Articles | Volume 37, issue 2
https://doi.org/10.5194/angeo-37-235-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-37-235-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global sounding of F region irregularities by COSMIC during a geomagnetic storm
Institute of Applied Physics, University of Bern, Bern, Switzerland
Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Huixin Liu
Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan
Nicholas Pedatella
High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado,
USA
Guanyi Ma
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
Related authors
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Ales Kuchar, Gunter Stober, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Manfred Ern, Damian Murphy, Diego Janches, Tracy Moffat-Griffin, Nicholas Mitchell, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2827, https://doi.org/10.5194/egusphere-2025-2827, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
We studied how the healing of the Antarctic ozone layer is affecting winds high above the South Pole. Using ground-based radar, satellite data, and computer models, we found that winds in the upper atmosphere have become stronger over the past two decades. These changes appear to be linked to shifts in the lower atmosphere caused by ozone recovery. Our results show that human efforts to repair the ozone layer are also influencing climate patterns far above Earth’s surface.
Masaru Kogure, In-Sun Song, Huixin Liu, and Han-Li Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3303, https://doi.org/10.5194/egusphere-2025-3303, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines the impact of increased CO2 on the migrating diurnal tide (DW1), which is generated by solar absorption and latent heating. Using WACCM-X under the RCP 8.5 scenario, we find a +1 %/decade trend in DW1 amplitude at 20–70 km and a −2 %/decade trend at 90–110 km. The increase is likely due to reduced density and stronger convection near the equator, while the decrease may result from enhanced eddy diffusion in the mesosphere that suppresses tidal growth.
Guanyi Ma and Klemens Hocke
Atmos. Chem. Phys., 25, 5009–5020, https://doi.org/10.5194/acp-25-5009-2025, https://doi.org/10.5194/acp-25-5009-2025, 2025
Short summary
Short summary
We analyse the influences of sudden stratospheric warming (SSW) on diurnal/semidiurnal variations of the ionosphere with the global total electron content (TEC) data from 1998 to 2022. We use machine learning (ML) to establish the TEC (ML-TEC) model related to the solar/geomagnetic activities and seasonal change from the TEC data. Subtracting the ML-TEC from the observed TEC, we find a global SSW-induced enhancement in diurnal/semidiurnal TEC variations.
Maria Gloria Tan Jun Rios, Claudia Borries, Huixin Liu, and Jens Mielich
Ann. Geophys., 43, 73–89, https://doi.org/10.5194/angeo-43-73-2025, https://doi.org/10.5194/angeo-43-73-2025, 2025
Short summary
Short summary
This study analyzes changes in the ionospheric response to solar flux over five complete solar cycles (1957 to 2023). We use Juliusruh hourly data of the peak electron density of the F2 layer, NmF2, and three solar extreme ultraviolet (EUV) radiation proxies. The response is better represented by a cubic regression, and F30 shows the highest correlation for describing NmF2 dependence over time. These results reveal a decrease in NmF2 influenced by the intensity of the solar activity index.
Huixin Liu
Hist. Geo Space. Sci., 15, 41–42, https://doi.org/10.5194/hgss-15-41-2024, https://doi.org/10.5194/hgss-15-41-2024, 2024
Klemens Hocke, Wenyue Wang, and Guanyi Ma
Atmos. Chem. Phys., 24, 5837–5846, https://doi.org/10.5194/acp-24-5837-2024, https://doi.org/10.5194/acp-24-5837-2024, 2024
Short summary
Short summary
We find a sudden stratospheric warming (SSW) effect in the F2 critical frequency (foF2) series for Okinawa. Across 29 SSW events, the amplitude of the semidiurnal cycle of foF2 peaks at the SSW onset in the SSW years. In these years, we find, for the first time, a lunar terdiurnal component with a relative amplitude of about 5 %, and lunar diurnal and semidiurnal components have relative amplitudes of about 10 %. The periods of lunar ionospheric tidal variations align with those of ocean tides.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Qiong Tang, Chen Zhou, Huixin Liu, Yi Liu, Jiaqi Zhao, Zhibin Yu, Zhengyu Zhao, and Xueshang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-534, https://doi.org/10.5194/acp-2022-534, 2022
Preprint withdrawn
Short summary
Short summary
The geomagnetic and solar effect on Es is studied. The negative correlation between Es and geomagnetic activity at mid-latitude is related to the decreased meteor rate during storm period. The increased Es occurrence in high latitude relates to the changing electric field. The positive correlation between Es and solar activity at high latitude is due to the enhanced IMF in solar maximum. The negative correlation in mid and low latitudes relates to the decreased meteor rate during solar activity.
