Articles | Volume 37, issue 4
https://doi.org/10.5194/angeo-37-487-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-487-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere
Dan Chen
CORRESPONDING AUTHOR
Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China
Institute of Energy and Climate Research – Stratosphere (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
Cornelia Strube
Institute of Energy and Climate Research – Stratosphere (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
Manfred Ern
Institute of Energy and Climate Research – Stratosphere (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
Peter Preusse
Institute of Energy and Climate Research – Stratosphere (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
Martin Riese
Institute of Energy and Climate Research – Stratosphere (IEK-7), Forschungszentrum Jülich GmbH, Jülich, Germany
Related authors
No articles found.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Mohamadou Diallo, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 21, 7515–7544, https://doi.org/10.5194/acp-21-7515-2021, https://doi.org/10.5194/acp-21-7515-2021, 2021
Short summary
Short summary
Despite good agreement in the spatial structure, there are substantial differences in the strength of the Brewer–Dobson circulation (BDC) and its modulations in the UTLS and upper stratosphere. The tropical upwelling is generally weaker in ERA5 than in ERAI due to weaker planetary and gravity wave breaking in the UTLS. Analysis of the BDC trend shows an acceleration of the BDC of about 1.5 % decade-1 due to the long-term intensification in wave breaking, consistent with climate predictions.
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021, https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
Short summary
Cirrus clouds contribute to the general radiation budget of the Earth. Measuring optically thin clouds is challenging but the IR limb sounder GLORIA possesses the necessary technical characteristics to make it possible. This study analyses data from the WISE campaign obtained with GLORIA. We developed a cloud detection method and derived characteristics of the observed cirrus-like cloud top, cloud bottom or position with respect to the tropopause.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020, https://doi.org/10.5194/amt-13-4927-2020, 2020
Short summary
Short summary
We present how inertial instabilities affect gravity wave background removal filters on different temperature data sets. Vertical filtering has to remove a part of the gravity wave spectrum to eliminate inertial instability remnants, while horizontal filtering leaves typical gravity wave scales untouched. In addition, we show that it is possible to separate inertial instabilities from gravity wave perturbations for infrared limb-sounding satellite profiles using a cutoff zonal wavenumber of 6.
Yajun Zhu, Martin Kaufmann, Qiuyu Chen, Jiyao Xu, Qiucheng Gong, Jilin Liu, Daikang Wei, and Martin Riese
Atmos. Meas. Tech., 13, 3033–3042, https://doi.org/10.5194/amt-13-3033-2020, https://doi.org/10.5194/amt-13-3033-2020, 2020
Short summary
Short summary
OH airglow emissions can be used to derive rotational temperature and trace constituents in the mesopause region, but systematic differences exist for the follow-up data using OH emission radiance as measured by SCIAMACHY and SABER. This paper makes a comparison of OH emission radiance as measured by them and shows the systematic differences between the two measurements. The radiometric calibration of the two instruments could potentially explain the differences between the two measurements.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Aurélien Podglajen, Jonathon S. Wright, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 15629–15649, https://doi.org/10.5194/acp-19-15629-2019, https://doi.org/10.5194/acp-19-15629-2019, 2019
Short summary
Short summary
The Asian and North American summer monsoons (ASM and NASM) have considerable influence on stratospheric chemistry and physics. More air mass is transported from the monsoon regions to the tropical stratosphere when the tracers are released clearly below the tropopause than when they are released close to the tropopause. Results for different altitudes of air origin reveal two transport pathways (monsoon and tropical) from the upper troposphere over the monsoon regions to the tropical pipe.
Qiuyu Chen, Martin Kaufmann, Yajun Zhu, Jilin Liu, Ralf Koppmann, and Martin Riese
Atmos. Chem. Phys., 19, 13891–13910, https://doi.org/10.5194/acp-19-13891-2019, https://doi.org/10.5194/acp-19-13891-2019, 2019
Short summary
Short summary
Atomic oxygen is one of the most important trace species in the mesopause region. A common technique to derive it from satellite measurements is to measure airglow emissions involved in the photochemistry of oxygen. In this work, hydroxyl nightglow measured by the GOMOS instrument on Envisat is used to derive a 10-year dataset of atomic oxygen in the middle and upper atmosphere. Annual and semiannual oscillations are observed in the data. The new data are consistent with various other datasets.
Marleen Braun, Jens-Uwe Grooß, Wolfgang Woiwode, Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Hermann Oelhaf, Peter Preusse, Jörn Ungermann, Björn-Martin Sinnhuber, Helmut Ziereis, and Peter Braesicke
Atmos. Chem. Phys., 19, 13681–13699, https://doi.org/10.5194/acp-19-13681-2019, https://doi.org/10.5194/acp-19-13681-2019, 2019
Short summary
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
Daniel Kunkel, Peter Hoor, Thorsten Kaluza, Jörn Ungermann, Björn Kluschat, Andreas Giez, Hans-Christoph Lachnitt, Martin Kaufmann, and Martin Riese
Atmos. Chem. Phys., 19, 12607–12630, https://doi.org/10.5194/acp-19-12607-2019, https://doi.org/10.5194/acp-19-12607-2019, 2019
Short summary
Short summary
In this study we present a mixing process around the tropopause in extratropical baroclinic waves. We analyze airborne data from a flight during the WISE campaign in autumn 2017 over the North Atlantic. We use idealized experiments to study the mixing process. Although the process occurs on a small geographical scale, it might be of importance due to its relation to a frequent feature of the extratropical UTLS. The process is relevant for STE but is not fully included in climatologies.
Paul Konopka, Mengchu Tao, Felix Ploeger, Mohamadou Diallo, and Martin Riese
Geosci. Model Dev., 12, 2441–2462, https://doi.org/10.5194/gmd-12-2441-2019, https://doi.org/10.5194/gmd-12-2441-2019, 2019
Short summary
Short summary
CLaMS is a Lagrangian transport model suitable for simulating atmospheric transport and chemistry. The novel approach of CLaMS is its description of atmospheric mixing. Whereas the common approach is to minimize the numerical diffusion ever present in the modeling of transport, CLaMS is a first attempt to apply this
undesirable disturbing effectto parametrize the true physical mixing. In this paper, we show how this concept works both in the stratosphere and in the troposphere.
Mengchu Tao, Paul Konopka, Felix Ploeger, Xiaolu Yan, Jonathon S. Wright, Mohamadou Diallo, Stephan Fueglistaler, and Martin Riese
Atmos. Chem. Phys., 19, 6509–6534, https://doi.org/10.5194/acp-19-6509-2019, https://doi.org/10.5194/acp-19-6509-2019, 2019
Short summary
Short summary
This paper examines the annual and interannual variations as well as long-term trend of modeled stratospheric water vapor with a Lagrangian chemical transport model driven by ERA-I, MERRA-2 and JRA-55. We find reasonable consistency among the annual cycle, QBO and the variabilities induced by ENSO and volcanic aerosols. The main discrepancies are linked to the differences in reanalysis upwelling rates in the lower stratosphere. The trends are sensitive to the reanalyses that drives the model.
Bärbel Vogel, Rolf Müller, Gebhard Günther, Reinhold Spang, Sreeharsha Hanumanthu, Dan Li, Martin Riese, and Gabriele P. Stiller
Atmos. Chem. Phys., 19, 6007–6034, https://doi.org/10.5194/acp-19-6007-2019, https://doi.org/10.5194/acp-19-6007-2019, 2019
Short summary
Short summary
We identified the transport pathways of air masses from the region of the Asian monsoon (e.g. pollution and greenhouse gases caused by increasing population and growing industries in Asia) into the lower stratosphere. Even small changes of the chemical composition of the lower stratosphere have an impact on surface climate (e.g. surface temperatures). Therefore, it is important to identify transport pathways to the stratosphere to allow potential environmental risks to be assessed.
