yoshihiro Tomikawa, Koji Nishimura, and Masashi Kohma
Atmos. Chem. Phys., 17, 6455–6476, https://doi.org/10.5194/acp-17-6455-2017, https://doi.org/10.5194/acp-17-6455-2017, 2017
Short summary
Short summary
The first observations made by a complete PANSY radar system (Program of the Antarctic Syowa MST/IS radar) installed at Syowa Station were successfully performed from 16 to 24 March 2015. Over this period, quasi-12 h period disturbances in the mesosphere at heights of 70 to 80 km were observed. Combining the observational data and numerical simulation outputs, we found that quasi-12 h disturbances are due to large-scale inertia–gravity waves, not to semi-diurnal migrating tides.
Maria Mihalikova, Kaoru Sato, Masaki Tsutsumi, and Toru Sato
Ann. Geophys., 34, 543–555, https://doi.org/10.5194/angeo-34-543-2016, https://doi.org/10.5194/angeo-34-543-2016, 2016
S. Watanabe, K. Sato, Y. Kawatani, and M. Takahashi
Geosci. Model Dev., 8, 1637–1644, https://doi.org/10.5194/gmd-8-1637-2015, https://doi.org/10.5194/gmd-8-1637-2015, 2015
M. Kohma and K. Sato
Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013, https://doi.org/10.5194/acp-13-3849-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Middle atmosphere dynamics
Propagating characteristics of mesospheric gravity waves observed by an OI 557.7 nm airglow all-sky camera at Mt. Bohyun (36.2° N, 128.9° E)
Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events
Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer
Migrating and non-migrating tides observed in the stratosphere from FORMOSAT-3/COSMIC temperature retrievals
Local stratopause temperature variabilities and their embedding in the global context
Impact of local gravity wave forcing in the lower stratosphere on the polar vortex stability: effect of longitudinal displacement
Stratospheric observations of noctilucent clouds: a new approach in studying middle- and large-scale mesospheric dynamics
High-resolution Beijing mesosphere–stratosphere–troposphere (MST) radar detection of tropopause structure and variability over Xianghe (39.75° N, 116.96° E), China
Effect of latitudinally displaced gravity wave forcing in the lower stratosphere on the polar vortex stability
Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere
Notes on the correlation between sudden stratospheric warmings and solar activity
Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes
Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
Jun-Young Hwang, Young-Sook Lee, Yong Ha Kim, Hosik Kam, Seok-Min Song, Young-Sil Kwak, and Tae-Yong Yang
Ann. Geophys., 40, 247–257, https://doi.org/10.5194/angeo-40-247-2022, https://doi.org/10.5194/angeo-40-247-2022, 2022
Short summary
Short summary
We analysed all-sky camera images observed at Mt. Bohyun observatory (36.2° N, 128.9° E) for the period of 2017–2019. We retrieved gravity wave parameters including horizontal wavelength, phase velocity and period from the image data. The horizontally propagating directions of the wave were biased according to their seasons, exerted with filtering effect by prevailing background winds. We also evaluated the nature of vertical propagation of the wave for each season.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Olga S. Zorkaltseva and Roman V. Vasilyev
Ann. Geophys., 39, 267–276, https://doi.org/10.5194/angeo-39-267-2021, https://doi.org/10.5194/angeo-39-267-2021, 2021
Short summary
Short summary
One of the fundamental tasks of atmospheric physics is the study of the processes of vertical interaction of atmospheric layers. We carried out observations with a Fabry–Perot interferometer at an altitude of 90–100 km. We have shown that sudden stratospheric warming and active planetary waves have an impact on the dynamics of the upper atmosphere. That is, the green line airglow decreases and the temperature rises. Major warming causes the reversal of the zonal wind in the upper atmosphere.