Phoebe Noble, Neil Hindley, Corwin Wright, Chihoko Cullens, Scott England, Nicholas Pedatella, Nicholas Mitchell, and Tracy Moffat-Griffin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-150, https://doi.org/10.5194/acp-2022-150, 2022
Revised manuscript not accepted
Short summary
Short summary
We use long term radar data and the WACCM-X model to study the impact of dynamical phenomena, including the 11-year solar cycle, ENSO, QBO and SAM, on Antarctic mesospheric winds. We find that in summer, the zonal wind (both observationally and in the model) is strongly correlated with the solar cycle. We also see important differences in the results from the other processes. In addition we find important and large biases in the winter model zonal winds relative to the observations.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Leonie Bernet, Elmar Brockmann, Thomas von Clarmann, Niklaus Kämpfer, Emmanuel Mahieu, Christian Mätzler, Gunter Stober, and Klemens Hocke
Atmos. Chem. Phys., 20, 11223–11244, https://doi.org/10.5194/acp-20-11223-2020, https://doi.org/10.5194/acp-20-11223-2020, 2020
Short summary
Short summary
With global warming, water vapour increases in the atmosphere. Water vapour is an important gas because it is a natural greenhouse gas and affects the formation of clouds, rain and snow. How much water vapour increases can vary in different regions of the world. To verify if it increases as expected on a regional scale, we analysed water vapour measurements in Switzerland. We found that water vapour generally increases as expected from temperature changes, except in winter.
Franziska Schranz, Jonas Hagen, Gunter Stober, Klemens Hocke, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 10791–10806, https://doi.org/10.5194/acp-20-10791-2020, https://doi.org/10.5194/acp-20-10791-2020, 2020
Short summary
Short summary
We measured middle-atmospheric ozone, water vapour and zonal and meridional wind with two ground-based microwave radiometers which are located at Ny-Alesund, Svalbard, in the Arctic. In this article we present measurements of the small-scale horizontal ozone gradients during winter 2018/2019. We found a distinct seasonal variation of the ozone gradients which is linked to the planetary wave activity. We further present the signatures of the SSW in the ozone, water vapour and wind measurements.
Cited articles
Aarons, J.: Global morphology of ionospheric scintillations, IEEE
Proceedings, 70, 360–378, 1982. a
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond,
K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H.,
Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J.,
Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S.,
Thompson, D. C., Trenberth, K. E., Wee, T.-K., Yen, N. L., and
Zeng, Z.: The COSMIC/FORMOSAT-3 Mission: Early Results, B.
Am. Meteorol. Soc., 89, 313–334, https://doi.org/10.1175/BAMS-89-3-313, 2008. a
Arras, C., Jacobi, C., Wickert, J., Heise, S., and Schmidt, T.: Sporadic E
signatures revealed from multi-satellite radio occultation measurements, Adv.
Radio Sci., 8, 225–230, https://doi.org/10.5194/ars-8-225-2010, 2010. a
Carter, B. A., Zhang, K., Norman, R., Kumar, V. V., and Kumar, S.: On the
occurrence of equatorial F-region irregularities during solar minimum using
radio occultation measurements, J. Geophys. Res.-Space, 118, 892–904, https://doi.org/10.1002/jgra.50089, 2013. a, b
Cherniak, I. and Zakharenkova, I.: New advantages of the combined GPS
and
GLONASS observations for high-latitude ionospheric irregularities monitoring:
case study of June 2015 geomagnetic storm, Earth Planets Space, 69,
66, https://doi.org/10.1186/s40623-017-0652-0, 2017. a
Fejer, B. G. and Kelley, M. C.: Ionospheric irregularities, Rev.
