Articles | Volume 37, issue 4
https://doi.org/10.5194/angeo-37-631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution Beijing mesosphere–stratosphere–troposphere (MST) radar detection of tropopause structure and variability over Xianghe (39.75° N, 116.96° E), China
Feilong Chen
School of Electronic Information, Wuhan University, Wuhan 430072,
China
School of Information Engineering, Nanchang Hangkong University,
Nanchang 330063, China
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Yufang Tian
Key Laboratory of Middle Atmosphere and Global Environment
Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing 100029, China
Shaodong Zhang
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Kaiming Huang
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Chen Wu
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Weifan Zhang
School of Electronic Information, Wuhan University, Wuhan 430072,
China
Related authors
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
Feilong Chen, Gang Chen, Chunhua Shi, Yufang Tian, Shaodong Zhang, and Kaiming Huang
Ann. Geophys., 36, 1403–1417, https://doi.org/10.5194/angeo-36-1403-2018, https://doi.org/10.5194/angeo-36-1403-2018, 2018
Short summary
Short summary
Downward stratospheric intrusions are well known as an important source of tropospheric ozone. In the light of the present understanding, several unanswered questions remain regarding the use of VHF radars to identify stratospheric intrusions. Our study found that the radar-observed strong downdrafts preceding the rapid tropopause ascent are a strong diagnostic for possible intrusions. This will have important implications for air-quality monitoring and long-term estimation of troposphere ozone.
Zirui Zhang, Kaiming Huang, Fan Yi, Fuchao Liu, Jian Zhang, and Yue Jia
EGUsphere, https://doi.org/10.5194/egusphere-2024-933, https://doi.org/10.5194/egusphere-2024-933, 2024
Short summary
Short summary
The CBLH is related to our health due to its crucial role in pollutant dispersion. The vertical velocity from MMCR can capture the CBLH evolution, especially the initial stage of CBLH rise and the final stage of CBLH dissipation due to little blind range and less impact by residual layer, thus the MMCR observation can clearly identify the diurnal evolution of CBLH. The study shows that the CBLH has an obvious seasonal feature, and is affected by radiation, humidity, cloud and precipitation.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Zheng Ma, Yun Gong, Shaodong Zhang, Qiao Xiao, Chunming Huang, and Kaiming Huang
Atmos. Chem. Phys., 22, 13725–13737, https://doi.org/10.5194/acp-22-13725-2022, https://doi.org/10.5194/acp-22-13725-2022, 2022
Short summary
Short summary
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations (Q5DOs) in the middle atmosphere during sudden stratospheric warming events based on satellite observations. Simulations and observations demonstrate that the previously reported traveling Q5DOs might be contaminated by stationary planetary waves (SPWs). The new fitting method is developed by inhibiting the effect of a rapid and large change in SPWs.
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022, https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary
Short summary
Small-scale turbulence plays a vital role in the vertical exchange of heat, momentum and mass in the atmosphere. There are currently three models that can use spectrum width data of MST radar to calculate turbulence parameters. However, few studies have explored the applicability of the three calculation models. We compared and analysed the turbulence parameters calculated by three models. These results can provide a reference for the selection of models for calculating turbulence parameters.
Xiansi Huang, Kaiming Huang, Hao Cheng, Shaodong Zhang, Wei Cheng, Chunming Huang, and Yun Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-407, https://doi.org/10.5194/acp-2022-407, 2022
Revised manuscript not accepted
Short summary
Short summary
Using radar observations and reanalysis data for 9 years, we demonstrate clearly for the first time that resonant interactions between tides and annual and semiannual oscillations do occur in the mesosphere and lower thermosphere. The resonant matching conditions of frequency and wavenumber are exactly satisfied for the interacting triad. At some altitudes, the secondary waves are stronger than the tides, thus in tidal studies, the secondary waves may be mistaken for the tides if no carefully.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021, https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
Short summary
El Niño has an important influence on climate systems. There are obviously negative water vapor anomalies from radiosonde observations in the tropical western Pacific during El Niño. The tropical Hadley, Walker, and monsoon circulation variations are revealed to play different roles in the observed water vapor anomaly in different types of El Niños. The Walker (monsoon) circulation anomaly made a major contribution in the 2015/16 (2009/10) strong eastern Pacific (central Pacific) El Niño event.