Uma Das, William E. Ward, Chen Jeih Pan, and Sanat Kumar Das
Ann. Geophys., 38, 421–435, https://doi.org/10.5194/angeo-38-421-2020, https://doi.org/10.5194/angeo-38-421-2020, 2020
Short summary
Short summary
Temperatures obtained from FORMOSAT-3 and COSMIC observations in the stratosphere are analysed for tidal variations. It is seen that non-migrating tides are not very significant in the high-latitude winter stratosphere. It is shown that the observed amplitudes of these tides in earlier studies are most probably a result of aliasing and are not geophysical in nature. Thus, the process of non-linear interactions through which it was believed that they are produced seems to be unimportant.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Peter Dalin, Nikolay Pertsev, Vladimir Perminov, Denis Efremov, and Vitaly Romejko
Ann. Geophys., 38, 61–71, https://doi.org/10.5194/angeo-38-61-2020, https://doi.org/10.5194/angeo-38-61-2020, 2020
Short summary
Short summary
A unique stratospheric balloon-borne observation of noctilucent clouds (NLCs) was performed at night on 5–6 July 2018. A sounding balloon, carrying the NLC camera, reached 20.4 km altitude. NLCs were observed from the stratosphere at large scales (100–1500 km) for the first time. Propagations of gravity waves of various scales were registered. This experiment is rather simple and can be reproduced by the broad geoscience community and amateurs, providing a new technique in NLC observations.
Feilong Chen, Gang Chen, Yufang Tian, Shaodong Zhang, Kaiming Huang, Chen Wu, and Weifan Zhang
Ann. Geophys., 37, 631–643, https://doi.org/10.5194/angeo-37-631-2019, https://doi.org/10.5194/angeo-37-631-2019, 2019
Short summary
Short summary
Using the Beijing MST radar echo-power observations collected during the period November 2011–May 2017, the structure and variability of the tropopause over Xianghe, China (39.75° N, 116.96° E), was presented. Our comparison results showed a good agreement between the radar and thermal tropopauses during all seasons. In contrast, the consistency between the radar and dynamical tropopauses is poor during summer. Diurnal oscillation in tropopause height is commonly observed during all seasons.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Dan Chen, Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Ann. Geophys., 37, 487–506, https://doi.org/10.5194/angeo-37-487-2019, https://doi.org/10.5194/angeo-37-487-2019, 2019
Short summary
Short summary
In this paper, for the first time, absolute gravity wave momentum flux (GWMF) on temporal scales from terannual variation up to solar cycle length is investigated. The systematic spectral analysis of SABER absolute GWMF is presented and physically interpreted. The various roles of filtering and oblique propagating are discussed, which is likely an important factor for MLT dynamics, and hence can be used as a stringent test bed of the reproduction of such features in global models.
Ekaterina Vorobeva
Ann. Geophys., 37, 375–380, https://doi.org/10.5194/angeo-37-375-2019, https://doi.org/10.5194/angeo-37-375-2019, 2019
Short summary
Short summary
We investigated the statistical relationship between solar activity and the occurrence rate of major sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm radio flux (F10.7) has been used as a proxy for solar activity. The calculations have been performed based on two datasets of central day (NCEP–NCAR-I and combined ERA) for the period from 1958 to 2013. The analysis revealed a positive correlation between MSSW events and solar activity.
Sven Wilhelm, Gunter Stober, Vivien Matthias, Christoph Jacobi, and Damian J. Murphy
Ann. Geophys., 37, 1–14, https://doi.org/10.5194/angeo-37-1-2019, https://doi.org/10.5194/angeo-37-1-2019, 2019
Short summary
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Cited articles
Andrews, D. G. and McIntyre, M. E.: Planetary Waves in Horizontal and
Vertical Shear: The Generalized Eliassen-Palm Relation and the Mean Zonal
Acceleration, J. Atmos. Sci., 33, 2031–2048,
1976.
Baldwin, M. P. and Dunkerton, T. J.: Quasi-biennial modulation of the
southern hemisphere stratospheric polar vortex, Geophys. Res. Lett., 25,
3343–3346, https://doi.org/10.1029/98GL02445, 1998.