Felix Ploeger, Bernard Legras, Edward Charlesworth, Xiaolu Yan, Mohamadou Diallo, Paul Konopka, Thomas Birner, Mengchu Tao, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 19, 6085–6105, https://doi.org/10.5194/acp-19-6085-2019, https://doi.org/10.5194/acp-19-6085-2019, 2019
Short summary
Short summary
We analyse the change in the circulation of the middle atmosphere based on current generation meteorological reanalysis data sets. We find that long-term changes from 1989 to 2015 are similar for the chosen reanalyses, mainly resembling the forced response in climate model simulations to climate change. For shorter periods circulation changes are less robust, and the representation of decadal variability appears to be a major uncertainty for modelling the circulation of the middle atmosphere.
Corinna Kloss, Marc von Hobe, Michael Höpfner, Kaley A. Walker, Martin Riese, Jörn Ungermann, Birgit Hassler, Stefanie Kremser, and Greg E. Bodeker
Atmos. Meas. Tech., 12, 2129–2138, https://doi.org/10.5194/amt-12-2129-2019, https://doi.org/10.5194/amt-12-2129-2019, 2019
Short summary
Short summary
Are regional and seasonal averages from only a few satellite measurements, all aligned along a specific path, representative? Probably not. We present a method to adjust for the so-called
sampling biasand investigate its influence on derived long-term trends. The method is illustrated and validated for a long-lived trace gas (carbonyl sulfide), and it is shown that the influence of the sampling bias is too small to change scientific conclusions on long-term trends.
Lukas Krasauskas, Jörn Ungermann, Stefan Ensmann, Isabell Krisch, Erik Kretschmer, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 12, 853–872, https://doi.org/10.5194/amt-12-853-2019, https://doi.org/10.5194/amt-12-853-2019, 2019
Short summary
Short summary
Many limb sounder measurements from the same atmospheric region taken at different angles can be combined into a 3-D tomographic image of the atmosphere. Mathematically, this is a complex, computationally expensive, underdetermined problem that needs additional constraints (regularisation). We introduce an improved regularisation method based on physical properties of the atmosphere with a new irregular grid implementation. Simulated data tests show improved results and lower computational cost.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Mohamadou Diallo, Paul Konopka, Michelle L. Santee, Rolf Müller, Mengchu Tao, Kaley A. Walker, Bernard Legras, Martin Riese, Manfred Ern, and Felix Ploeger
Atmos. Chem. Phys., 19, 425–446, https://doi.org/10.5194/acp-19-425-2019, https://doi.org/10.5194/acp-19-425-2019, 2019
Short summary
Short summary
This paper assesses the structural changes in the shallow and transition branches of the BDC induced by El Nino using the Lagrangian model simulations driven by ERAi and JRA-55 combined with MLS observations. We found a clear evidence of a weakening of the transition branch due to an upward shift in the dissipation height of the planetary and gravity waves and a strengthening of the shallow branch due to enhanced GW breaking in the tropics–subtropics and PW breaking at high latitudes.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Mohamadou Diallo, Martin Riese, Thomas Birner, Paul Konopka, Rolf Müller, Michaela I. Hegglin, Michelle L. Santee, Mark Baldwin, Bernard Legras, and Felix Ploeger
Atmos. Chem. Phys., 18, 13055–13073, https://doi.org/10.5194/acp-18-13055-2018, https://doi.org/10.5194/acp-18-13055-2018, 2018
Short summary
Short summary
The unprecedented timing of an El Niño event aligned with the disrupted QBO in 2015–2016 caused a perturbation to the stratospheric circulation, affecting trace gases. This paper resolves the puzzling response of the lower stratospheric water vapor by showing that the QBO disruption reversed the lower stratosphere moistening triggered by the alignment of the El Niño event with a westerly QBO in early boreal winter.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Isabell Krisch, Jörn Ungermann, Peter Preusse, Erik Kretschmer, and Martin Riese
Atmos. Meas. Tech., 11, 4327–4344, https://doi.org/10.5194/amt-11-4327-2018, https://doi.org/10.5194/amt-11-4327-2018, 2018
Short summary
Short summary
Three-dimensional temperature measurements of the atmosphere are required to address current research questions concerning the propagation of gravity waves. Limited angle tomography (LAT) with measurements from an airborne infrared limb imager can provide such 3-D temperature measurements. Wave parameters derived from such LAT measurements achieve an accuracy similar to that derived from full angle tomography, if the orientation of the flight path is optimized with respect to the gravity wave.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Martin Kaufmann, Friedhelm Olschewski, Klaus Mantel, Brian Solheim, Gordon Shepherd, Michael Deiml, Jilin Liu, Rui Song, Qiuyu Chen, Oliver Wroblowski, Daikang Wei, Yajun Zhu, Friedrich Wagner, Florian Loosen, Denis Froehlich, Tom Neubert, Heinz Rongen, Peter Knieling, Panos Toumpas, Jinjun Shan, Geshi Tang, Ralf Koppmann, and Martin Riese
Atmos. Meas. Tech., 11, 3861–3870, https://doi.org/10.5194/amt-11-3861-2018, https://doi.org/10.5194/amt-11-3861-2018, 2018
Short summary
Short summary
The concept and optical layout of a limb sounder using a spatial heterodyne spectrometer is presented. The instrument fits onto a nano-satellite platform, such as a CubeSat. It is designed for the derivation of temperatures in the mesosphere and lower thermosphere. The design parameters of the optics and a radiometric assessment of the instrument as well as the main characterization and calibration steps are discussed.
Liubov Poshyvailo, Rolf Müller, Paul Konopka, Gebhard Günther, Martin Riese, Aurélien Podglajen, and Felix Ploeger
Atmos. Chem. Phys., 18, 8505–8527, https://doi.org/10.5194/acp-18-8505-2018, https://doi.org/10.5194/acp-18-8505-2018, 2018
Short summary
Short summary
Water vapour (H2O) in the UTLS is a key player for global radiation, which is critical for predictions of future climate change. We investigate the effects of current uncertainties in tropopause temperature, horizontal transport and small-scale mixing on simulated H2O, using the Chemical Lagrangian Model of the Stratosphere. Our sensitivity studies provide new insights into the leading processes controlling stratospheric H2O, important for assessing and improving climate model projections.
Xiaolu Yan, Paul Konopka, Felix Ploeger, Mengchu Tao, Rolf Müller, Michelle L. Santee, Jianchun Bian, and Martin Riese
Atmos. Chem. Phys., 18, 8079–8096, https://doi.org/10.5194/acp-18-8079-2018, https://doi.org/10.5194/acp-18-8079-2018, 2018
Short summary
Short summary
Many works investigate the impact of ENSO on the troposphere. However, only a few works check the impact of ENSO at higher altitudes.
Here, we analyse the impact of ENSO on the vicinity of the tropopause using reanalysis, satellite, in situ and model data. We find that ENSO shows the strongest signal in winter, but its impact can last until early the next summer. The ENSO anomaly is insignificant in late summer. Our study can help to understand the atmosphere propagation after ENSO.
