Articles | Volume 40, issue 2
https://doi.org/10.5194/angeo-40-217-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-217-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dayside magnetopause reconnection and flux transfer events under radial interplanetary magnetic field (IMF): BepiColombo Earth-flyby observations
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
James A. Slavin
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
Daniel Heyner
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Karlheinz J. Trattner
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
Johannes Z. D. Mieth
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Jiutong Zhao
School of Earth and Space Sciences, Peking University, Beijing 100871, China
Qiu-Gang Zong
School of Earth and Space Sciences, Peking University, Beijing 100871, China
Sae Aizawa
Institut de Recherche en Astrophysique et Planétologie, CNRS-UPS-CNES, Toulouse, France
Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Nicolas Andre
Institut de Recherche en Astrophysique et Planétologie, CNRS-UPS-CNES, Toulouse, France
Yoshifumi Saito
Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Kanagawa, Japan
Related authors
Shuai Zhang, Anmin Tian, Quanqi Shi, Hanlin Li, Alexander W. Degeling, I. Jonathan Rae, Colin Forsyth, Mengmeng Wang, Xiaochen Shen, Weijie Sun, Shichen Bai, Ruilong Guo, Huizi Wang, Andrew Fazakerley, Suiyan Fu, and Zuyin Pu
Ann. Geophys., 36, 1335–1346, https://doi.org/10.5194/angeo-36-1335-2018, https://doi.org/10.5194/angeo-36-1335-2018, 2018
Short summary
Short summary
The features of ULF waves are statistically studied on the magnetotail stretched magnetic field lines (8 RE < R < 32 RE) by using 8 years of THEMIS data. The occurrence rates of ULF waves are higher in the post-midnight region than pre-midnight region. The frequency decreases with increasing radial distance of 8–16 RE and could be explained by much more standing waves in this region than in the region of 16–32 RE. The wave frequency is higher after the substorm onset than before it.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
EGUsphere, https://doi.org/10.5194/egusphere-2024-2956, https://doi.org/10.5194/egusphere-2024-2956, 2024
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind - the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Qiugang Zong
Ann. Geophys., 40, 121–150, https://doi.org/10.5194/angeo-40-121-2022, https://doi.org/10.5194/angeo-40-121-2022, 2022
Short summary
Short summary
Magnetospheric physics is in an extremely vibrant phase, with a number of ongoing and highly successful missions, e.g., Cluster, THEMIS, Van Allen Probes, and the MMS spacecraft, providing the most amazing observations and data sets. Since there are many fundamental and unsolved problems, in this paper I have addressed selected topics of ULF wave–charged particle interactions which encompass many special fields of radiation belt, ring current and plasmaspheric physics.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Xingran Chen, Qiugang Zong, Hong Zou, Xuzhi Zhou, Li Li, Yixin Hao, and Yongfu Wang
Ann. Geophys., 38, 801–813, https://doi.org/10.5194/angeo-38-801-2020, https://doi.org/10.5194/angeo-38-801-2020, 2020
Short summary
Short summary
We present a new in situ observation of energetic electrons in space obtained by a newly available particle detector. In view of the characteristic signatures in the particle flux, we attribute the observational features to the drift-resonance wave–particle interaction between energetic electrons and multiple localized ultra-low-frequency waves. The scenario is substantiated by a numerical calculation based on the revised drift-resonance theory which reproduced the observed particle signatures.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Johannes Z. D. Mieth, Dennis Frühauff, and Karl-Heinz Glassmeier
Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, https://doi.org/10.5194/angeo-37-163-2019, 2019
Short summary
Short summary
The magnetopause (MP) is the primary interaction region between solar wind and the magnetic field of planet Earth and understanding of its behaviour also helps to better understand space weather. One famous model of the MP is the Shue et al. model, designed for the dayside and near-Earth situation. We take data of the ARTEMIS mission orbiting the moon and compare the MP position and shape to the model. We find differences in the location prediction but good agreement for the MP normal direction.
Shuai Zhang, Anmin Tian, Quanqi Shi, Hanlin Li, Alexander W. Degeling, I. Jonathan Rae, Colin Forsyth, Mengmeng Wang, Xiaochen Shen, Weijie Sun, Shichen Bai, Ruilong Guo, Huizi Wang, Andrew Fazakerley, Suiyan Fu, and Zuyin Pu
Ann. Geophys., 36, 1335–1346, https://doi.org/10.5194/angeo-36-1335-2018, https://doi.org/10.5194/angeo-36-1335-2018, 2018
Short summary
Short summary
The features of ULF waves are statistically studied on the magnetotail stretched magnetic field lines (8 RE < R < 32 RE) by using 8 years of THEMIS data. The occurrence rates of ULF waves are higher in the post-midnight region than pre-midnight region. The frequency decreases with increasing radial distance of 8–16 RE and could be explained by much more standing waves in this region than in the region of 16–32 RE. The wave frequency is higher after the substorm onset than before it.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Christina Chu, Hui Zhang, David Sibeck, Antonius Otto, QiuGang Zong, Nick Omidi, James P. McFadden, Dennis Fruehauff, and Vassilis Angelopoulos
Ann. Geophys., 35, 443–451, https://doi.org/10.5194/angeo-35-443-2017, https://doi.org/10.5194/angeo-35-443-2017, 2017
Short summary
Short summary
Hot flow anomalies (HFAs) at Earth's bow shock were identified in Time History of Events and Macroscale Interactions During Substorms (THEMIS) satellite data from 2007 to 2009. The events were classified as young or mature and regular or spontaneous hot flow anomalies (SHFAs). HFA–SHFA occurrence decreases with distance upstream from the bow shock. HFAs are more prevalent for radial interplanetary magnetic fields and solar wind speeds from 550 to 600 kms−1.