Juan Huo, Yufang Tian, Xue Wu, Congzheng Han, Bo Liu, Yongheng Bi, Shu Duan, and Daren Lyu
Atmos. Chem. Phys., 20, 14377–14392, https://doi.org/10.5194/acp-20-14377-2020, https://doi.org/10.5194/acp-20-14377-2020, 2020
Short summary
Short summary
A detailed analysis of ice cloud physical properties is presented based on 4 years of surface Ka-band radar measurements in Beijing, where the summer oceanic monsoon from the ocean and winter continental monsoon prevail alternately. More than 6000 ice cloud clusters were studied to investigate their physical properties, such as height, horizontal extent, temperature dependence and origination type, which can serve as a reference for parameterization and characterization in global climate models.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
Jian Zhang, Shao Dong Zhang, Chun Ming Huang, Kai Ming Huang, Ye Hui Zhang, Yun Gong, and Quan Gan
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-114, https://doi.org/10.5194/angeo-2018-114, 2018
Publication in ANGEO not foreseen
Short summary
Short summary
Turbulence dissipation rate has inter-annual variations and follows a lognormal distribution. The magnitudes of turbulence detected by radiosonde and radar are roughly comparable. Turbulence cannot predicted by instabilities well but trends to be vigorous under the instability condition. The propagating gravity waves in the lower atmosphere can enhance atmospheric instabilities, and the temporal variations of waves can roughly estimate the turbulence dissipation rate at different height.
Feilong Chen, Gang Chen, Chunhua Shi, Yufang Tian, Shaodong Zhang, and Kaiming Huang
Ann. Geophys., 36, 1403–1417, https://doi.org/10.5194/angeo-36-1403-2018, https://doi.org/10.5194/angeo-36-1403-2018, 2018
Short summary
Short summary
Downward stratospheric intrusions are well known as an important source of tropospheric ozone. In the light of the present understanding, several unanswered questions remain regarding the use of VHF radars to identify stratospheric intrusions. Our study found that the radar-observed strong downdrafts preceding the rapid tropopause ascent are a strong diagnostic for possible intrusions. This will have important implications for air-quality monitoring and long-term estimation of troposphere ozone.
Shao Dong Zhang, Chun Ming Huang, Kai Ming Huang, Ye Hui Zhang, Yun Gong, and Quan Gan
Ann. Geophys., 35, 107–116, https://doi.org/10.5194/angeo-35-107-2017, https://doi.org/10.5194/angeo-35-107-2017, 2017
Short summary
Short summary
We present the first statistical results of vertical wind fluctuation spectra, which revealed a very shallow spectral structure, with mean slopes of −0.58 and −0.23 in the troposphere and lower stratosphere, respectively. No existing spectral theories can comprehensively explain the observed three-dimensional wind spectra, indicating that the spectral features of atmospheric fluctuations are far from fully understood.
Yue Jia, Shao Dong Zhang, Fan Yi, Chun Ming Huang, Kai Ming Huang, Yun Gong, and Quan Gan
Ann. Geophys., 34, 331–345, https://doi.org/10.5194/angeo-34-331-2016, https://doi.org/10.5194/angeo-34-331-2016, 2016
K. M. Huang, A. Z. Liu, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, Y. H. Zhang, and R. Wang
Ann. Geophys., 33, 1321–1330, https://doi.org/10.5194/angeo-33-1321-2015, https://doi.org/10.5194/angeo-33-1321-2015, 2015
Q. Gan, J. Yue, L. C. Chang, W. B. Wang, S. D. Zhang, and J. Du
Ann. Geophys., 33, 913–922, https://doi.org/10.5194/angeo-33-913-2015, https://doi.org/10.5194/angeo-33-913-2015, 2015
Short summary
Short summary
The 6.5-day traveling planetary wave is able to impact the ionosphere/thermosphere via a dissipation mechanism. Ionospheric TEC and thermosphere O/N2 exhibit an apparent decrease as the result of extra meridional circulation induced by 6.5-day wave dissipation. Our work suggests that the modulation of E-dynamo is not the unique pathway through which planetary waves substantially influence the IT system.