Rui Song, Martin Kaufmann, Manfred Ern, Jörn Ungermann, Guang Liu, and Martin Riese
Atmos. Meas. Tech., 11, 3161–3175, https://doi.org/10.5194/amt-11-3161-2018, https://doi.org/10.5194/amt-11-3161-2018, 2018
Short summary
Short summary
In this paper, we propose a new observation strategy, called
sweep mode, for a real three-dimensional tomographic reconstruction of gravity waves in the mesosphere and lower thermosphere by modifying the observation geometry of conventional limb-sounding measurements. It enhances the horizontal resolution that typical limb sounders can achieve while at the same time retaining the good vertical resolution they have.
Manfred Ern, Quang Thai Trinh, Peter Preusse, John C. Gille, Martin G. Mlynczak, James M. Russell III, and Martin Riese
Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, https://doi.org/10.5194/essd-10-857-2018, 2018
Short summary
Short summary
The gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE) is a global data set of gravity wave (GW) distributions in the stratosphere and the mesosphere observed by the infrared limb sounding satellite instruments HIRDLS and SABER. Typical distributions of multiple GW parameters are provided. Possible applications are scientific studies, comparison with other observations, or comparison with resolved or parametrized GW distributions in models.
Vivien Matthias and Manfred Ern
Atmos. Chem. Phys., 18, 4803–4815, https://doi.org/10.5194/acp-18-4803-2018, https://doi.org/10.5194/acp-18-4803-2018, 2018
Short summary
Short summary
The aim of this study is to find the origin of mesospheric stationary planetary wave (SPW) in the subtropics and in mid and polar latitudes in mid winter 2015/2016. Our results based on observations show that upward propagating SPW and in situ generated SPWs by longitudinally variable gravity wave drag and by instabilities can be responsible for the occurrence of mesospheric SPWs and that they can act at the same time, which confirms earlier model studies.
Quang Thai Trinh, Manfred Ern, Eelco Doornbos, Peter Preusse, and Martin Riese
Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, https://doi.org/10.5194/angeo-36-425-2018, 2018
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Catrin I. Meyer, Manfred Ern, Lars Hoffmann, Quang Thai Trinh, and M. Joan Alexander
Atmos. Meas. Tech., 11, 215–232, https://doi.org/10.5194/amt-11-215-2018, https://doi.org/10.5194/amt-11-215-2018, 2018
Short summary
Short summary
We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) and the High Resolution Dynamics Limb Sounder (HIRDLS). Waves seen by AIRS contribute significantly to momentum flux, which indicates a calculated momentum flux factor. AIRS and HIRDLS agree well in the phase structure of the wave events and also in the seasonal and latitudinal patterns of gravity wave activity and can be used complementary to each other.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Rui Song, Martin Kaufmann, Jörn Ungermann, Manfred Ern, Guang Liu, and Martin Riese
Atmos. Meas. Tech., 10, 4601–4612, https://doi.org/10.5194/amt-10-4601-2017, https://doi.org/10.5194/amt-10-4601-2017, 2017
Short summary
Short summary
Gravity waves (GWs) play an important role in atmospheric dynamics. In this work, we propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from
atmospheric soundings. It shows that one major advantage of this observation strategy is that much smaller-scale GWs can be observed.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Felix Ploeger, Paul Konopka, Kaley Walker, and Martin Riese
Atmos. Chem. Phys., 17, 7055–7066, https://doi.org/10.5194/acp-17-7055-2017, https://doi.org/10.5194/acp-17-7055-2017, 2017
Short summary
Short summary
Pollution transport from the surface to the stratosphere within the Asian summer monsoon circulation may cause harmful effects on stratospheric chemistry and climate. We investigate air mass transport from the monsoon anticyclone into the stratosphere, combining model simulations with satellite trace gas measurements. We show evidence for two transport pathways from the monsoon: (i) into the tropical stratosphere and (ii) into the Northern Hemisphere extratropical lower stratosphere.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Marc von Hobe, Rolf Müller, and Martin Riese
Atmos. Meas. Tech., 9, 4399–4423, https://doi.org/10.5194/amt-9-4399-2016, https://doi.org/10.5194/amt-9-4399-2016, 2016
Short summary
Short summary
A new method for detecting aerosol in the UTLS based on infrared limb emission measurements is presented. The method was developed using radiative transfer simulations (including scattering) and Envisat MIPAS measurements. Results are presented for volcanic ash and sulfate aerosol originating from the Grimsvötn (Iceland), Puyehue–Cordon Caulle (Chile), and Nabro (Eritrea) eruptions in 2011 and compared with AIRS volcanic ash and SO2 measurements.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Quang Thai Trinh, Silvio Kalisch, Peter Preusse, Manfred Ern, Hye-Yeong Chun, Stephen D. Eckermann, Min-Jee Kang, and Martin Riese
Atmos. Chem. Phys., 16, 7335–7356, https://doi.org/10.5194/acp-16-7335-2016, https://doi.org/10.5194/acp-16-7335-2016, 2016
Short summary
Short summary
Convection is an important source of atmospheric gravity waves (GWs). In this work, scales of convective GWs seen by limb sounders were first defined based on observed spectral information. Interactions of these waves with the background were considered. Long-scale convective GWs addressed by this approach showed significant importance in driving the QBO. Zonal mean of GW momentum flux and its vertical gradients are in good agreement with respective observations provided by limb sounders.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, and M. Riese
Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, https://doi.org/10.5194/acp-15-13699-2015, 2015
Short summary
Short summary
The Asian summer monsoon circulation is an important global circulation system associated with strong upward transport of tropospheric source gases. We show that the contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intra-seasonal variability and that emissions from Asia have a significant impact on the chemical compositions of the lowermost stratosphere of the Northern Hemisphere at the end of the monsoon season in Sep./Oct. 2012.
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
T. Guggenmoser, J. Blank, A. Kleinert, T. Latzko, J. Ungermann, F. Friedl-Vallon, M. Höpfner, M. Kaufmann, E. Kretschmer, G. Maucher, T. Neubert, H. Oelhaf, P. Preusse, M. Riese, H. Rongen, M. K. Sha, O. Sumińska-Ebersoldt, and V. Tan
Atmos. Meas. Tech., 8, 3147–3161, https://doi.org/10.5194/amt-8-3147-2015, https://doi.org/10.5194/amt-8-3147-2015, 2015
Short summary
Short summary
The plane-carried Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) measures the thermal radiation emitted by gases and particles in the atmosphere, in a height range of about 5-20 km. In between these measurements, GLORIA is pointed at known radiation sources for calibration. Noise in these calibration measurements can lead to artefacts in the final products. In this paper, we present new techniques which exploit GLORIA's imaging capabilities to reduce these noise effects.
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
E. Kretschmer, M. Bachner, J. Blank, R. Dapp, A. Ebersoldt, F. Friedl-Vallon, T. Guggenmoser, T. Gulde, V. Hartmann, R. Lutz, G. Maucher, T. Neubert, H. Oelhaf, P. Preusse, G. Schardt, C. Schmitt, A. Schönfeld, and V. Tan
Atmos. Meas. Tech., 8, 2543–2553, https://doi.org/10.5194/amt-8-2543-2015, https://doi.org/10.5194/amt-8-2543-2015, 2015
W. Woiwode, O. Sumińska-Ebersoldt, H. Oelhaf, M. Höpfner, G. V. Belyaev, A. Ebersoldt, F. Friedl-Vallon, J.-U. Grooß, T. Gulde, M. Kaufmann, A. Kleinert, M. Krämer, E. Kretschmer, T. Kulessa, G. Maucher, T. Neubert, C. Piesch, P. Preusse, M. Riese, H. Rongen, C. Sartorius, G. Schardt, A. Schönfeld, D. Schuettemeyer, M. K. Sha, F. Stroh, J. Ungermann, C. M. Volk, and J. Orphal
Atmos. Meas. Tech., 8, 2509–2520, https://doi.org/10.5194/amt-8-2509-2015, https://doi.org/10.5194/amt-8-2509-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
M. Ern, P. Preusse, and M. Riese
Ann. Geophys., 33, 483–504, https://doi.org/10.5194/angeo-33-483-2015, https://doi.org/10.5194/angeo-33-483-2015, 2015
Short summary
Short summary
The forcings of the semiannual oscillation (SAO) of the tropical zonal wind in the stratopause region are investigated based on ERA-Interim reanalysis and HIRDLS satellite observations. In particular, the SAO driving by mesoscale gravity waves is estimated directly from satellite observations of gravity waves. Our study confirms previous indirect evidence that planetary waves dominate during the westward driving of the SAO, while gravity waves mainly provide eastward forcing.
