Articles | Volume 37, issue 5
https://doi.org/10.5194/angeo-37-791-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-791-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hybrid-Vlasov modelling of nightside auroral proton precipitation during southward interplanetary magnetic field conditions
Maxime Grandin
CORRESPONDING AUTHOR
Department of Physics, University of Helsinki, Helsinki, Finland
Markus Battarbee
Department of Physics, University of Helsinki, Helsinki, Finland
Adnane Osmane
Department of Physics, University of Helsinki, Helsinki, Finland
Urs Ganse
Department of Physics, University of Helsinki, Helsinki, Finland
Yann Pfau-Kempf
Department of Physics, University of Helsinki, Helsinki, Finland
Lucile Turc
Department of Physics, University of Helsinki, Helsinki, Finland
Thiago Brito
Department of Physics, University of Helsinki, Helsinki, Finland
Tuomas Koskela
Department of Physics, University of Helsinki, Helsinki, Finland
Maxime Dubart
Department of Physics, University of Helsinki, Helsinki, Finland
Minna Palmroth
Department of Physics, University of Helsinki, Helsinki, Finland
Space and Earth Observation Centre, Finnish Meteorological Institute, Helsinki, Finland
Related authors
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Preprint under review for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669, https://doi.org/10.5194/egusphere-2024-3669, 2024
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to STEVE with white, pale pink or mauve coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Maxime Grandin, Emma Bruus, Vincent E. Ledvina, Noora Partamies, Mathieu Barthelemy, Carlos Martinis, Rowan Dayton-Oxland, Bea Gallardo-Lacourt, Yukitoshi Nishimura, Katie Herlingshaw, Neethal Thomas, Eero Karvinen, Donna Lach, Marjan Spijkers, and Calle Bergstrand
Geosci. Commun., 7, 297–316, https://doi.org/10.5194/gc-7-297-2024, https://doi.org/10.5194/gc-7-297-2024, 2024
Short summary
Short summary
We carried out a citizen science study of aurora sightings and technological disruptions experienced during the extreme geomagnetic storm of 10 May 2024. We collected reports from 696 observers from over 30 countries via an online survey, supplemented with observations logged in the Skywarden database. We found that the aurora was seen from exceptionally low latitudes and had very bright red and pink hues, suggesting that high fluxes of low-energy electrons from space entered the atmosphere.
Yann Pfau-Kempf, Konstantinos Papadakis, Markku Alho, Markus Battarbee, Giulia Cozzani, Lauri Pänkäläinen, Urs Ganse, Fasil Kebede, Jonas Suni, Konstantinos Horaites, Maxime Grandin, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-26, https://doi.org/10.5194/angeo-2024-26, 2024
Preprint under review for ANGEO
Short summary
Short summary
Flux ropes are peculiar structures of twisted magnetic field occurring in many regions of space, near Earth and other planets, at the Sun, and in astrophysical objects. We developed a new way of detecting flux ropes in large supercomputer simulations of near-Earth space and we use it to follow the evolution of flux ropes for long distances past the Earth in the flow direction. This will be useful in future studies as these flux ropes are involved in the transport of matter and energy in space.
Noora Partamies, Rowan Dayton-Oxland, Katie Herlingshaw, Ilkka Virtanen, Bea Gallardo-Lacourt, Mikko Syrjäsuo, Fred Sigernes, Takanori Nishiyama, Toshi Nishimura, Mathieu Barthelemy, Anasuya Aruliah, Daniel Whiter, Lena Mielke, Maxime Grandin, Eero Karvinen, Marjan Spijkers, and Vincent Ledvina
EGUsphere, https://doi.org/10.5194/egusphere-2024-3669, https://doi.org/10.5194/egusphere-2024-3669, 2024
Short summary
Short summary
We studied the first broad band emissions, called continuum, in the dayside aurora. They are similar to STEVE with white, pale pink or mauve coloured light. But unlike STEVE, they follow the dayside aurora forming rays and other dynamic shapes. We used ground optical and radar observations and found evidence of heating and upwelling of both plasma and neutral air. This study provides new information on conditions for continuum emission, but its understanding will require further work.
Maxime Grandin, Noora Partamies, and Ilkka I. Virtanen
Ann. Geophys., 42, 355–369, https://doi.org/10.5194/angeo-42-355-2024, https://doi.org/10.5194/angeo-42-355-2024, 2024
Short summary
Short summary
Auroral displays typically take place at high latitudes, but the exact latitude where the auroral breakup occurs can vary. In this study, we compare the characteristics of the fluxes of precipitating electrons from space during auroral breakups occurring above Tromsø (central part of the auroral zone) and above Svalbard (poleward boundary of the auroral zone). We find that electrons responsible for the aurora above Tromsø carry more energy than those precipitating above Svalbard.
Leo Kotipalo, Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth
Geosci. Model Dev., 17, 6401–6413, https://doi.org/10.5194/gmd-17-6401-2024, https://doi.org/10.5194/gmd-17-6401-2024, 2024
Short summary
Short summary
This paper examines a method called adaptive mesh refinement in optimization of the space plasma simulation model Vlasiator. The method locally adjusts resolution in regions which are most relevant to modelling, based on the properties of the plasma. The runs testing this method show that adaptive refinement manages to highlight the desired regions with manageable performance overhead. Performance in larger-scale production runs and mitigation of overhead are avenues of further research.
