Articles | Volume 36, issue 3
Ann. Geophys., 36, 825–830, 2018
https://doi.org/10.5194/angeo-36-825-2018

Special issue: Dynamics and interaction of processes in the Earth and its...

Ann. Geophys., 36, 825–830, 2018
https://doi.org/10.5194/angeo-36-825-2018

ANGEO Communicates 06 Jun 2018

ANGEO Communicates | 06 Jun 2018

Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: meteor radar data and simulations

Dimitry Pokhotelov et al.

Related authors

Polar tongue of ionisation during geomagnetic superstorm
Dimitry Pokhotelov, Isabel Fernandez-Gomez, and Claudia Borries
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-19,https://doi.org/10.5194/angeo-2021-19, 2021
Revised manuscript under review for ANGEO
Short summary
Interhemispheric differences of mesosphere/lower thermosphere winds and tides investigated from three whole atmosphere models and meteor radar observations
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, and Johan Kero
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-142,https://doi.org/10.5194/acp-2021-142, 2021
Revised manuscript under review for ACP
Statistical climatology of mid-latitude mesospheric summer echoes characterised by OSWIN (Ostsee-Wind) radar observations
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019,https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
The influence of solar wind variability on magnetospheric ULF wave power
D. Pokhotelov, I. J. Rae, K. R. Murphy, and I. R. Mann
Ann. Geophys., 33, 697–701, https://doi.org/10.5194/angeo-33-697-2015,https://doi.org/10.5194/angeo-33-697-2015, 2015
Short summary
TID characterised using joint effort of incoherent scatter radar and GPS
M. van de Kamp, D. Pokhotelov, and K. Kauristie
Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014,https://doi.org/10.5194/angeo-32-1511-2014, 2014

Related subject area

Subject: Earth's ionosphere & aeronomy | Keywords: Waves and tides
Seasonal evolution of winds, atmospheric tides, and Reynolds stress components in the Southern Hemisphere mesosphere–lower thermosphere in 2019
Gunter Stober, Diego Janches, Vivien Matthias, Dave Fritts, John Marino, Tracy Moffat-Griffin, Kathrin Baumgarten, Wonseok Lee, Damian Murphy, Yong Ha Kim, Nicholas Mitchell, and Scott Palo
Ann. Geophys., 39, 1–29, https://doi.org/10.5194/angeo-39-1-2021,https://doi.org/10.5194/angeo-39-1-2021, 2021
Migrating tide climatologies measured by a high-latitude array of SuperDARN HF radars
Willem E. van Caspel, Patrick J. Espy, Robert E. Hibbins, and John P. McCormack
Ann. Geophys., 38, 1257–1265, https://doi.org/10.5194/angeo-38-1257-2020,https://doi.org/10.5194/angeo-38-1257-2020, 2020
Short summary
Diurnal mesospheric tidal winds observed simultaneously by meteor radars in Costa Rica (10° N, 86° W) and Brazil (7° S, 37° W)
Ricardo A. Buriti, Wayne Hocking, Paulo P. Batista, Igo Paulino, Ana R. Paulino, Marcial Garbanzo-Salas, Barclay Clemesha, and Amauri F. Medeiros
Ann. Geophys., 38, 1247–1256, https://doi.org/10.5194/angeo-38-1247-2020,https://doi.org/10.5194/angeo-38-1247-2020, 2020
Short summary
Forcing mechanisms of the migrating quarterdiurnal tide
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020,https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Investigation of sources of gravity waves observed in the Brazilian equatorial region on 8 April 2005
Oluwakemi Dare-Idowu, Igo Paulino, Cosme A. O. B. Figueiredo, Amauri F. Medeiros, Ricardo A. Buriti, Ana Roberta Paulino, and Cristiano M. Wrasse
Ann. Geophys., 38, 507–516, https://doi.org/10.5194/angeo-38-507-2020,https://doi.org/10.5194/angeo-38-507-2020, 2020
Short summary

Cited articles

Achatz, U., Grieger, N., and Schmidt, H.: Mechanisms controlling the diurnal solar tide: Analysis using a GCM and a linear model, J. Geophys. Res., 113, A08303, https://doi.org/10.1029/2007JA012967, 2008. a
Becker, E.: Mean-flow effects of thermal tides in the mesosphere and lower thermosphere, J. Atmos. Sci., 74, 2043–2062, https://doi.org/10.1175/JAS-D-16-0194.1, 2017. a, b, c, d
Becker, E. and Vadas, S. L.: Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model, J. Geophys. Res.-Atmos., 123, 2605–2627, https://doi.org/10.1002/2017jd027460, 2018. a
Buriti, R. A., Hocking, W. K., Batista, P. P., Medeiros, A. F., and Clemesha, B. R.: Observations of equatorial mesospheric winds over Cariri (7.4 S) by a meteor radar and comparison with existing models, Ann. Geophys., 26, 485–497, https://doi.org/10.5194/angeo-26-485-2008, 2008. a
Davis, R. N., Du, J., Smith, A. K., Ward, W. E., and Mitchell, N. J.: The diurnal and semidiurnal tides over Ascension Island (8 S, 14 W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM, Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, 2013. a, b
Download
Short summary
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to the upper atmosphere and ionosphere playing an important role in the vertical coupling. Ground radar measurements of the seasonal variability of tides are compared with global numerical simulations. The agreement with radar data and limitations of the numerical model are discussed. The work represents a first step in modelling the impact of tidal dynamics on the upper atmosphere and ionosphere.