C. Huang, S. Zhang, Q. Zhou, F. Yi, K. Huang, Y. Gong, Y. Zhang, and Q. Gan
Ann. Geophys., 33, 865–874, https://doi.org/10.5194/angeo-33-865-2015, https://doi.org/10.5194/angeo-33-865-2015, 2015
Short summary
Short summary
The diurnal tide and its variability in the lower atmosphere over Chongyang (114.14ºE,29.53ºN) were studied based on the newly established Wuhan University VHF radar observations in the whole year of 2012. We find that the diurnal tide was the dominant tidal component and showed remarkable height and season variations, as well as dramatic short-term variability.
S. D. Zhang, C. M. Huang, K. M. Huang, F. Yi, Y. H. Zhang, Y. Gong, and Q. Gan
Ann. Geophys., 32, 1129–1143, https://doi.org/10.5194/angeo-32-1129-2014, https://doi.org/10.5194/angeo-32-1129-2014, 2014
K. M. Huang, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang
Ann. Geophys., 32, 263–275, https://doi.org/10.5194/angeo-32-263-2014, https://doi.org/10.5194/angeo-32-263-2014, 2014
K. M. Huang, A. Z. Liu, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang
Ann. Geophys., 31, 2039–2048, https://doi.org/10.5194/angeo-31-2039-2013, https://doi.org/10.5194/angeo-31-2039-2013, 2013
C. M. Huang, S. D. Zhang, F. Yi, K. M. Huang, Y. H. Zhang, Q. Gan, and Y. Gong
Ann. Geophys., 31, 1731–1743, https://doi.org/10.5194/angeo-31-1731-2013, https://doi.org/10.5194/angeo-31-1731-2013, 2013
Y. Y. Huang, S. D. Zhang, F. Yi, C. M. Huang, K. M. Huang, Q. Gan, and Y. Gong
Ann. Geophys., 31, 1061–1075, https://doi.org/10.5194/angeo-31-1061-2013, https://doi.org/10.5194/angeo-31-1061-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Middle atmosphere dynamics
Investigating the role of gravity waves in mesosphere and lower-thermosphere (MLT) inversions at low latitudes
Propagating characteristics of mesospheric gravity waves observed by an OI 557.7 nm airglow all-sky camera at Mt. Bohyun (36.2° N, 128.9° E)
Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events
Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer
Migrating and non-migrating tides observed in the stratosphere from FORMOSAT-3/COSMIC temperature retrievals
Local stratopause temperature variabilities and their embedding in the global context
Relation between the interannual variability in the stratospheric Rossby wave forcing and zonal mean fields suggesting an interhemispheric link in the stratosphere
Impact of local gravity wave forcing in the lower stratosphere on the polar vortex stability: effect of longitudinal displacement
Stratospheric observations of noctilucent clouds: a new approach in studying middle- and large-scale mesospheric dynamics
Effect of latitudinally displaced gravity wave forcing in the lower stratosphere on the polar vortex stability
Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere
Notes on the correlation between sudden stratospheric warmings and solar activity
Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes
Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
Chalachew Lingerew and U. Jaya Prakash Raju
Ann. Geophys., 43, 1–14, https://doi.org/10.5194/angeo-43-1-2025, https://doi.org/10.5194/angeo-43-1-2025, 2025
Short summary
Short summary
The study uses data from soundings of the SABER satellite to examine the mesospheric inversion layer (MIL) and the related gravity wave energy and instability. In the mesosphere and lower-thermosphere (MLT) region, upper inversions occur with less than 40 % frequency, while the lower inversions are below 20 %. High gravity wave energy (~100 J/kg) in the upper MLT (85–90 km) is linked to instability, driving inversion phenomena. Conversely, the trend is less pronounced in the lower-MLT region.
Jun-Young Hwang, Young-Sook Lee, Yong Ha Kim, Hosik Kam, Seok-Min Song, Young-Sil Kwak, and Tae-Yong Yang
Ann. Geophys., 40, 247–257, https://doi.org/10.5194/angeo-40-247-2022, https://doi.org/10.5194/angeo-40-247-2022, 2022
Short summary
Short summary
We analysed all-sky camera images observed at Mt. Bohyun observatory (36.2° N, 128.9° E) for the period of 2017–2019. We retrieved gravity wave parameters including horizontal wavelength, phase velocity and period from the image data. The horizontally propagating directions of the wave were biased according to their seasons, exerted with filtering effect by prevailing background winds. We also evaluated the nature of vertical propagation of the wave for each season.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Olga S. Zorkaltseva and Roman V. Vasilyev
Ann. Geophys., 39, 267–276, https://doi.org/10.5194/angeo-39-267-2021, https://doi.org/10.5194/angeo-39-267-2021, 2021
Short summary
Short summary
One of the fundamental tasks of atmospheric physics is the study of the processes of vertical interaction of atmospheric layers. We carried out observations with a Fabry–Perot interferometer at an altitude of 90–100 km. We have shown that sudden stratospheric warming and active planetary waves have an impact on the dynamics of the upper atmosphere. That is, the green line airglow decreases and the temperature rises. Major warming causes the reversal of the zonal wind in the upper atmosphere.