Urs Ganse, Yann Pfau-Kempf, Hongyang Zhou, Liisa Juusola, Abiyot Workayehu, Fasil Kebede, Konstantinos Papadakis, Maxime Grandin, Markku Alho, Markus Battarbee, Maxime Dubart, Leo Kotipalo, Arnaud Lalagüe, Jonas Suni, Konstantinos Horaites, and Minna Palmroth
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-101, https://doi.org/10.5194/gmd-2024-101, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Vlasiator is a kinetic space-plasma model that simulates the behaviour of plasma, solar wind and magnetic fields in near-Earth space. So far, these simulations had been run without any interaction wtih the ionosphere, the uppermost layer of Earth's atmosphere. In this manuscript, we present the new methods that add an ionospheric electrodynamics model to Vlasiator, coupling it with the existing methods and presenting new simulation results of how space Plasma and Earth's ionosphere interact.
Tuomas Häkkilä, Maxime Grandin, Markus Battarbee, Monika E. Szeląg, Markku Alho, Leo Kotipalo, Niilo Kalakoski, Pekka T. Verronen, and Minna Palmroth
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-7, https://doi.org/10.5194/angeo-2024-7, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
We study the atmospheric impact of auroral electron precipitation, by the novel combination of both magnetospheric and atmospheric modelling. We first simulate fluxes of auroral electrons, and then use these fluxes to model their atmospheric impact. We find an increase of up to 200 % in thermospheric odd nitrogen, and a corresponding decrease in stratospheric ozone of around 0.7 %. The produced auroral electron precipitation is realistic, and shows the potential for future studies.
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445, https://doi.org/10.5194/gmd-17-2427-2024, https://doi.org/10.5194/gmd-17-2427-2024, 2024
Short summary
Short summary
Digital twins of physical and human systems informed by real-time data are becoming ubiquitous across a wide range of settings. Progress for researchers is currently limited by a lack of tools to run these models effectively and efficiently. A key challenge is the optimal use of high-performance computing environments. The work presented here focuses on a developed open-source software platform which aims to improve this usage, with an emphasis placed on flexibility, efficiency, and scalability.
Jonas Suni, Minna Palmroth, Lucile Turc, Markus Battarbee, Giulia Cozzani, Maxime Dubart, Urs Ganse, Harriet George, Evgeny Gordeev, Konstantinos Papadakis, Yann Pfau-Kempf, Vertti Tarvus, Fasil Tesema, and Hongyang Zhou
Ann. Geophys., 41, 551–568, https://doi.org/10.5194/angeo-41-551-2023, https://doi.org/10.5194/angeo-41-551-2023, 2023
Short summary
Short summary
Magnetosheath jets are structures of enhanced plasma density and/or velocity in a region of near-Earth space known as the magnetosheath. When they propagate towards the Earth, these jets can disturb the Earth's magnetic field and cause hazards for satellites. In this study, we use a simulation called Vlasiator to model near-Earth space and investigate jets using case studies and statistical analysis. We find that jets that propagate towards the Earth are different from jets that do not.
Konstantinos Papadakis, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Markku Alho, Maxime Grandin, Maxime Dubart, Lucile Turc, Hongyang Zhou, Konstantinos Horaites, Ivan Zaitsev, Giulia Cozzani, Maarja Bussov, Evgeny Gordeev, Fasil Tesema, Harriet George, Jonas Suni, Vertti Tarvus, and Minna Palmroth
Geosci. Model Dev., 15, 7903–7912, https://doi.org/10.5194/gmd-15-7903-2022, https://doi.org/10.5194/gmd-15-7903-2022, 2022
Short summary
Short summary
Vlasiator is a plasma simulation code that simulates the entire near-Earth space at a global scale. As 6D simulations require enormous amounts of computational resources, Vlasiator uses adaptive mesh refinement (AMR) to lighten the computational burden. However, due to Vlasiator’s grid topology, AMR simulations suffer from grid aliasing artifacts that affect the global results. In this work, we present and evaluate the performance of a mechanism for alleviating those artifacts.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Minna Palmroth, Maxime Grandin, Theodoros Sarris, Eelco Doornbos, Stelios Tourgaidis, Anita Aikio, Stephan Buchert, Mark A. Clilverd, Iannis Dandouras, Roderick Heelis, Alex Hoffmann, Nickolay Ivchenko, Guram Kervalishvili, David J. Knudsen, Anna Kotova, Han-Li Liu, David M. Malaspina, Günther March, Aurélie Marchaudon, Octav Marghitu, Tomoko Matsuo, Wojciech J. Miloch, Therese Moretto-Jørgensen, Dimitris Mpaloukidis, Nils Olsen, Konstantinos Papadakis, Robert Pfaff, Panagiotis Pirnaris, Christian Siemes, Claudia Stolle, Jonas Suni, Jose van den IJssel, Pekka T. Verronen, Pieter Visser, and Masatoshi Yamauchi
Ann. Geophys., 39, 189–237, https://doi.org/10.5194/angeo-39-189-2021, https://doi.org/10.5194/angeo-39-189-2021, 2021
Short summary
Short summary
This is a review paper that summarises the current understanding of the lower thermosphere–ionosphere (LTI) in terms of measurements and modelling. The LTI is the transition region between space and the atmosphere and as such of tremendous importance to both the domains of space and atmosphere. The paper also serves as the background for European Space Agency Earth Explorer 10 candidate mission Daedalus.