Becker, E., Müllemann, A., Lübken, F.-J., Körnich, H., Hoffmann,
P., and Rapp, M.: High Rossby-wave activity in austral winter 2002:
Modulation of the general circulation of the MLT during the MaCWAVE/MIDAS
northern summer program, Geophys. Res. Lett., 31, L24S03,
https://doi.org/10.1029/2004GL019615, 2004.
Black, R. X. and McDaniel, B. A.: Interannual Variability in the Southern
Hemisphere Circulation Organized by Stratospheric Final Warming Events, J.
Atmos. Sci., 64, 2968–2974, https://doi.org/10.1175/JAS3979.1, 2007.
Butchart, N.: The Brewer-Dobson circulation, Rev. Geophys., 52, 157–184,
https://doi.org/10.1002/2013RG000448, 2014.
Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale
disturbances from the lower into the upper atmosphere, J. Geophys. Res.,
66, 83–109, https://doi.org/10.1029/JZ066i001p00083, 1961.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs,
L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan,
K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Clim.,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gumbel, J. and Karlsson, B.: Intra- and inter-hemispheric coupling effects
on the polar summer mesosphere, Geophys. Res. Lett., 38, L14804,
https://doi.org/10.1029/2011GL047968, 2011.
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J., and Shine, K.
P.: On the “Downward Control” of Extratropical Diabatic Circulations by
Eddy-Induced Mean Zonal Forces, J. Atmos. Sci., 48, 651–678,
https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2,
1991.
Hervig, M. E., Berger, U., and Siskind, D. E.: Decadal variability in PMCs
and implications for changing temperature and water vapor in the upper
mesosphere, J. Geophys. Res.-Atmos., 121, 2383–2392,
https://doi.org/10.1002/2015JD024439, 2016.
Hirano, S., Kohma, M., and Sato, K.: A three-dimensional analysis on the role
of atmospheric waves in the climatology and interannual variability of
stratospheric final warming in the Southern Hemisphere, J. Geophys. Res.-Atmos., 121, 8429–8443, https://doi.org/10.1002/2015JD024481, 2016.
Holton, J. R. and Tan, H.-C.: The Influence of the Equatorial Quasi-Biennial
Oscillation on the Global Circulation at 50 mb, J. Atmos. Sci., 37,
2200–2208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2, 1980.
Karlsson, B. and Becker, E.: How Does Interhemispheric Coupling Contribute
to Cool Down the Summer Polar Mesosphere?, J. Clim., 29, 8807–8821,
https://doi.org/10.1175/JCLI-D-16-0231.1, 2016.
Kodera, K. and Kuroda, Y.: Dynamical response to the solar cycle, J.
Geophys. Res., 107, D244749, https://doi.org/10.1029/2002JD002224, 2002.
Kodera, K. and Yamazaki, K.: Long-term Variation of Upper Stratospheric
Circulation in the Northern Hemisphere in December, J. Meteorol. Soc. Jpn.,
68, 101–105, https://doi.org/10.2151/jmsj1965.68.1_101, 1990.
Körnich, H. and Becker, E.: A simple model for the interhemispheric
coupling of the middle atmosphere circulation, Adv. Space Res., 45,
661–668, https://doi.org/10.1016/j.asr.2009.11.001, 2010.
Labitzke, K.: The Interaction Between Stratosphere and Meosphere in Winter,
J. Atmos. Sci., 29, 1395–1399, https://doi.org/10.1175/1520-0469(1972)029<1395:TIBSAM>2.0.CO;2, 1972.
Matsuno, T.: A Dynamical Model of the Stratospheric Sudden Warming, J.
Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971.
Newman, P. A., Nash, E. R., and Rosenfield, J. E.: What controls the
temperature of the Arctic stratosphere during the spring?, J. Geophys. Res.,
106, 19999–20010, https://doi.org/10.1029/2000JD000061, 2001.