Uma Das, William E. Ward, Chen Jeih Pan, and Sanat Kumar Das
Ann. Geophys., 38, 421–435, https://doi.org/10.5194/angeo-38-421-2020, https://doi.org/10.5194/angeo-38-421-2020, 2020
Short summary
Short summary
Temperatures obtained from FORMOSAT-3 and COSMIC observations in the stratosphere are analysed for tidal variations. It is seen that non-migrating tides are not very significant in the high-latitude winter stratosphere. It is shown that the observed amplitudes of these tides in earlier studies are most probably a result of aliasing and are not geophysical in nature. Thus, the process of non-linear interactions through which it was believed that they are produced seems to be unimportant.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Yuki Matsushita, Daiki Kado, Masashi Kohma, and Kaoru Sato
Ann. Geophys., 38, 319–329, https://doi.org/10.5194/angeo-38-319-2020, https://doi.org/10.5194/angeo-38-319-2020, 2020
Short summary
Short summary
Interannual variabilities of the zonal mean wind and temperature related to the Rossby wave forcing in the winter stratosphere of the Southern Hemisphere are studied using 38-year reanalysis data. Correlation of the mean fields to the wave forcing is extended to the subtropics of the Northern Hemisphere. This interhemispheric link is caused by the wave forcing which reduces the meridional gradient of the angular momentum and drives the meridional circulation over the Equator in the stratosphere.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Peter Dalin, Nikolay Pertsev, Vladimir Perminov, Denis Efremov, and Vitaly Romejko
Ann. Geophys., 38, 61–71, https://doi.org/10.5194/angeo-38-61-2020, https://doi.org/10.5194/angeo-38-61-2020, 2020
Short summary
Short summary
A unique stratospheric balloon-borne observation of noctilucent clouds (NLCs) was performed at night on 5–6 July 2018. A sounding balloon, carrying the NLC camera, reached 20.4 km altitude. NLCs were observed from the stratosphere at large scales (100–1500 km) for the first time. Propagations of gravity waves of various scales were registered. This experiment is rather simple and can be reproduced by the broad geoscience community and amateurs, providing a new technique in NLC observations.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Dan Chen, Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Ann. Geophys., 37, 487–506, https://doi.org/10.5194/angeo-37-487-2019, https://doi.org/10.5194/angeo-37-487-2019, 2019
Short summary
Short summary
In this paper, for the first time, absolute gravity wave momentum flux (GWMF) on temporal scales from terannual variation up to solar cycle length is investigated. The systematic spectral analysis of SABER absolute GWMF is presented and physically interpreted. The various roles of filtering and oblique propagating are discussed, which is likely an important factor for MLT dynamics, and hence can be used as a stringent test bed of the reproduction of such features in global models.
Ekaterina Vorobeva
Ann. Geophys., 37, 375–380, https://doi.org/10.5194/angeo-37-375-2019, https://doi.org/10.5194/angeo-37-375-2019, 2019
Short summary
Short summary
We investigated the statistical relationship between solar activity and the occurrence rate of major sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm radio flux (F10.7) has been used as a proxy for solar activity. The calculations have been performed based on two datasets of central day (NCEP–NCAR-I and combined ERA) for the period from 1958 to 2013. The analysis revealed a positive correlation between MSSW events and solar activity.
Sven Wilhelm, Gunter Stober, Vivien Matthias, Christoph Jacobi, and Damian J. Murphy
Ann. Geophys., 37, 1–14, https://doi.org/10.5194/angeo-37-1-2019, https://doi.org/10.5194/angeo-37-1-2019, 2019
Short summary
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Cited articles
Alexander, S. P., Murphy, D. J., and Klekociuk, A. R.: High resolution VHF radar measurements of tropopause structure and variability at Davis, Antarctica (69∘ S, 78∘ E), Atmos. Chem. Phys., 13, 3121–3132, https://doi.org/10.5194/acp-13-3121-2013, 2013.