Q. T. Trinh, S. Kalisch, P. Preusse, H.-Y. Chun, S. D. Eckermann, M. Ern, and M. Riese
Atmos. Meas. Tech., 8, 1491–1517, https://doi.org/10.5194/amt-8-1491-2015, https://doi.org/10.5194/amt-8-1491-2015, 2015
R. Spang, G. Günther, M. Riese, L. Hoffmann, R. Müller, and S. Griessbach
Atmos. Chem. Phys., 15, 927–950, https://doi.org/10.5194/acp-15-927-2015, https://doi.org/10.5194/acp-15-927-2015, 2015
Short summary
Short summary
Here we present observations of the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) of cirrus cloud and water vapour in August 1997 in the upper troposphere and lower stratosphere (UTLS) region. The observations indicate a considerable flux of moisture from the upper tropical troposphere into the extra-tropical lowermost stratosphere (LMS), resulting in the occurrence of high-altitude optically thin cirrus clouds in the LMS.
M. Kaufmann, J. Blank, T. Guggenmoser, J. Ungermann, A. Engel, M. Ern, F. Friedl-Vallon, D. Gerber, J. U. Grooß, G. Guenther, M. Höpfner, A. Kleinert, E. Kretschmer, Th. Latzko, G. Maucher, T. Neubert, H. Nordmeyer, H. Oelhaf, F. Olschewski, J. Orphal, P. Preusse, H. Schlager, H. Schneider, D. Schuettemeyer, F. Stroh, O. Suminska-Ebersoldt, B. Vogel, C. M. Volk, W. Woiwode, and M. Riese
Atmos. Meas. Tech., 8, 81–95, https://doi.org/10.5194/amt-8-81-2015, https://doi.org/10.5194/amt-8-81-2015, 2015
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
A. Kleinert, F. Friedl-Vallon, T. Guggenmoser, M. Höpfner, T. Neubert, R. Ribalda, M. K. Sha, J. Ungermann, J. Blank, A. Ebersoldt, E. Kretschmer, T. Latzko, H. Oelhaf, F. Olschewski, and P. Preusse
Atmos. Meas. Tech., 7, 4167–4184, https://doi.org/10.5194/amt-7-4167-2014, https://doi.org/10.5194/amt-7-4167-2014, 2014
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
J. Y. Jia, P. Preusse, M. Ern, H.-Y. Chun, J. C. Gille, S. D. Eckermann, and M. Riese
Ann. Geophys., 32, 1373–1394, https://doi.org/10.5194/angeo-32-1373-2014, https://doi.org/10.5194/angeo-32-1373-2014, 2014
F. Friedl-Vallon, T. Gulde, F. Hase, A. Kleinert, T. Kulessa, G. Maucher, T. Neubert, F. Olschewski, C. Piesch, P. Preusse, H. Rongen, C. Sartorius, H. Schneider, A. Schönfeld, V. Tan, N. Bayer, J. Blank, R. Dapp, A. Ebersoldt, H. Fischer, F. Graf, T. Guggenmoser, M. Höpfner, M. Kaufmann, E. Kretschmer, T. Latzko, H. Nordmeyer, H. Oelhaf, J. Orphal, M. Riese, G. Schardt, J. Schillings, M. K. Sha, O. Suminska-Ebersoldt, and J. Ungermann
Atmos. Meas. Tech., 7, 3565–3577, https://doi.org/10.5194/amt-7-3565-2014, https://doi.org/10.5194/amt-7-3565-2014, 2014
P. Preusse, M. Ern, P. Bechtold, S. D. Eckermann, S. Kalisch, Q. T. Trinh, and M. Riese
Atmos. Chem. Phys., 14, 10483–10508, https://doi.org/10.5194/acp-14-10483-2014, https://doi.org/10.5194/acp-14-10483-2014, 2014
M. Riese, H. Oelhaf, P. Preusse, J. Blank, M. Ern, F. Friedl-Vallon, H. Fischer, T. Guggenmoser, M. Höpfner, P. Hoor, M. Kaufmann, J. Orphal, F. Plöger, R. Spang, O. Suminska-Ebersoldt, J. Ungermann, B. Vogel, and W. Woiwode
Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, https://doi.org/10.5194/amt-7-1915-2014, 2014
S. Griessbach, L. Hoffmann, R. Spang, and M. Riese
Atmos. Meas. Tech., 7, 1487–1507, https://doi.org/10.5194/amt-7-1487-2014, https://doi.org/10.5194/amt-7-1487-2014, 2014
F. Olschewski, A. Ebersoldt, F. Friedl-Vallon, B. Gutschwager, J. Hollandt, A. Kleinert, C. Monte, C. Piesch, P. Preusse, C. Rolf, P. Steffens, and R. Koppmann
Atmos. Meas. Tech., 6, 3067–3082, https://doi.org/10.5194/amt-6-3067-2013, https://doi.org/10.5194/amt-6-3067-2013, 2013
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
J. Ungermann, L. L. Pan, C. Kalicinsky, F. Olschewski, P. Knieling, J. Blank, K. Weigel, T. Guggenmoser, F. Stroh, L. Hoffmann, and M. Riese
Atmos. Chem. Phys., 13, 10517–10534, https://doi.org/10.5194/acp-13-10517-2013, https://doi.org/10.5194/acp-13-10517-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
K. Minschwaner, L. Hoffmann, A. Brown, M. Riese, R. Müller, and P. F. Bernath
Atmos. Chem. Phys., 13, 4253–4263, https://doi.org/10.5194/acp-13-4253-2013, https://doi.org/10.5194/acp-13-4253-2013, 2013
F. Khosrawi, R. Müller, J. Urban, M. H. Proffitt, G. Stiller, M. Kiefer, S. Lossow, D. Kinnison, F. Olschewski, M. Riese, and D. Murtagh
Atmos. Chem. Phys., 13, 3619–3641, https://doi.org/10.5194/acp-13-3619-2013, https://doi.org/10.5194/acp-13-3619-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Middle atmosphere dynamics
The Role of Gravity Waves in the Mesosphere Inversion Layers (MILs) over low-latitude (3–15° N) Using SABER Satellite Observations
Propagating characteristics of mesospheric gravity waves observed by an OI 557.7 nm airglow all-sky camera at Mt. Bohyun (36.2° N, 128.9° E)
Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events
Stratospheric influence on the mesosphere–lower thermosphere over mid latitudes in winter observed by a Fabry–Perot interferometer
Migrating and non-migrating tides observed in the stratosphere from FORMOSAT-3/COSMIC temperature retrievals
Local stratopause temperature variabilities and their embedding in the global context
Relation between the interannual variability in the stratospheric Rossby wave forcing and zonal mean fields suggesting an interhemispheric link in the stratosphere
Impact of local gravity wave forcing in the lower stratosphere on the polar vortex stability: effect of longitudinal displacement
Stratospheric observations of noctilucent clouds: a new approach in studying middle- and large-scale mesospheric dynamics
High-resolution Beijing mesosphere–stratosphere–troposphere (MST) radar detection of tropopause structure and variability over Xianghe (39.75° N, 116.96° E), China
Effect of latitudinally displaced gravity wave forcing in the lower stratosphere on the polar vortex stability
Notes on the correlation between sudden stratospheric warmings and solar activity
Connection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes
Semidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere
Chalachew Lingerew and Jaya Prakash Raju
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2023-34, https://doi.org/10.5194/angeo-2023-34, 2023
Revised manuscript accepted for ANGEO
Short summary
Short summary
The study uses SABER data to analyze the MIL phenomenon and its causative gravity wave potential energy and instability. The upper MLT inversion frequency is below 40 %, while lower inversions are below 20 %. The high potential energy (~100 J/kg) of gravity waves in the upper MLT region (85 and 90 km) is due to instability, causing large inversion phenomena. while the reverse is true in the lower MLT regions.