NASA GES DISC: available at: https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-2%22&page=1&source=Models%2FAnalyses%20MERRA-2, last access: 6 March 2020.
NASA OMNIWEB: available at: https://omniweb.gsfc.nasa.gov/form/dx1.html, last access: 6 March 2020.
Okamoto, K., Sato, K., and Akiyoshi, H.: A study on the formation and trend
of the Brewer-Dobson circulation, J. Geophys. Res., 116, D10117,
https://doi.org/10.1029/2010JD014953, 2011.
Plumb, R. A. and Eluszkiewicz, J.: The Brewer–Dobson Circulation: Dynamics
of the Tropical Upwelling, J. Atmos. Sci., 56, 868–890,
https://doi.org/10.1175/1520-0469(1999)056<0868:TBDCDO>2.0.CO;2,
1999.
Randel, W. J.: The seasonal evolution of planetary waves in the southern
hemisphere stratosphere and troposphere, Q. J. Roy. Meteor. Soc., 114,
1385–1409, https://doi.org/10.1002/qj.49711448403, 1988.
Salby, M., Titova, E. and Deschamps, L.: Rebound of Antarctic ozone,
Geophys. Res. Lett., 38, L09702, https://doi.org/10.1029/2011GL047266, 2011.
Sato, K. and Hirano, S.: The climatology of the Brewer–Dobson circulation
and the contribution of gravity waves, Atmos. Chem. Phys., 19,
4517–4539, https://doi.org/10.5194/acp-19-4517-2019, 2019.
Semeniuk, K. and Shepherd, T. G.: The Middle-Atmosphere Hadley Circulation
and Equatorial Inertial Adjustment, J. Atmos. Sci., 58, 3077–3096,
https://doi.org/10.1175/1520-0469(2001)058<3077:TMAHCA>2.0.CO;2,
2001.
Shiotani, M., Shimoda, N., and Hirota, I.: Interannual variability of the
stratospheric circulation in the southern hemisphere, Q. J. R. Meteorol. Soc.,
119, 531–546, https://doi.org/10.1002/qj.49711951110, 1993.
Tomikawa, Y., Sato, K., Watanabe, S., Kawatani, Y., Miyazaki, K.,
and Takahashi, M.: Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden
warming in a T213L256 GCM, J. Geophys. Res., 117, D16101,
https://doi.org/10.1029/2011JD017243, 2012.
Tung, K. K. and Kinnersley, J. S.: Mechanisms by which extratropical wave
forcing in the winter stratosphere induces upwelling in the summer
hemisphere, J. Geophys. Res., 106, 22781–22791,
https://doi.org/10.1029/2001JD900228, 2001.
Yamashita, Y., Akiyoshi, H., and Takahashi, M.: Dynamical response in the
Northern Hemisphere midlatitude and high-latitude winter to the QBO
simulated by CCSR/NIES CCM, J. Geophys. Res., 116, D06118,
https://doi.org/10.1029/2010JD015016, 2011.
Young, P. J., Thompson, D. W. J., Rosenlof, K. H., Solomon, S., and Lamarque,
J.-F.: The Seasonal Cycle and Interannual Variability in Stratospheric
Temperatures and Links to the Brewer–Dobson Circulation: An Analysis of MSU
and SSU Data, J. Clim., 24, 6243–6258, https://doi.org/10.1175/JCLI-D-10-05028.1,
2011.
Short summary
Interannual variabilities of the zonal mean wind and temperature related to the Rossby wave forcing in the winter stratosphere of the Southern Hemisphere are studied using 38-year reanalysis data. Correlation of the mean fields to the wave forcing is extended to the subtropics of the Northern Hemisphere. This interhemispheric link is caused by the wave forcing which reduces the meridional gradient of the angular momentum and drives the meridional circulation over the Equator in the stratosphere.
Interannual variabilities of the zonal mean wind and temperature related to the Rossby wave...