Geophys. Space Ge., 18, 401–454, https://doi.org/10.1029/RG018i002p00401,
1980. a, b, c, d
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and
Leroy, S. S.: A technical description of atmospheric sounding by GPS
occultation, J. Atmos. Sol.-Terr. Phy., 64,
451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002. a
Hocke, K., Igarashi, K., Nakamura, M., Wilkinson, P., Wu, J.,
Pavelyev, A., and Wickert, J.: Global sounding of sporadic E layers by
the GPS/MET radio occultation experiment, J. Atmos.
Sol.-Terr. Phy., 63, 1973–1980,
https://doi.org/10.1016/S1364-6826(01)00063-3, 2001. a
Hocke, K., Igarashi, K., and Pavelyev, A.: Irregularities of the topside
ionosphere observed by GPS/MET radio occultation, Radio Sci., 37,
13-1–13-11, https://doi.org/10.1029/2001RS002599, 2002.
a
Rocken, C., Anthes, R., Exner, M., Hunt, D., Sokolovskiy, S.,
Ware,
R., Gorbunov, M., Schreiner, W., Feng, D., Herman, B., Kuo, Y.-H.,
and Zou, X.: Analysis and validation of GPS/MET data in the neutral
atmosphere, J. Geophys. Res., 102, 29849–29866,
https://doi.org/10.1029/97JD02400, 1997. a
Studer, S., Hocke, K., and Kämpfer, N.: Intraseasonal oscillations of
stratospheric ozone above Switzerland, J. Atmos.
Sol.-Terr. Phy., 74, 189–198, 2012. a
Tsunoda, R. T.: Time evolution and dynamics of equatorial backscatter
plumes. I – Growth phase, J. Geophys. Res., 86, 139–149,
https://doi.org/10.1029/JA086iA01p00139, 1981. a, b, c
Tsunoda, R. T., Saito, S., and Nguyen, T. T.: Post-sunset rise of equatorial
F
layer – or upwelling growth?, Prog. Earth Planet. Sc., 5, 22,
https://doi.org/10.1186/s40645-018-0179-4, 2018. a
Wang, M., Lou, W., Li, P., Shen, X., and Li, Q.: Monitoring the ionospheric
storm effect with multiple instruments in North China: July 15–16, 2012
magnetic storm event, J. Atmos. Sol.-Terr. Phy.,
102, 261–268, https://doi.org/10.1016/j.jastp.2013.05.021,
2013. a
Watson, C. and Pedatella, N. M.: Climatology and Characteristics of
Medium-Scale F Region Ionospheric Plasma Irregularities Observed by COSMIC
Radio Occultation Receivers, J. Geophys. Res.-Space,
123, 8610–8630, https://doi.org/10.1029/2018JA025696, 2018. a, b, c
Wu, D. L., Ao, C. O., Hajj, G. A., de La Torre Juarez, M., and
Mannucci, A. J.: Sporadic E morphology from GPS-CHAMP radio occultation,
J. Geophys. Res.-Space, 110, A01306,
https://doi.org/10.1029/2004JA010701, 2005. a
Zakharenkova, I. and Astafyeva, E.: Topside ionospheric irregularities as
seen from multisatellite observations, J. Geophys. Res.-Space, 120, 807–824,
https://doi.org/10.1002/2014JA020330, 2015. a, b
Short summary
The GPS radio occultation data of the COSMIC-FORMOSAT-3 mission are used to visualize the global distribution of ionospheric irregularities in the F2 region during a geomagnetic storm, at solar minimum, and at solar maximum.
The GPS radio occultation data of the COSMIC-FORMOSAT-3 mission are used to visualize the global...