Markus Battarbee, Thiago Brito, Markku Alho, Yann Pfau-Kempf, Maxime Grandin, Urs Ganse, Konstantinos Papadakis, Andreas Johlander, Lucile Turc, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 39, 85–103, https://doi.org/10.5194/angeo-39-85-2021, https://doi.org/10.5194/angeo-39-85-2021, 2021
Short summary
Short summary
We investigate local acceleration dynamics of electrons with a new numerical simulation method, which is an extension of a world-leading kinetic plasma simulation. We describe how large supercomputer simulations can be used to initialize the electron simulations and show numerical stability for the electron method. We show that features of our simulated electrons match observations from Earth's magnetic tail region.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Lucile Turc, Vertti Tarvus, Andrew P. Dimmock, Markus Battarbee, Urs Ganse, Andreas Johlander, Maxime Grandin, Yann Pfau-Kempf, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 38, 1045–1062, https://doi.org/10.5194/angeo-38-1045-2020, https://doi.org/10.5194/angeo-38-1045-2020, 2020
Short summary
Short summary
Using global computer simulations, we study properties of the magnetosheath, the region of near-Earth space where the stream of particles originating from the Sun, the solar wind, is slowed down and deflected around the Earth's magnetic field. One of our main findings is that even for idealised solar wind conditions as used in our model, the magnetosheath density shows large-scale spatial and temporal variation in the so-called quasi-parallel magnetosheath, causing varying levels of asymmetry.
Emilia K. J. Kilpua, Dominique Fontaine, Simon W. Good, Matti Ala-Lahti, Adnane Osmane, Erika Palmerio, Emiliya Yordanova, Clement Moissard, Lina Z. Hadid, and Miho Janvier
Ann. Geophys., 38, 999–1017, https://doi.org/10.5194/angeo-38-999-2020, https://doi.org/10.5194/angeo-38-999-2020, 2020
Short summary
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Theodoros E. Sarris, Elsayed R. Talaat, Minna Palmroth, Iannis Dandouras, Errico Armandillo, Guram Kervalishvili, Stephan Buchert, Stylianos Tourgaidis, David M. Malaspina, Allison N. Jaynes, Nikolaos Paschalidis, John Sample, Jasper Halekas, Eelco Doornbos, Vaios Lappas, Therese Moretto Jørgensen, Claudia Stolle, Mark Clilverd, Qian Wu, Ingmar Sandberg, Panagiotis Pirnaris, and Anita Aikio
Geosci. Instrum. Method. Data Syst., 9, 153–191, https://doi.org/10.5194/gi-9-153-2020, https://doi.org/10.5194/gi-9-153-2020, 2020
Short summary
Short summary
Daedalus aims to measure the largely unexplored area between Eart's atmosphere and space, the Earth's
ignorosphere. Here, intriguing and complex processes govern the deposition and transport of energy. The aim is to quantify this energy by measuring effects caused by electrodynamic processes in this region. The concept is based on a mother satellite that carries a suite of instruments, along with smaller satellites carrying a subset of instruments that are released into the atmosphere.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Minna Palmroth, Sanni Hoilijoki, Liisa Juusola, Tuija I. Pulkkinen, Heli Hietala, Yann Pfau-Kempf, Urs Ganse, Sebastian von Alfthan, Rami Vainio, and Michael Hesse
Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, https://doi.org/10.5194/angeo-35-1269-2017, 2017
Short summary
Short summary
Much like solar flares, substorms occurring within the Earth's magnetic domain are explosive events that cause vivid auroral displays. A decades-long debate exists to explain the substorm onset. We devise a simulation encompassing the entire near-Earth space and demonstrate that detailed modelling of magnetic reconnection explains the central substorm observations. Our results help to understand the unpredictable substorm process, which will significantly improve space weather forecasts.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Adnane Osmane, Ilja Honkonen, Minna Palmroth, and Pekka Janhunen
Ann. Geophys., 35, 907–922, https://doi.org/10.5194/angeo-35-907-2017, https://doi.org/10.5194/angeo-35-907-2017, 2017
Short summary
Short summary
We studied the impact on global MHD simulations from different simulation initialisation methods. While the global MHD code used is GUMICS-4 we conclude that the results might be generalisable to other codes as well. It is found that different initialisation methods affect the dynamics of the Earth's space environment by creating differences in momentum transport several hours afterwards. These differences may even grow as a response to rapid solar wind condition changes.
Yann Pfau-Kempf, Heli Hietala, Steve E. Milan, Liisa Juusola, Sanni Hoilijoki, Urs Ganse, Sebastian von Alfthan, and Minna Palmroth
Ann. Geophys., 34, 943–959, https://doi.org/10.5194/angeo-34-943-2016, https://doi.org/10.5194/angeo-34-943-2016, 2016
Short summary
Short summary
We have simulated the interaction of the solar wind – the charged particles and magnetic fields emitted by the Sun into space – with the magnetic field of the Earth. The solar wind flows supersonically and creates a shock when it encounters the obstacle formed by the geomagnetic field. We have identified a new chain of events which causes phenomena in the downstream region to eventually cause perturbations at the shock and even upstream. This is confirmed by ground and satellite observations.
P. T. Verronen, M. E. Andersson, A. Kero, C.-F. Enell, J. M. Wissing, E. R. Talaat, K. Kauristie, M. Palmroth, T. E. Sarris, and E. Armandillo
Ann. Geophys., 33, 381–394, https://doi.org/10.5194/angeo-33-381-2015, https://doi.org/10.5194/angeo-33-381-2015, 2015
Short summary
Short summary
Electron concentrations observed by EISCAT radars can be reasonable well represented using AIMOS v1.2 satellite-data-based ionization model and SIC D-region ion chemistry model. SIC-EISCAT difference varies from event to event, probably because the statistical nature of AIMOS ionization is not capturing all the spatio-temporal fine structure of electron precipitation. Below 90km, AIMOS overestimates electron ionization because of proton contamination of the satellite electron detectors.