Añel, J. A., Antuña, J. C., de la Torre, L., Nieto, R., and Gimeno L.:
Changes in tropopause height for the Eurasian region determined from CARDS
radiosonde data, Naturwissenschafte, 93, 603–609,
https://doi.org/10.1007/s00114-006-0147-5, 2006.
Angell, J. K. and Korshover, J.: Quasi-biennial and long-term fluctuations
in tropopause pressure and temperature, and the relation to stratospheric
water vapor content, Mon. Weather Rev., 102, 29–34, 2009.
Appenzeller, C., Holton, J. R., and Rosenlof, K. H.: Seasonal Variation of
Mass Transport Across the Tropopause, J. Geophys. Res.,
101, 15071–15078, 1996.
Baray, J., Daniel, V., Ancellet, G., and Legras, B.: Planetary-scale
tropopause folds in the southern subtropics, Geophys. Res. Lett.,
27, 353–356, 2000.
Bethan, S., Vaughan, G., and Reid, S. J.: A comparison of ozone and thermal
tropopause heights and the impact of tropopause definition on quantifying
the ozone content of the troposphere, Q. J. Roy.
Meteor. Soc., 122, 929–944, 1996.
Chen, F., Chen, G., Shi, C., Tian, Y., Zhang, S., and Huang, K.: Strong downdrafts preceding rapid tropopause ascent and their potential to identify cross-tropopause stratospheric intrusions, Ann. Geophys., 36, 1403–1417, https://doi.org/10.5194/angeo-36-1403-2018, 2018.
Chen, G., Cui, X., Chen, F., Zhao, Z., Wang, Y., Yao, Q., and Gong, W.: MST
Radars of Chinese Meridian Project: System Description and Atmospheric Wind
Measurement, IEEE T. Geosci. Remote Sens., 54,
4513–4523, 2016.
Das, S. S., Jain, A. R., Kumar, K. K., and Rao, D. N.: Diurnal variability
of the tropical tropopause: Significance of VHF radar measurements, Radio
Sci., 43, 1–14, https://doi.org/10.1029/2008RS003824, 2008.
Dee, D. P., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: configuration and
performance of the data assimilation system, Q. J. Roy.
Meteor. Soc., 137, 553–597, https://doi.org/10.1029/2002RS002767, 2011.
Ding, A. and Wang, T.: Influence of stratosphere-to-troposphere exchange on
the seasonal cycle of surface ozone at Mount Waliguan in western China,
Geophys. Res. Lett., 33, 233–252, https://doi.org/10.1029/2005GL024760,
2006.
Fukao, S., Hashiguchi, H., Yamamoto, M., Tsuda, T., Nakamura, T.,
Yamamoto, M. K., Sato, T., Hagio, M., and Yabugaki, Y.: Equatorial Atmosphere Radar
(EAR): System description and first results, Radio Sci., 38, 1053, https://doi.org/10.1029/2002RS002767,
2003.
Gage, K. S. and Green, J. L.: Tropopause Detection by Partial Specular
Reflection with Very-High-Frequency Radar, Science, 203, 1238–1240,
1979.
Gage, K. S. and Green, J. L.: An objective method for the determination of
tropopause height from VHF radar observations, J. Appl.
Meteorol., 21, 1150–1154, 1982.
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and
Birner, T.: The extratropical upper troposphere and lower stratosphere, Rev. Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355, 2011.
Hall, C.: The radar tropopause above Svalbard 2008–2012: Characteristics at
various timescales, J. Geophys. Res., 118, 2600–2608,
2013a.
Hall, C.: The radar tropopause at 78∘ N, 16∘ E:
Characteristics of diurnal variation, J. Geophys. Res.,
118, 6354–6359, https://doi.org/10.1002/jgrd.50560, 2013b.
Hall, C. M., Röttger, J., Kuyeng, K., Sigernes, F., Claes, S., and Chau,
J. L.: Tropopause altitude detection at 78∘ N, 16∘ E,
2008: First results of the refurbished SOUSY radar, Radio Sci., 44,
1–12, https://doi.org/10.1029/2009RS004144, 2009.