Jun-Young Hwang, Young-Sook Lee, Yong Ha Kim, Hosik Kam, Seok-Min Song, Young-Sil Kwak, and Tae-Yong Yang
Ann. Geophys., 40, 247–257, https://doi.org/10.5194/angeo-40-247-2022, https://doi.org/10.5194/angeo-40-247-2022, 2022
Short summary
Short summary
We analysed all-sky camera images observed at Mt. Bohyun observatory (36.2° N, 128.9° E) for the period of 2017–2019. We retrieved gravity wave parameters including horizontal wavelength, phase velocity and period from the image data. The horizontally propagating directions of the wave were biased according to their seasons, exerted with filtering effect by prevailing background winds. We also evaluated the nature of vertical propagation of the wave for each season.
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Olga S. Zorkaltseva and Roman V. Vasilyev
Ann. Geophys., 39, 267–276, https://doi.org/10.5194/angeo-39-267-2021, https://doi.org/10.5194/angeo-39-267-2021, 2021
Short summary
Short summary
One of the fundamental tasks of atmospheric physics is the study of the processes of vertical interaction of atmospheric layers. We carried out observations with a Fabry–Perot interferometer at an altitude of 90–100 km. We have shown that sudden stratospheric warming and active planetary waves have an impact on the dynamics of the upper atmosphere. That is, the green line airglow decreases and the temperature rises. Major warming causes the reversal of the zonal wind in the upper atmosphere.
Uma Das, William E. Ward, Chen Jeih Pan, and Sanat Kumar Das
Ann. Geophys., 38, 421–435, https://doi.org/10.5194/angeo-38-421-2020, https://doi.org/10.5194/angeo-38-421-2020, 2020
Short summary
Short summary
Temperatures obtained from FORMOSAT-3 and COSMIC observations in the stratosphere are analysed for tidal variations. It is seen that non-migrating tides are not very significant in the high-latitude winter stratosphere. It is shown that the observed amplitudes of these tides in earlier studies are most probably a result of aliasing and are not geophysical in nature. Thus, the process of non-linear interactions through which it was believed that they are produced seems to be unimportant.
Ronald Eixmann, Vivien Matthias, Josef Höffner, Gerd Baumgarten, and Michael Gerding
Ann. Geophys., 38, 373–383, https://doi.org/10.5194/angeo-38-373-2020, https://doi.org/10.5194/angeo-38-373-2020, 2020
Short summary
Short summary
The aim of this study is to bring local variabilities into a global context. To qualitatively study the impact of global waves on local measurements in winter, we combine local lidar measurements with global MERRA-2 reanalysis data. Our results show that about 98 % of the local day-to-day variability can be explained by the variability of waves with zonal wave numbers 1, 2 and 3. Thus locally measured effects which are not based on global wave variability can be investigated much better.
Yuki Matsushita, Daiki Kado, Masashi Kohma, and Kaoru Sato
Ann. Geophys., 38, 319–329, https://doi.org/10.5194/angeo-38-319-2020, https://doi.org/10.5194/angeo-38-319-2020, 2020
Short summary
Short summary
Interannual variabilities of the zonal mean wind and temperature related to the Rossby wave forcing in the winter stratosphere of the Southern Hemisphere are studied using 38-year reanalysis data. Correlation of the mean fields to the wave forcing is extended to the subtropics of the Northern Hemisphere. This interhemispheric link is caused by the wave forcing which reduces the meridional gradient of the angular momentum and drives the meridional circulation over the Equator in the stratosphere.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Peter Dalin, Nikolay Pertsev, Vladimir Perminov, Denis Efremov, and Vitaly Romejko
Ann. Geophys., 38, 61–71, https://doi.org/10.5194/angeo-38-61-2020, https://doi.org/10.5194/angeo-38-61-2020, 2020
Short summary
Short summary
A unique stratospheric balloon-borne observation of noctilucent clouds (NLCs) was performed at night on 5–6 July 2018. A sounding balloon, carrying the NLC camera, reached 20.4 km altitude. NLCs were observed from the stratosphere at large scales (100–1500 km) for the first time. Propagations of gravity waves of various scales were registered. This experiment is rather simple and can be reproduced by the broad geoscience community and amateurs, providing a new technique in NLC observations.
Feilong Chen, Gang Chen, Yufang Tian, Shaodong Zhang, Kaiming Huang, Chen Wu, and Weifan Zhang
Ann. Geophys., 37, 631–643, https://doi.org/10.5194/angeo-37-631-2019, https://doi.org/10.5194/angeo-37-631-2019, 2019
Short summary
Short summary
Using the Beijing MST radar echo-power observations collected during the period November 2011–May 2017, the structure and variability of the tropopause over Xianghe, China (39.75° N, 116.96° E), was presented. Our comparison results showed a good agreement between the radar and thermal tropopauses during all seasons. In contrast, the consistency between the radar and dynamical tropopauses is poor during summer. Diurnal oscillation in tropopause height is commonly observed during all seasons.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Ekaterina Vorobeva
Ann. Geophys., 37, 375–380, https://doi.org/10.5194/angeo-37-375-2019, https://doi.org/10.5194/angeo-37-375-2019, 2019
Short summary
Short summary
We investigated the statistical relationship between solar activity and the occurrence rate of major sudden stratospheric warmings (MSSWs). For this purpose, the 10.7 cm radio flux (F10.7) has been used as a proxy for solar activity. The calculations have been performed based on two datasets of central day (NCEP–NCAR-I and combined ERA) for the period from 1958 to 2013. The analysis revealed a positive correlation between MSSW events and solar activity.
Sven Wilhelm, Gunter Stober, Vivien Matthias, Christoph Jacobi, and Damian J. Murphy
Ann. Geophys., 37, 1–14, https://doi.org/10.5194/angeo-37-1-2019, https://doi.org/10.5194/angeo-37-1-2019, 2019
Short summary
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Cited articles
Alexander, M. J. and Dunkerton, T. J.: A spectral parameterization of mean-flow
forcing due to breaking gravity waves, J. Atmos. Sci., 56, 4167–4182, 1999. a
Alexander, M. J. and Ortland, D. A.: Equatorial waves in High Resolution
Dynamics Limb Sounder (HIRDLS) data, J. Geophys. Res., 115, D24111,
https://doi.org/10.1029/2010JD014782, 2010. a
Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P.,
Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y.,
Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R., and Watanabe, S.: Recent
developments in gravity-wave effects in climate models and the global
distribution of gravity-wave momentum flux from observations and models,
Q. J. Roy. Meteor. Soc., 136, 1103–1124, https://doi.org/10.1002/qj.637, 2010. a
Alexander, S. P., Tsuda, T., Shibagaki, Y., and Kozu, T.: Seasonal gravity wave
activity observed with the Equatorial Atmosphere Radar and its relation to
rainfall information from the Tropical Rainfall Measuring Mission, J.