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013, https://doi.org/10.5194/angeo-31-2207-2013, 2013
A. T. Aikio, T. Pitkänen, I. Honkonen, M. Palmroth, and O. Amm
Ann. Geophys., 31, 1021–1034, https://doi.org/10.5194/angeo-31-1021-2013, https://doi.org/10.5194/angeo-31-1021-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetosphere–ionosphere interactions
Does high-latitude ionospheric electrodynamics exhibit hemispheric mirror symmetry?
Substorm Signatures in the Dayside Magnetosphere
Multiple conjugate observations of magnetospheric fast flow bursts using THEMIS observations
Ionospheric plasma flows associated with the formation of the distorted nightside end of a transpolar arc
Relation between the asymmetric ring current effect and the anti-sunward auroral currents, as deduced from CHAMP observations
Estimating the fate of oxygen ion outflow from the high-altitude cusp
Spencer Mark Hatch, Heikki Vanhamäki, Karl Magnus Laundal, Jone Peter Reistad, Johnathan K. Burchill, Levan Lomidze, David J. Knudsen, Michael Madelaire, and Habtamu Tesfaw
Ann. Geophys., 42, 229–253, https://doi.org/10.5194/angeo-42-229-2024, https://doi.org/10.5194/angeo-42-229-2024, 2024
Short summary
Short summary
In studies of the Earth's ionosphere, a hot topic is how to estimate ionospheric conductivity. This is hard to do for a variety of reasons that mostly amount to a lack of measurements. In this study we use satellite measurements to estimate electromagnetic work and ionospheric conductances in both hemispheres. We identify where our model estimates are inconsistent with laws of physics, which partially solves a previous problem with unrealistic predictions of ionospheric conductances.
Sanjay Kumar and Tuija I. Pulkkinen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1113, https://doi.org/10.5194/egusphere-2024-1113, 2024
Short summary
Short summary
We analyze magnetopause location, influenced by solar wind and IMF. Shue's (1998) model predicts its position based on solar wind pressure & IMF Bz. We investigate its location under northward/southward IMF & substorms using Shue's model & THEMIS/RBSP/MMS data. We observe significant magnetopause compression during strong northward/southward IMF around substorm peak.
Homayon Aryan, Jacob Bortnik, Jinxing Li, James Michael Weygand, Xiangning Chu, and Vassilis Angelopoulos
Ann. Geophys., 40, 531–544, https://doi.org/10.5194/angeo-40-531-2022, https://doi.org/10.5194/angeo-40-531-2022, 2022
Short summary
Short summary
In this study, we use a multipoint analysis of conjugate magnetospheric and ionospheric observations to investigate the magnetospheric and ionospheric responses to fast flow bursts that are associated with different space weather conditions. The results show that ionospheric currents are connected to the magnetospheric flows for different space weather conditions. The connection is more apparent and global for flows that are associated with a geomagnetically active condition.
Motoharu Nowada, Adrian Grocott, and Quan-Qi Shi
Ann. Geophys., 40, 299–314, https://doi.org/10.5194/angeo-40-299-2022, https://doi.org/10.5194/angeo-40-299-2022, 2022
Short summary
Short summary
We report that the ionospheric plasma flow patterns associated with the J-shaped transpolar arc (a type of nightside distorted TPA), detected by the SuperDARN radar, reveal the formation process of the nightside distortion of a TPA. Equatorward flows at the TPA growth point were observed flowing out of the polar cap and then turning toward the pre-midnight main auroral oval along the TPA nightside distortion. These ionospheric flow patterns would cause the distortion at the TPA nightside end.
Hermann Lühr and Yun-Liang Zhou
Ann. Geophys., 38, 749–764, https://doi.org/10.5194/angeo-38-749-2020, https://doi.org/10.5194/angeo-38-749-2020, 2020
Short summary
Short summary
During magnetic storms the magnetic disturbance at low latitudes becomes asymmetric, enhanced in the evening sector and reduced around morning. This has been attributed to the asymmetric ring current. Here a new 3D current system is proposed for explaining the asymmetric signal. Anti-sunward net currents at high latitude are connected at their noon and night ends to field-aligned currents that lead the currents to the magnetopause on the dawn and dusk flanks where the current closure occurs.
Patrik Krcelic, Stein Haaland, Lukas Maes, Rikard Slapak, and Audrey Schillings
Ann. Geophys., 38, 491–505, https://doi.org/10.5194/angeo-38-491-2020, https://doi.org/10.5194/angeo-38-491-2020, 2020
Short summary
Short summary
In this paper we have used Cluster EDI data in combination with the CODIF cusp dataset from Slapak et al. (2017) to obtain parallel and convection velocities for oxygen ions; 69 % of total oxygen outflow from the high-altitude cusps escapes the magnetosphere on average; 50 % escapes tailward beyond the distant X-line. The oxygen capture-versus-escape ratio is highly dependent on geomagnetic conditions. During active conditions, the majority of oxygen outflow is convected to the plasma sheet.