Hermawan, E., Tsuda, T., and Adachi, T.: MU radar observations of tropopause
variations by using clear air echo characteristics, Earth Planet.
Space, 50, 361–370, 1998.
Hoerling, M. P., Schaack, T. K., and Lenzen, A. J.: Global Objective
Tropopause Analysis, Mon. Weather Rev., 119, 1816–1831, 1991.
Hoinka, K. P.: Statistics of the Global Tropopause Pressure, Mon. Weather
Rev., 126, 3303–3325, 1998.
Huang, C., Zhang, S., Zhou, Q., Yi, F., Huang, K., Gong, Y., Zhang, Y., and Gan, Q.: WHU VHF radar observations of the diurnal tide and its variability in the lower atmosphere over Chongyang (114.14∘ E, 29.53∘ N), China, Ann. Geophys., 33, 865–874, https://doi.org/10.5194/angeo-33-865-2015, 2015.
Liu, Y., Xu, T., and Liu, J.: Characteristics of the seasonal variation of
the global tropopause revealed by cosmic/GPS data, Adv. Space
Res., 54, 2274–2285, 2014.
May, P. T., Yamamoto, M., Fukao, S., Sato, T., Kato, S., and Tsuda, T.: Wind
and reflectivity fields around fronts observed with a VHF radar, Radio
Sci., 26, 1245–1249, 1991.
Nastrom, G. D., Green, J. L., Gage, K. S., and Peterson, M. R.: Tropopause
Folding and the Variability of the Tropopause Height as Seen by the Flatland
VHF Radar, J. Appl. Meteorol., 28, 1271–1281, 1989.
Nielsen-Gammon, J. W.: A visualization of the global dynamic tropopause,
B. Am. Meteorol. Soc., 82, 1151–1168, 2001.
Pan, L. L., Randel, W. J., Gary, B. L., Mahoney, M. J., and Hintsa, E. J.:
Definitions and sharpness of the extratropical tropopause: A trace gas
perspective, J. Geophys. Res., 109, D23103,
https://doi.org/10.1029/2004JD004982, 2004.
Pan, L. L., Randel, W. J., Gille, J. C., Hall, W. D., Nardi, B., Massie, S.,
Yudin, V., Khosravi, R., Konopka, P., and Tarasick, D.: Tropospheric intrusions
associated with the secondary tropopause, J. Geophys. Res.,
114, D10302, https://doi.org/10.1029/2008JD011374, 2009.
Press, W. H. and Rybicki, G. B.: Fast algorithm for spectral analysis of
unevenly sampled data, Astrophys. J., 338, 277–280, 1989.
Ramakrishnan, K. P.: Distortion of the tropopause due to meridional
movements in the sub-stratosphere, Nature, 132, 932–932, 1933.
Randel, W. J. and Wu, F.: The Polar Summer Tropopause Inversion Layer,
J. Atmos. Sci., 67, 2572–2581, 2010.
Randel, W. J., Wu, F., and Gaffen, D. J.: Interannual variability of the
tropical tropopause derived from radiosonde data and NCEP reanalyses,
J. Geophys. Res.-Atmos., 105, 15509–15523, 2000.
Randel, W. J., Seidel, D. J., and Pan, L. L.: Observational characteristics
of double tropopauses, J. Geophys. Res., 112, D07309, https://doi.org/10.1029/2006JD007904, 2007a.
Randel, W. J., Wu, F., and Forster, P. M.: The extratropical tropopause
inversion layer: Global observations with GPS data, and a radiative forcing
mechanism, J. Atmos. Sci., 64, 4489–4496, 2007b.
Ravindrababu, S., Venkat Ratnam, M., Sunilkumar, S. V., Parameswaran, K.,
and Krishna Murthy, B. V.: Detection of tropopause altitude using Indian MST
radar data and comparison with simultaneous radiosonde observations, J. Atmos. Sol.-Terr. Phy., 121, 679–687, 2014.
Reed, R. J.: A study of a characteristic tpye of upper-level frontogenesis,
J. Atmos. Sci., 12, 226–237, 1955.
Roettger, J.: Observations of the polar d-region and the mesosphere with the
Eiscat Svalbard radar and the SOUSY Svalbard Radar (scientific paper),
Memoirs of National Institute of Polar Research, 54,
9–20, 2001.