Geophys. Res., 113, D02104, https://doi.org/10.1029/2007JD008777, 2008. a
Antonita, T. M., Ramkumar, G., Kumar, K. K., and Deepa, V.: Meteor wind radar
observations of gravity wave momentum fluxes and their forcing toward the
Mesospheric Semiannual Oscillation, J. Geophys. Res.-Atmos., 113, d10115,
https://doi.org/10.1029/2007JD009089, 2008. a
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H.,
Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T.,
Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., and Takahashi,
M.: The Quasi-Biennial Oscillation, Rev. Geophys., 39, 179–229,
https://doi.org/10.1029/1999RG000073, 2001. a
Beres, J. H., Garcia, R. R., Boville, B. A., and Sassi, F.: Implementation of a
gravity wave source spectrum parameterization dependent on the properties of
convection in the Whole Atmosphere Community Climate Model
(WACCM), J. Geophys. Res., 110, D10108, https://doi.org/10.1029/2004JD005504, 2005. a
Boeloeni, G., Ribstein, B., Muraschko, J., Sgoff, C., Wei, J., and Achatz, U.:
The Interaction between Atmospheric Gravity Waves and Large-Scale Flows: An
Efficient Description beyond the Nonacceleration Paradigm, J. Atmos. Sci.,
73, 4833–4852, https://doi.org/10.1175/JAS-D-16-0069.1, 2016. a
Buehler, O. and McIntyre, M. E.: Remote recoil: a new wave-mean interaction
effect, J. Fluid Mech., 492, 207–230, 2003. a
Burrage, M. D., Vincent, R. A., Mayr, H. G., Arnold, W. R. S. N. F., and Hays,
P. B.: Long-term variability in the equatorial middle atmosphere zonal wind,
J. Geophys. Res., 101, 847–854, 1996. a
Choi, H.-J., Chun, H.-Y., and Song, I.-S.: Gravity wave temperature variance
calculated using the ray-based spectral parameterization of convective
gravity waves and its comparison with Microwave Limb Sounder observations,
J. Geophys. Res., 114, D08111, https://doi.org/10.1029/2008JD011330, 2009. a
Choi, H.-J., Chun, H.-Y., Gong, J., and Wu, D. L.: Comparison of gravity wave
temperature variances from ray-based spectral parameterization of convective
gravity wave drag with AIRS observations, J. Geophys. Res., 117, D05115,
https://doi.org/10.1029/2011JD016900, 2012. a
de la Camara, A., Lott, F., and Hertzog, A.: Intermittency in a stochastic
parameterization of nonorographic gravity waves, J. Geophys. Res.-Atmos.,
119, 11905–11919, https://doi.org/10.1002/2014JD022002, 2014. a
de Wit, R. J., Hibbins, R. E., Espy, P. J., and Mitchell, N. J.: Interannual
variability of mesopause zonal winds over Ascension Island: Coupling to the
stratospheric QBO, J. Geophys. Res.-Atmos., 118, 12052–12060,
https://doi.org/10.1002/2013JD020203, 2013. a, b
Dunkerton, T. J.: The role of gravity waves in the quasi-biennial oscillation,
J. Geophys. Res., 102, 26053–26076, https://doi.org/10.1029/96JD02999, 1997. a
Dunkerton, T. J.: Midwinter Deceleration of the Subtropical Mesospheric Jet and
Interannual Variability of the High-Latitude Flow in UKMO Analyses, J. Atmos. Sci., 57, 3838–3855,
https://doi.org/10.1175/1520-0469(2000)057<3838:MDOTSM>2.0.CO;2, 2000. a
Dunkerton, T. J.: Nearly identical cycles of the quasi-biennial oscillation in
the equatorial lower stratosphere, J. Geophys. Res.-Atmos., 122, 8467–8493, https://doi.org/10.1002/2017JD026542, 2017. a
Ern, M., Preusse, P., Alexander, M. J., and Warner, C. D.: Absolute values of
gravity wave momentum flux derived from satellite data, J. Geophys. Res.-Atmos., 109, D20103, https://doi.org/10.1029/2004JD004752, 2004. a, b, c
Ern, M., Preusse, P., Gille, J. C., Hepplewhite, C. L., Mlynczak, M. G.,
Russell III, J. M., and Riese, M.: Implications for atmospheric dynamics
derived from global observations of gravity wave momentum flux in
stratosphere and mesosphere, J. Geophys. Res., 116, D20103,
https://doi.org/10.1029/2011JD015821, 2011. a, b, c, d, e, f, g, h, i, j, k
Ern, M., Preusse, P., Kalisch, S., Kaufmann, M., and Riese, M.: Role of gravity
waves in the forcing of quasi two-day waves in the mesosphere: An
observational study, J. Geophys. Res.-Atmos., 118, 3467–3485,
https://doi.org/10.1029/2012JD018208, 2013. a, b
Ern, M., Ploeger, F., Preusse, P., Gille, J. C., Gray, L. J., Kalisch, S.,
Mlynczak, M. G., Russell III, J. M., and Riese, M.: Interaction of gravity
waves with the QBO: A satellite perspective, J. Geophys. Res.-Atmos.,
119, 2329–2355, https://doi.org/10.1002/2013JD020731, 2014. a, b, c, d
Ern, M., Preusse, P., and Riese, M.: Driving of the SAO by gravity waves as observed from satellite, Ann. Geophys., 33, 483–504, https://doi.org/10.5194/angeo-33-483-2015, 2015. a, b, c, d
Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., Ungermann, J., Zhu, Y., Gille, J. C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings, Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, 2016. a, b
Ern, M., Hoffmann, L., and Preusse, P.: Directional gravity wave momentum
fluxes in the stratosphere derived from high-resolution AIRS temperature
data, Geophys. Res. Lett., 44, 475–485, https://doi.org/10.1002/2016GL072007,
2017a. a
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, link to data in NetCDF format, PANGAEA, https://doi.org/10.1594/PANGAEA.879658, 2017b. a
Ern, M., Trinh, Q. T., Preusse, P., Gille, J. C., Mlynczak, M. G., Russell III, J. M., and Riese, M.: GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings, Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, 2018. a, b, c, d
Espy, P. J., Jones, G. O. L., Swenson, G. R., Tang, J., and Taylor, M. J.:
Seasonal variations of the gravity wave momentum flux in the Antarctic
mesosphere and lower thermosphere, J. Geophys. Res., 109, D23109,
https://doi.org/10.1029/2003JD004446, 2004. a
Fritts, D. and Alexander, M.: Gravity wave dynamics and effects in the middle
atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Camara, A., and Murphy,
D. J.: Modification of the Gravity Wave Parameterization in the Whole
Atmosphere Community Climate Model: Motivation and Results, J. Atmos. Sci.,
74, 275–291, https://doi.org/10.1175/JAS-D-16-0104.1, 2017. a
Geller, M. A., Alexander, M. J., Love, P. T., Bacmeister, J., Ern, M., Hertzog,
A., Manzini, E., Preusse, P., Sato, K., Scaife, A. A., and Zhou, T.: A
comparison between gravity wave momentum fluxes in observations and climate
models, J. Climate, 26, 6383–6405, https://doi.org/10.1175/JCLI-D-12-00545.1, 2013. a, b
Hertzog, A., Alexander, M. J., and Plougonven, R.: On the Intermittency of
Gravity Wave Momentum Flux in the Stratosphere, J. Atmos. Sci., 69,
3433–3448, https://doi.org/10.1175/JAS-D-12-09.1, 2012. a
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum
deposition in the middle atmosphere. Part1: Basic formulation, J. Atmos.