Cited articles
Amm, O. and Kauristie, K.: Ionospheric Signatures Of Bursty Bulk Flows,
Surv. Geophys., 23, 1–32, https://doi.org/10.1023/A:1014871323023, 2002. a
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coronti, F. V.,
Kivelson, M. G., Pellat, R., Walker, R. J., Luehr, H., and
Paschmann, G.: Bursty Bulk Flows in the Inner Central Plasma Sheet,
J. Geophys. Res., 97, 4027–4039, https://doi.org/10.1029/91JA02701,
1992. a
Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R.,
Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W.,
Feldman, W. C., and Gosling, J. T.: Statistical characteristics of
bursty bulk flow events, J. Geophys. Res., 99,
21257–21280, https://doi.org/10.1029/94JA01263, 1994. a
Basu, B., Decker, D. T., and Jasperse, J. R.: Proton transport model: A
review, J. Geophys. Res., 106, 93–106,
https://doi.org/10.1029/2000JA002004, 2001. a, b
Baumjohann, W. and Treumann, R. A.: Basic Space Plasma Physics, World
Scientific, Imperial College Press, London, 1997. a
Blelly, P.-L., Lathuillère, C., Emery, B., Lilensten, J.,
Fontanari, J., and Alcaydé, D.: An extended TRANSCAR model including
ionospheric convection: simulation of EISCAT observations using inputs from
AMIE, Ann. Geophys., 23, 419–431, https://doi.org/10.5194/angeo-23-419-2005,
2005. a
Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E. W., Camp, D., Rübel, O., Durant, M., Favre, J. M., and Navrátil, P.: VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data, in: High Performance Visualization-Enabling Extreme-Scale Scientific Insight, Chapman & Hall/CRC, 357–372, 2012.
Daldorff, L. K. S., Tóth, G., Gombosi, T. I., Lapenta, G., Amaya,
J., Markidis, S., and Brackbill, J. U.: Two-way coupling of a global
Hall magnetohydrodynamics model with a local implicit particle-in-cell
model, J. Comput. Phys., 268, 236–254,
https://doi.org/10.1016/j.jcp.2014.03.009, 2014. a
Donovan, E., Liu, W., Liang, J., Spanswick, E., Voronkov, I.,
Connors, M., Syrjäsuo, M., Baker, G., Jackel, B., Trondsen, T.,
Greffen, M., Angelopoulos, V., Russell, C. T., Mende, S. B., Frey,
H. U., Keiling, A., Carlson, C. W., McFadden, J. P., Glassmeier,
K. H., Auster, U., Hayashi, K., Sakaguchi, K., Shiokawa, K., Wild,
J. A., and Rae, I. J.: Simultaneous THEMIS in situ and auroral
observations of a small substorm, Geophys. Res. Lett., 35, L17S18,
https://doi.org/10.1029/2008GL033794, 2008. a
Eather, R. H.: Auroral Proton Precipitation and Hydrogen Emissions, Rev. Geophys. Space Phys., 5, 207–285, https://doi.org/10.1029/RG005i003p00207,
1967. a
Erlandson, R. E. and Ukhorskiy, A. J.: Observations of electromagnetic ion
cyclotron waves during geomagnetic storms: Wave occurrence and pitch angle
scattering, J. Geophys. Res., 106, 3883–3896,
https://doi.org/10.1029/2000JA000083, 2001. a
Fairfield, D. H., Mukai, T., Brittnacher, M., Reeves, G. D., Kokubun,
S., Parks, G. K., Nagai, T., Matsumoto, H., Hashimoto, K., Gurnett,
D. A., and Yamamoto, T.: Earthward flow bursts in the inner magnetotail
and their relation to auroral brightenings, AKR intensifications,
geosynchronous particle injections and magnetic activity, J.
Geophys. Res., 104, 355–370, https://doi.org/10.1029/98JA02661, 1999. a
Frey, H. U., Mende, S. B., Immel, T. J., Fuselier, S. A., Claflin,
E. S., Gérard, J. C., and Hubert, B.: Proton aurora in the cusp,
J. Geophys. Res.-Space, 107, 1091,
https://doi.org/10.1029/2001JA900161, 2002. a
Frey, H. U., Phan, T. D., Fuselier, S. A., and Mende, S. B.:
Continuous magnetic reconnection at Earth's magnetopause, Nature, 426,
533–537, https://doi.org/10.1038/nature02084, 2003. a
Galand, M.: Introduction to special section: Proton precipitation into the
atmosphere, J. Geophys. Res., 106, 1–6,
https://doi.org/10.1029/2000JA002015, 2001. a
Galand, M., Fuller-Rowell, T. J., and Codrescu, M. V.: Response of the
upper atmosphere to auroral protons, J. Geophys. Res., 106,
127–140, https://doi.org/10.1029/2000JA002009, 2001. a, b, c
Gallardo-Lacourt, B., Nishimura, Y., Lyons, L. R., Zou, S.,
Angelopoulos, V., Donovan, E., McWilliams, K. A., Ruohoniemi, J. M.,
and Nishitani, N.: Coordinated SuperDARN THEMIS ASI observations of
mesoscale flow bursts associated with auroral streamers, J.
Geophys. Res.-Space, 119, 142–150,
https://doi.org/10.1002/2013JA019245, 2014. a, b
Gary, S. P.: Electromagnetic ion/ion instabilities and their consequences in
space plasmas: A review, Space Sci. Rev., 56, 373–415,
https://doi.org/10.1007/BF00196632, 1991. a
Ge, Y. S., Zhou, X. Z., Liang, J., Raeder, J., Gilson, M. L.,
Donovan, E., Angelopoulos, V., and Runov, A.: Dipolarization fronts
and associated auroral activities: 1. Conjugate observations and perspectives
from global MHD simulations, J. Geophys. Res.-Space, 117, A10226, https://doi.org/10.1029/2012JA017676, 2012. a, b, c, d
Gilson, M. L., Raeder, J., Donovan, E., Ge, Y. S., and Kepko, L.:
Global simulation of proton precipitation due to field line curvature during
substorms, J. Geophys. Res.-Space, 117, A05216,
https://doi.org/10.1029/2012JA017562, 2012. a, b
Hannuksela, O. and the Vlasiator team: Analysator: python analysis toolkit, available at: https://github.com/fmihpc/analysator/, last access: 5 September 2019.