Santer, B. D., Sausen, R., Wigley, T. M., Boyle, J. S., Achutarao, K.,
Doutriaux, C., Hansen, J. E., Meehl, G. A., Roeckner, E., Ruedy, R.,
Schmidt, G., and Taylor, K. E.: Behavior of tropopause height and
atmospheric temperature in models, reanalyses, and observations: Decadal
changes, J. Geophys. Res., 108, 4002,
https://doi.org/10.1029/2002JD002258, 2003a.
Santer, B. D., Wehner, M. F., Wigley, T. M., Sausen, R., Meehl, G. A.,
Taylor, K. E., Ammann, C., Arblaster, J., Washington, W. M., Boyle, J. S.,
and Brüggemann, W.: Contributions of anthropogenic and natural forcing
to recent tropopause height changes, Science, 301, 479–483, 2003b.
Sausen, R. and Santer, B. D.: Use of Changes in Tropopause Height to Detect
Human Influences on Climate, Meteorol. Z., 12, 131–136,
2003.
Schmidt, T., Heise, S., Wickert, J., Beyerle, G., and Reigber, C.: GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters, Atmos. Chem. Phys., 5, 1473–1488, https://doi.org/10.5194/acp-5-1473-2005, 2005.
Seidel, D. J., Ross, R. J., Angell, J. K., and Reid, G. C.: Climatological
characteristics of the tropical tropopause as revealed by radiosondes,
J. Geophys. Res., 106, 7857–7878, 2001.
Son, S. W., Tandon, N. F., and Polvani, L. M.: The fine-scale structure of
the global tropopause derived from COSMIC GPS radio occultation
measurements, J. Geophys. Res.-Atmos., 116, D20113, https://doi.org/10.1029/2011JD016030, 2011.
Sprenger, M., Croci Maspoli, M., and Wernli, H.: Tropopause folds and
cross-tropopause exchange: a global investigation based upon ECMWF analyses
for the time period March 2000 to February 2001, J. Geophys.
Res.-Atmos., 108, 291–302, 2003.
Tian, Y. and Lu, D.: Comparison of Beijing MST Radar and Radiosonde
Horizontal Wind Measurements, Adv. Atmos. Sci., 34,
39–53, https://doi.org/10.1007/s00376-016-6129-4, 2017.
Vaughan, G., Howells, A., and Price, J. D.: Use of MST radars to probe the
mesoscale structure of the tropopause, Tellus A, 47, 759–765, 1995.
Wang, C.: Development of the Chinese meridian project, Chinese J.
Space Sci., 30, 382–384, 2010.
Wilcox, L. J., Hoskins, B. J., and Shine, K. P.: A global blended tropopause
based on ERA data. Part I: Climatology, Q. J. Roy. Meteor. Soc., 138,
561–575, https://doi.org/10.1002/qj.951, 2012.
Wirth, V.: Thermal versus dynamical tropopause in upper-tropospheric
balanced flow anomalies, Q. J. Roy. Meteor.
Soc., 126, 299–317, 2000.
Wirth, V.: Cyclone-anticyclone asymmetry concerning the height of the
thermal and the dynamical tropopause, J. Atmos. Sci.,
58, 26–37, 2001.
WMO: A three-dimensional science, WMO Bull., 6, 134–138, 1957.
Yamamoto, M., Oyamatsu, M., Horinouchi, T., Hashiguchi, H., and Fukao, S.:
High time resolution determination of the tropical tropopause by the
Equatorial Atmosphere Radar, Geophys. Res. Lett., 30, 2094, https://doi.org/10.1029/2003GL018072,
2003.
Zängl, G. and Hoinka, K. P.: The tropopause in the polar regions,
J. Climate, 14, 3117–3139, 2001.
Short summary
Using the Beijing MST radar echo-power observations collected during the period November 2011–May 2017, the structure and variability of the tropopause over Xianghe, China (39.75° N, 116.96° E), was presented. Our comparison results showed a good agreement between the radar and thermal tropopauses during all seasons. In contrast, the consistency between the radar and dynamical tropopauses is poor during summer. Diurnal oscillation in tropopause height is commonly observed during all seasons.
Using the Beijing MST radar echo-power observations collected during the period November...