Sol.-Terr. Phy., 59, 371–386, 1997. a
Hirota, I.: Equatorial Waves in Upper Stratosphere and Mesosphere in Relation
to Semiannual Oscillation of Zonal Wind, J. Atmos. Sci., 35, 714–722, 1978. a
Hitchman, M. H., Gille, J. C., Rodgers, C. D., and Brasseur, G.: The Separated
Polar Winter Stratopause: A Gravity Wave Driven Climatological Feature, J.
Atmos. Sci., 46, 410–422,
https://doi.org/10.1175/1520-0469(1989)046<0410:TSPWSA>2.0.CO;2, 1989. a
Hoffmann, P., Becker, E., Singer, W., and Placke, M.: Seasonal variation of
mesospheric waves at northern middle and high latitudes, J. Atmos. Sci.,
72, 1068–1079, https://doi.org/10.1016/j.jastp.2010.07.002, 2010. a
Holton, J. R.: The Influence of Gravity Wave Breaking on the General
Circulation of the Middle Atmosphere, J. Atmos. Sci., 40, 2497–2507,
https://doi.org/10.1175/1520-0469(1983)040<2497:TIOGWB>2.0.CO;2, 1983. a
John, S. R. and Kumar, K. K.: TIMED/SABER observations of global gravity wave
climatology and their interannual variability from stratosphere to mesosphere
lower thermosphere, Clim. Dynam., 39, 1489–1505,
https://doi.org/10.1007/s00382-012-1329-9, 2012. a, b
Kalisch, S., Preusse, P., Ern, M., Eckermann, S. D., and Riese, M.: Differences
in gravity wave drag between realistic oblique and assumed vertical
propagation, J. Geophys. Res.-Atmos., 119, 10081–10099,
https://doi.org/10.1002/2014JD021779, 2014. a
Kim, Y. H., Bushell, A. C., Jackson, D. R., and Chun, H.-Y.: Impacts of
introducing a convective gravity-wave parameterization upon the QBO in the
Met Office Unified Model, Geophys. Res. Lett., 40, 1873–1877,
https://doi.org/10.1002/grl.50353, 2013. a
Kim, Y.-J., Eckermann, S. D., and Chun, H.-Y.: An overview of the past, present
and future of gravity-wave drag parameterization for numerical climate and
weather prediction models, Atmos. Ocean, 41, 65–98, 2003. a
Krisch, I., Preusse, P., Ungermann, J., Dörnbrack, A., Eckermann, S. D., Ern, M., Friedl-Vallon, F., Kaufmann, M., Oelhaf, H., Rapp, M., Strube, C., and Riese, M.: First tomographic observations of gravity waves by the infrared limb imager GLORIA, Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, 2017. a, b
Lehmann, C. I., Kim, Y.-H., Preusse, P., Chun, H.-Y., Ern, M., and Kim, S.-Y.: Consistency between Fourier transform and small-volume few-wave decomposition for spectral and spatial variability of gravity waves above a typhoon, Atmos. Meas. Tech., 5, 1637–1651, https://doi.org/10.5194/amt-5-1637-2012, 2012. a
Li, H. Y., Huang, C. M., Zhang, S. D., Huang, K. M., Zhang, Y., Gong, Y., Gan,
Q., and Jia, Y.: Low-frequency oscillations of the gravity wave energy
density in the lower atmosphere at low latitudes revealed by U.S. radiosonde
data, J. Geophys. Res.-Atmos., 121, 13458–13473,
https://doi.org/10.1002/2016JD025435, 2016. a, b, c, d
Li, T., Leblanc, T., McDermid, I. S., Wu, D. L., Dou, X., and Wang, S.:
Seasonal and interannual variability of gravity wave activity revealed by
long-term lidar observations over Mauna Loa Observatory, Hawaii, J. Geophys.
Res.-Atmos., 115, d13103, https://doi.org/10.1029/2009JD013586, 2010. a
Lighthill, M. J.: Waves in Fluids, Cambridge University Press, New York, 504 pp., 1978. a
Lindzen, R. S.: Turbulence and stress due to gravity wave and tidal breakdown,
J. Geophys. Res., 86, 9707–9714, 1981. a
Marks, C. J. and Eckermann, S. D.: A Three-Dimensional Nonhydrostatic
Ray-Tracing Model for Gravity Waves: Formulation and Preliminary Results for
the Middle Atmosphere, J. Atmos. Sci., 52, 1959–1984,
https://doi.org/10.1175/1520-0469(1995)052<1959:ATDNRT>2.0.CO;2, 1995. a, b, c
McLandress, C.: On the importance of gravity waves in the middle atmosphere and
their parameterization in general circulation models, J. Atmos. Sol.-Terr.
Phy., 60, 1357–1383, https://doi.org/10.1016/S1364-6826(98)00061-3, 1998. a
Muraschko, J., Fruman, M. D., Achatz, U., Hickel, S., and Toledo, Y.: On the
application of Wentzel-Kramer-Brillouin theory for the simulation of the
weakly nonlinear dynamics of gravity waves, Q. J. Roy. Meteor. Soc., 141, 3446, https://doi.org/10.1002/qj.2719, 2015. a
Plougonven, R., Hertzog, A., and Guez, L.: Gravity waves over Antarctica
and the Southern Ocean: consistent momentum fluxes in mesoscale
simulations and stratospheric balloon observations, Q. J. Roy. Meteor.