Hardy, D. A., McNeil, W., Gussenhoven, M. S., and Brautigam, D.: A
statistical model of auroral ion precipitation, 2. Functional representation
of the average patterns, J. Geophys. Res., 96, 5539–5547,
https://doi.org/10.1029/90JA02451, 1991. a, b
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh,
B. M., Hietala, H., von Alfthan, S., and Palmroth, M.: Reconnection
rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov
simulation results, J. Geophys. Res.-Space), 122,
2877–2888, https://doi.org/10.1002/2016JA023709, 2017. a
Hubert, B., Gérard, J. C., Fuselier, S. A., and Mende, S. B.:
Observation of dayside subauroral proton flashes with the IMAGE-FUV
imagers, Geophys. Res. Lett., 30, 1145, https://doi.org/10.1029/2002GL016464,
2003. a
Jarvinen, R., Vainio, R., Palmroth, M., Juusola, L., Hoilijoki, S., Pfau-Kempf,
Y., Ganse, U., Turc, L., and von Alfthan, S.: Ion Acceleration by Flux
Transfer Events in the Terrestrial Magnetosheath, Geophys. Res.
Lett., 45, 1723–1731, https://doi.org/10.1002/2017GL076192, 2018. a
Juusola, L., Kubyshkina, M., Nakamura, R., PitkäNen, T., Amm, O.,
Kauristie, K., Partamies, N., RèMe, H., Snekvik, K., and
Whiter, D.: Ionospheric signatures of a plasma sheet rebound flow during a
substorm onset, J. Geophys. Res.-Space, 118,
350–363, https://doi.org/10.1029/2012JA018132, 2013. a
Juusola, L., Hoilijoki, S., Pfau-Kempf, Y., Ganse, U., Jarvinen, R., Battarbee, M., Kilpua, E., Turc, L., and Palmroth, M.: Fast plasma sheet flows and X line motion in the Earth's magnetotail: results from a global hybrid-Vlasov simulation, Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, 2018a. a, b, c, d
Juusola, L., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Brito, T., Grandin, M., Turc, L., and Palmroth, M.: A possible source mechanism for magnetotail current sheet flapping, Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, 2018b. a, b
Liang, J., Donovan, E., Spanswick, E., and Angelopoulos, V.:
Multiprobe estimation of field line curvature radius in the equatorial
magnetosphere and the use of proton precipitations in
magnetosphere-ionosphere mapping, J. Geophys. Res.-Space, 118, 4924–4945, https://doi.org/10.1002/jgra.50454, 2013. a, b
Lin, C. S. and Hoffman, R. A.: Observation of inverted-V electron
precipitation, Space Sci. Rev., 33, 415–457,
https://doi.org/10.1007/BF00212420, 1982. a
Liu, J., Angelopoulos, V., Runov, A., and Zhou, X. Z.: On the current
sheets surrounding dipolarizing flux bundles in the magnetotail: The case for
wedgelets, J. Geophys. Res.-Space, 118, 2000–2020,
https://doi.org/10.1002/jgra.50092, 2013. a
Liu, W. W., Donovan, E. F., Liang, J., Voronkov, I., Spanswick, E.,
Jayachandran, P. T., Jackel, B., and Meurant, M.: On the equatorward
motion and fading of proton aurora during substorm growth phase, J.
Geophys. Res.-Space, 112, A10217,
https://doi.org/10.1029/2007JA012495, 2007. a
Lummerzheim, D., Galand, M., Semeter, J., Mendillo, M. J., Rees,
M. H., and Rich, F. J.: Emission of O I(630 nm) in proton aurora, J. Geophys. Res., 106, 141–148, https://doi.org/10.1029/2000JA002005, 2001. a, b
Lyons, L. R., Nishimura, Y., Shi, Y., Zou, S., Kim, H. J.,
Angelopoulos, V., Heinselman, C., Nicolls, M. J., and Fornacon,
K. H.: Substorm triggering by new plasma intrusion: Incoherent-scatter radar
observations, J. Geophys. Res.-Space, 115, A07223,
https://doi.org/10.1029/2009JA015168, 2010. a
Marchaudon, A. and Blelly, P.-L.: A new interhemispheric 16-moment model
of the plasmasphere-ionosphere system: IPIM, J. Geophys. Res.-Space,
120, 5728–5745, https://doi.org/10.1002/2015JA021193, 2015. a
Mende, S. B., Frey, H. U., Immel, T. J., Mitchell, D. G., son Brandt, P. C.,
and Gérard, J.-C.: Global comparison of magnetospheric ion fluxes and
auroral precipitation during a substorm, Geophys. Res. Lett., 29, 1609,
https://doi.org/10.1029/2001GL014143, 2002. a, b
Nakamura, R., Baumjohann, W., Brittnacher, M., Sergeev, V. A.,
Kubyshkina, M., Mukai, T., and Liou, K.: Flow bursts and auroral
activations: Onset timing and foot point location, J. Geophys.
Res., 106, 10777–10790, https://doi.org/10.1029/2000JA000249,
2001a. a, b
Nakamura, R., Baumjohann, W., Schödel, R., Brittnacher, M.,
Sergeev, V. A., Kubyshkina, M., Mukai, T., and Liou, K.: Earthward
flow bursts, auroral streamers, and small expansions, J. Geophys.