Soc., 139, 101–118, https://doi.org/10.1002/qj.1965, 2013. a
Plougonven, R., de la Camara, A., Jewtoukoff, V., Hertzog, A., and Lott, F.:
On the relation between gravity waves and wind speed in the lower
stratosphere over the Southern Ocean., J. Atmos. Sci., 74, 1075–1093,
https://doi.org/10.1175/JAS-D-16-0096.1, 2017. a
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.:
Numerical Recipes, The Art of Scientific Computing, Vol. 1, 3rd Edn., Cambridge
University Press, New York, 2007. a
Preusse, P., Dörnbrack, A., Eckermann, S. D., Riese, M., Schaeler, B.,
Bacmeister, J. T., Broutman, D., and Grossmann, K. U.: Space-based
measurements of stratospheric mountain waves by CRISTA, 1. Sensitivity,
analysis method, and a case study, J. Geophys. Res., 107, 8178,
https://doi.org/10.1029/2001JD000699, 2002. a, b, c
Preusse, P., Ern, M., Grossmann, K. U., and Mergenthaler, J. L.: Seasonal
variations of gravity wave variance inferred from CLAES, Proc. SPIE, 5235, 288–297, 2004. a
Preusse, P., Ern, M., Eckermann, S. D., Warner, C. D., Picard, R. H., Knieling,
P., Krebsbach, M., Russell III, J. M., Mlynczak, M. G., Mertens, C. J., and
Riese, M.: Tropopause to mesopause gravity waves in August: measurement and
modeling, J. Atm. Sol.-Terr. Phy., 68, 1730–1751, 2006. a
Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble,
R. G., Riese, M., Russell III, J. M., and Mlynczak, M. G.: Global ray
tracing simulations of the SABER gravity wave climatology, J. Geophys. Res.-Atmos., 114, D08126, https://doi.org/10.1029/2008JD011214, 2009. a, b, c, d
Preusse, P., Ern, M., Bechtold, P., Eckermann, S. D., Kalisch, S., Trinh, Q. T., and Riese, M.: Characteristics of gravity waves resolved by ECMWF, Atmos. Chem. Phys., 14, 10483–10508, https://doi.org/10.5194/acp-14-10483-2014, 2014. a, b, c
Rapp, M., Dörnbrack, A., and Kaifler, B.: An intercomparison of stratospheric gravity wave potential energy densities from METOP GPS radio occultation measurements and ECMWF model data, Atmos. Meas. Tech., 11, 1031–1048, https://doi.org/10.5194/amt-11-1031-2018, 2018. a
Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser,
G. S., Martin-Torres, J., Mlynczak, M. G., Russell III, J. M., Smith,
A. K., Zhao, Y., Brown, C., Gordley, L. L., Lopez-Gonzalez, M. J.,
Lopez-Puertas, M., She, C. Y., Taylor, M. J., and Thompson, R. E.: Assessment
of the quality of the Version 1.07 temperature-versus-pressure profiles of
the middle atmosphere from TIMED/SABER, J. Geophys. Res., 113, D17101,
https://doi.org/10.1029/2008JD010013, 2008. a
Ribstein, B., Achatz, U., and Senf, F.: The interaction between gravity waves
and solar tides: Results from 4-D ray tracing coupled to a linear tidal
model, J. Geophys. Res.-Space, 120, 6795–6817,
https://doi.org/10.1002/2015JA021349, 2015. a
Richter, J. H., Sassi, F., and Garcia, R. R.: Toward a physically based gravity wave source parameterization in a general circulation model, J. Atmos. Sci., 67, 136–156, 2010. a
Salby, M. and Callaghan, P.: Connection between the solar cycle and the QBO:
the missing link, J. Climate, 14, 2652–2662, 2000. a
Sato, K., Yamamori, M., Ogino, S. Y., Takahashi, N., Tomikawa, Y., and
Yamanouchi, T.: A meridional scan of the stratospheric gravity wave field
over the ocean in 2001 (MeSSO2001), J. Geophys. Res., 108, 4491,
https://doi.org/10.1029/2002JD003219, 2003. a
Sato, K., Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., and
Takahashi, M.: On the origins of mesospheric gravity waves, Geophys. Res.
Lett., 36, L19801, https://doi.org/10.1029/2009GL039908, 2009. a
Schroeder, S., Preusse, P., Ern, M., and Riese, M.: Gravity waves resolved in
ECMWF and measured by SABER, Geophys. Res. Lett., 36, L10805,
https://doi.org/10.1029/2008GL037054, 2009. a
Shuai, J., Zhang, S., Huang, C., Yi, F., Huang, K., Gan, Q., and Gong, Y.:
Climatology of global gravity wave activity and dissipation revealed by
SABER/TIMED temperature observations, Sci. China Technol. Sc., 57, 998–1009,
https://doi.org/10.1007/s11431-014-5527-z, 2014. a, b, c
Shutts, G. J. and Vosper, S. B.: Stratospheric gravity waves revealed in NWP
model forecasts, Q. J. Roy. Meteor. Soc., 137, 303–317,
https://doi.org/10.1002/qj.763, 2011. a
Siskind, D. E.: Simulations of the winter stratopause and summer mesopause at
varying spatial resolutions, J. Geophys. Res.-Atmos., 119, 461–470,
https://doi.org/10.1002/2013JD020985, 2014. a
Skamarock, W. C.: Evaluating mesoscale NWP models using kinetic energy
spectra, Mon. Weather Rev., 132, 3019–3032, 2004. a
Smith, A. K.: Global dynamics of the MLT, Surv. Geophys., 33,
1177–1230, https://doi.org/10.1007/s10712-012-9196-9, 2012. a
Song, I.-S., Chun, H.-Y., Garcia, R. R., and Boville, B. A.: Momentum flux
spectrum of convectively forced internal gravity waves and its application to
gravity wave drag parameterization. Part II: Impacts in a GCM (WACCM),
J. Atmos. Sci., 64, 2286–2308, 2007. a
Sutherland, B. R.: Internal wave instability: Wave-wave versus wave-induced
mean flow interactions, Phys. Fluids, 18, 074107, https://doi.org/10.1063/1.2219102,
2006. a
Tomikawa, Y., Sato, K., Watanabe, S., Kawatani, Y., Miyazaki, K., and
Takahashi, M.: Wintertime temperature maximum at the subtropical stratopause
in a T213L256 GCM, J. Geophys. Res., 113, D17117, https://doi.org/10.1029/2008JD009786, 2008.
a
Trinh, Q. T., Kalisch, S., Preusse, P., Ern, M., Chun, H.-Y., Eckermann, S. D., Kang, M.-J., and Riese, M.: Tuning of a convective gravity wave source scheme based on HIRDLS observations, Atmos. Chem. Phys., 16, 7335–7356, https://doi.org/10.5194/acp-16-7335-2016, 2016. a, b
Tsuda, T., Murayama, Y., Yamamoto, M., Kato, S., and Fukao, S.: Seasonal
variation of momentum flux in the mesosphere observed with the mu radar,
Geophys. Res. Lett., 17, 725–728, 1990. a
Vincent, R. and Alexander, M.: Gravity waves in the tropical lower
stratosphere: An observational study of seasonal and interannual
variability, J. Geophys. Res.-Atmos., 105, 17971–17982,
https://doi.org/10.1029/2000JD900196, 2000. a
Wang, L. and Alexander, M. J.: Gravity wave activity during stratospheric
sudden warmings in the 2007–2008 Northern Hemisphere winter, J. Geophys.
Res.-Atmos., 114, d18108, https://doi.org/10.1029/2009JD011867, 2009. a
Warner, D. C. and McIntyre, M. E.: An ultra-simple spectral parameterization
for non-orographic gravity waves, J. Atmos. Sci., 58, 1837–1857, 2001. a
Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., Takahashi, M., and
Sato, K.: General aspects of a T213L256 middle atmosphere general circulation
model, J. Geophys. Res.-Atmos., 113, d12110, https://doi.org/10.1029/2008JD010026,
2008. a
Wright, C. J., Osprey, S. M., Barnett, J. J., Gray, L. J., and Gille, J. C.:
High Resolution Dynamics Limb Sounder measurements of gravity wave activity
in the 2006 Arctic stratosphere, J. Geophys. Res.-Atmos., 115, D02105,
https://doi.org/10.1029/2009JD011858, 2010. a
Yang, G., Clemesha, B., Batista, P., and Simonich, D.: Seasonal variations of
gravity wave activity and spectra derived from sodium temperature lidar, J.
Geophys. Res.-Atmos., 115, d18104, https://doi.org/10.1029/2009JD012367,
2010. a
Zhang, Y., Xiong, J., Liu, L., and Wan, W.: A global morphology of gravity
wave activity in the stratosphere revealed by the 8-year SABER/TIMED data,
J. Geophys. Res.-Atmos., 117, d21101, https://doi.org/10.1029/2012JD017676,
2012. a
Short summary
In this paper, for the first time, absolute gravity wave momentum flux (GWMF) on temporal scales from terannual variation up to solar cycle length is investigated. The systematic spectral analysis of SABER absolute GWMF is presented and physically interpreted. The various roles of filtering and oblique propagating are discussed, which is likely an important factor for MLT dynamics, and hence can be used as a stringent test bed of the reproduction of such features in global models.
In this paper, for the first time, absolute gravity wave momentum flux (GWMF) on temporal scales...