Res., 106, 10791–10802, https://doi.org/10.1029/2000JA000306,
2001b. a
Nakamura, R., Baumjohann, W., Panov, E., Volwerk, M., Birn, J.,
Artemyev, A., Petrukovich, A. A., Amm, O., Juusola, L., Kubyshkina,
M. V., Apatenkov, S., Kronberg, E. A., Daly, P. W., Fillingim, M.,
Weygand , J. M., Fazakerley, A., and Khotyaintsev, Y.: Flow bouncing
and electron injection observed by Cluster, J. Geophys. Res.-Space, 118, 2055–2072, https://doi.org/10.1002/jgra.50134, 2013. a
Newell, P. T., Liou, K., Zhang, Y., Sotirelis, T., Paxton, L. J., and Mitchell,
E. J.: OVATION Prime-2013: Extension of auroral precipitation model to higher
disturbance levels, Space Weather, 12, 368–379, https://doi.org/10.1002/2014SW001056,
2014. a
Nishimura, Y., Lyons, L. R., Angelopoulos, V., Kikuchi, T., Zou, S.,
and Mende, S. B.: Relations between multiple auroral streamers, pre-onset
thin arc formation, and substorm auroral onset, J. Geophys.
Res.-Space, 116, A09214, https://doi.org/10.1029/2011JA016768, 2011. a
Nomura, R., Shiokawa, K., Omura, Y., Ebihara, Y., Miyoshi, Y.,
Sakaguchi, K., Otsuka, Y., and Connors, M.: Pulsating proton aurora
caused by rising tone Pc1 waves, J. Geophys. Res.-Space, 121, 1608–1618, https://doi.org/10.1002/2015JA021681, 2016. a
Ohtani, S., Miyashita, Y., Singer, H., and Mukai, T.: Tailward flows
with positive BZ in the near-Earth plasma sheet, J. Geophys.
Res.-Space, 114, A06218, https://doi.org/10.1029/2009JA014159, 2009. a
Ohtani, S.-I., Shay, M. A., and Mukai, T.: Temporal structure of the
fast convective flow in the plasma sheet: Comparison between observations and
two-fluid simulations, J. Geophys. Res.-Space, 109,
A03210, https://doi.org/10.1029/2003JA010002, 2004. a
Ozaki, M., Shiokawa, K., Miyoshi, Y., Kataoka, R., Yagitani, S.,
Inoue, T., Ebihara, Y., Jun, C. W., Nomura, R., Sakaguchi, K.,
Otsuka, Y., Shoji, M., Schofield, I., Connors, M., and Jordanova,
V. K.: Fast modulations of pulsating proton aurora related to subpacket
structures of Pc1 geomagnetic pulsations at subauroral latitudes,
Geophys. Res. Lett., 43, 7859–7866, https://doi.org/10.1002/2016GL070008,
2016. a
Palmroth, M., Janhunen, P., Germany, G., Lummerzheim, D., Liou, K., Baker, D. N., Barth, C., Weatherwax, A. T., and Watermann, J.: Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations, Ann. Geophys., 24, 861–872, https://doi.org/10.5194/angeo-24-861-2006, 2006. a
Palmroth, M.: Vlasiator, available at: http://www.physics.helsinki.fi/vlasiator/ (last access: 5 September 2019), 2008.
Palmroth, M., Hoilijoki, S., Juusola, L., Pulkkinen, T. I., Hietala, H., Pfau-Kempf, Y., Ganse, U., von Alfthan, S., Vainio, R., and Hesse, M.: Tail reconnection in the global magnetospheric context: Vlasiator first results, Ann. Geophys., 35, 1269–1274, https://doi.org/10.5194/angeo-35-1269-2017, 2017. a, b, c
Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L.,
Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., and von
Alfthan, S.: Vlasov methods in space physics and astrophysics, Living
Reviews in Computational Astrophysics, 4, 1, https://doi.org/10.1007/s41115-018-0003-2,
2018. a, b, c
Palmroth, M. and the Vlasiator team: Vlasiator: hybrid-Vlasov simulation code, Github repository, available at: https://github.com/fmihpc/vlasiator/, last access: 5 September 2019.
Panov, E. V., Nakamura, R., Baumjohann, W., Angelopoulos, V.,
Petrukovich, A. A., Retinò, A., Volwerk, M., Takada, T.,
Glassmeier, K. H., McFadden, J. P., and Larson, D.: Multiple overshoot
and rebound of a bursty bulk flow, Geophys. Res. Lett., 37, L08103,
https://doi.org/10.1029/2009GL041971, 2010. a
Parks, G. K., Lee, E., Lin, N., Fu, S. Y., McCarthy, M., Cao,
J. B., Hong, J., Liu, Y., Shi, J. K., Goldstein, M. L., Canu, P.,
Dandouras, I., and Rème, H.: Reinterpretation of Slowdown of Solar
Wind Mean Velocity in Nonlinear Structures Observed Upstream of Earth's Bow
Shock, Astrophys. J. Lett., 771, L39,
https://doi.org/10.1088/2041-8205/771/2/L39, 2013. a
Pfau-Kempf, Y., Battarbee, M., Ganse, U., Hoilijoki, S., Turc, L.,
von Alfthan, S., Vainio, R., and Palmroth, M.: On the importance of
spatial and velocity resolution in the hybrid-Vlasov modeling of
collisionless shocks, Front. Phys., 6, 44,
https://doi.org/10.3389/fphy.2018.00044, 2018. a
Popova, T. A., Yahnin, A. G., Demekhov, A. G., and Chernyaeva, S. A.:
Generation of EMIC Waves in the Magnetosphere and Precipitation of Energetic
Protons: Comparison of the Data from THEMIS High Earth Orbiting Satellites
and POES Low Earth Orbiting Satellites, Geomagn. Aeronomy, 58,
469–482, https://doi.org/10.1134/S0016793218040114, 2018. a
Raeder, J., Larson, D., Li, W., Kepko, E. L., and Fuller-Rowell, T.:
OpenGGCM Simulations for the THEMIS Mission, Space Sci. Rev., 141,
535–555, https://doi.org/10.1007/s11214-008-9421-5, 2008. a
Rodger, C. J., Clilverd, M. A., Green, J. C., and Lam, M. M.: Use of POES SEM-2
observations to examine radiation belt dynamics and energetic electron
precipitation into the atmosphere, J. Geophys. Res.-Space, 115, A04202, https://doi.org/10.1029/2008JA014023, 2010. a
Runov, A., Angelopoulos, V., Artemyev, A., Birn, J., Pritchett,
P. L., and Zhou, X. Z.: Characteristics of ion distribution functions in
dipolarizing flux bundles: Event studies, J. Geophys. Res.-Space, 122, 5965–5978, https://doi.org/10.1002/2017JA024010, 2017. a
Sakaguchi, K., Shiokawa, K., Miyoshi, Y., Otsuka, Y., Ogawa, T.,
Asamura, K., and Connors, M.: Simultaneous appearance of isolated
auroral arcs and Pc 1 geomagnetic pulsations at subauroral latitudes,
J. Geophys. Res.-Space, 113, A05201,
https://doi.org/10.1029/2007JA012888, 2008. a
Sandroos, A.: VLSV: file format and tools, Github repository, available at: https://github.com/fmihpc/vlsv/, last access: 5 September 2019.
Sergeev, V. A., Liou, K., Newell, P. T., Ohtani, S.-I., Hairston, M. R., and Rich, F.: Auroral streamers: characteristics of associated precipitation,convection and field-aligned currents, Ann. Geophys., 22, 537–548, https://doi.org/10.5194/angeo-22-537-2004, 2004. a, b
Sergeev, V. A. and Tsyganenko, N. A.: Energetic particle losses and
trapping boundaries as deduced from calculations with a realistic magnetic
field model, Planet. Space Sci., 30, 999–1006,
https://doi.org/10.1016/0032-0633(82)90149-0, 1982. a, b, c
Sergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. A., and
Soraas, F.: Pitch-angle scattering of energetic protons in the magnetotail
current sheet as the dominant source of their isotropic precipitation into
the nightside ionosphere, Planet. Space Sci., 31, 1147–1155,
https://doi.org/10.1016/0032-0633(83)90103-4, 1983. a, b
Spanswick, E., Donovan, E., Kepko, L., and Angelopoulos, V.: The
Magnetospheric Source Region of the Bright Proton Aurora, Geophys.
Res. Lett., 44, 10094–10099, https://doi.org/10.1002/2017GL074956, 2017.
a
Tsyganenko, N. A.: Pitch-angle scattering of energetic particles in the
current sheet of the magnetospheric tail and stationary distribution
functions, Planet. Space Sci., 30, 433–437,
https://doi.org/10.1016/0032-0633(82)90052-6, 1982. a
Unick, C. W., Donovan, E., Connors, M., and Jackel, B.: A dedicated H-beta
meridian scanning photometer for proton aurora measurement, J.
Geophys. Res.-Space Phys., 122, 753–764,
https://doi.org/10.1002/2016JA022630, 2017. a
von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen,
I., Sandroos, A., and Palmroth, M.: Vlasiator: First global
hybrid-Vlasov simulations of Earth's foreshock and magnetosheath, J.
Atmos. Sol.-Terr. Phys., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014. a, b
Xiao, F., Zong, Q., Wang, Y., He, Z., Su, Z., Yang, C., and Zhou,
Q.: Generation of proton aurora by magnetosonic waves, Sci. Rep.,
4, 5190, https://doi.org/10.1038/srep05190, 2014. a, b
Yahnin, A. G., Yahnina, T. A., Semenova, N. V., Popova, T. A., and Demekhov,
A. G.: Proton Auroras Equatorward of the Oval as a Manifestation of the
Ion-Cyclotron Instability in the Earth's Magnetosphere (Brief Review),
Geomagn. Aeronomy, 58, 577–585, https://doi.org/10.1134/S001679321805016X,
2018. a
Yahnina, T. A., Frey, H. U., Bösinger, T., and Yahnin, A. G.: Evidence for
subauroral proton flashes on the dayside as the result of the ion cyclotron
interaction, J. Geophys. Res.-Space, 113, A07209,
https://doi.org/10.1029/2008JA013099, 2008. a
Zhang, Y., Paxton, L. J., Morrison, D., Lui, A. T. Y., Kil, H.,
Wolven, B., Meng, C. I., and Christensen, A. B.: Undulations on the
equatorward edge of the diffuse proton aurora: TIMED/GUVI observations,
J. Geophys. Res.-Space, 110, A08211,
https://doi.org/10.1029/2004JA010668, 2005. a
Zhou, X.-Z., Angelopoulos, V., Runov, A., Liu, J., and Ge, Y. S.: Emergence of
the active magnetotail plasma sheet boundary from transient, localized ion
acceleration, J. Geophys. Res.-Space, 117, A10216,
https://doi.org/10.1029/2012JA018171, 2012a. a, b
Zhou, X.-Z., Ge, Y. S., Angelopoulos, V., Runov, A., Liang, J., Xing, X.,
Raeder, J., and Zong, Q.-G.: Dipolarization fronts and associated auroral
activities: 2. Acceleration of ions and their subsequent behavior, J.
Geophys. Res.-Space, 117, A10227, https://doi.org/10.1029/2012JA017677,
2012b. a
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can...