Dennis Frühauff, Johannes Z. D. Mieth, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 253–262, https://doi.org/10.5194/angeo-35-253-2017, https://doi.org/10.5194/angeo-35-253-2017, 2017
Short summary
Short summary
The determination of the polytropic index the plasma sheet of Earth's magnetosphere using THEMIS data. The data set reveals that the active magnetotail density and pressure data are well correlated. Yet, considering broad distributions of specific entropies, the evaluation is best performed on shorter timescales.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
Egor V. Yushkov, Anton V. Artemyev, Anatoly A. Petrukovich, and Rumi Nakamura
Ann. Geophys., 34, 739–750, https://doi.org/10.5194/angeo-34-739-2016, https://doi.org/10.5194/angeo-34-739-2016, 2016
Short summary
Short summary
In the paper we study flapping wave structures, generated in the neutral plane of the Earth magnetotail. Investigated flapping is an important process of magnetosphere dynamics, connected with magnetic energy transformation and magnetic storm formation. Large separation of Cluster spacecraft allows us to estimate both local and global properties of flapping current sheets, the typical flapping times and propagation directions.
Takuma Nakamura, Rumi Nakamura, and Hiroshi Haseagwa
Ann. Geophys., 34, 357–367, https://doi.org/10.5194/angeo-34-357-2016, https://doi.org/10.5194/angeo-34-357-2016, 2016
Short summary
Short summary
Magnetic reconnection is a key process in space and laboratory plasmas which transfers energies through the magnetic field topology change. The topology change in this process takes place in a small scale region called the electron diffusion region (EDR). In this paper, using high-resolution fully kinetic simulations, we successfully obtained the firm scaling laws of spatial dimensions of the EDR. The obtained scalings allow us to precisely predict observable dimensions of the EDR in real space.
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
Y. Narita, R. Nakamura, W. Baumjohann, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 85–89, https://doi.org/10.5194/angeo-34-85-2016, https://doi.org/10.5194/angeo-34-85-2016, 2016
Short summary
Short summary
Four-spacecraft Cluster observations of turbulent fluctuations in the magnetic reconnection region in the geomagnetic tail show for the first time an indication of ion Bernstein waves, electromagnetic waves that propagate nearly perpendicular to the mean magnetic field and are in resonance with ions. Bernstein waves may influence current sheet dynamics in the reconnection outflow such as a bifurcation of the current sheet.
I. I. Vogiatzis, A. Isavnin, Q.-G. Zong, E. T. Sarris, S. W. Lu, and A. M. Tian
Ann. Geophys., 33, 63–74, https://doi.org/10.5194/angeo-33-63-2015, https://doi.org/10.5194/angeo-33-63-2015, 2015
Short summary
Short summary
Magnetospheric substorms are one of the most important phenomena occurring in planetary magnetotails, dynamically reconfiguring the near- planet space environment. They encompass various fundamental processes of plasma acceleration and transport in the magnetosphere/ionosphere. The key features of the paper are a new magnetospheric substorm model, a new explanation about the origin of dipolarization fronts (DFs), and a new explanation for energetic ion acceleration/injection in front of DFs.
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
R. Nakamura, F. Plaschke, R. Teubenbacher, L. Giner, W. Baumjohann, W. Magnes, M. Steller, R. B. Torbert, H. Vaith, M. Chutter, K.-H. Fornaçon, K.-H. Glassmeier, and C. Carr
Geosci. Instrum. Method. Data Syst., 3, 1–11, https://doi.org/10.5194/gi-3-1-2014, https://doi.org/10.5194/gi-3-1-2014, 2014
Y. Narita, R. Nakamura, and W. Baumjohann
Ann. Geophys., 31, 1605–1610, https://doi.org/10.5194/angeo-31-1605-2013, https://doi.org/10.5194/angeo-31-1605-2013, 2013
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
A. Alexandrova, R. Nakamura, V. S. Semenov, I. V. Kubyshkin, S. Apatenkov, E. V. Panov, D. Korovinskiy, H. Biernat, W. Baumjohann, K.-H. Glassmeier, and J. P. McFadden
Ann. Geophys., 30, 1727–1741, https://doi.org/10.5194/angeo-30-1727-2012, https://doi.org/10.5194/angeo-30-1727-2012, 2012
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetopause, cusp, and boundary layers
Magnetopause as conformal mapping
Plasma transport into the duskside magnetopause caused by Kelvin–Helmholtz vortices in response to the northward turning of the interplanetary magnetic field observed by THEMIS
Magnetospheric Multiscale observations of energetic oxygen ions at the duskside magnetopause during intense substorms
Statistical analysis of magnetopause crossings at lunar distances
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Guang Qing Yan, George K. Parks, Chun Lin Cai, Tao Chen, James P. McFadden, and Yong Ren
Ann. Geophys., 38, 263–273, https://doi.org/10.5194/angeo-38-263-2020, https://doi.org/10.5194/angeo-38-263-2020, 2020
Short summary
Short summary
We present (1) K–H vortices in direct response to the northward turning of the interplanetary magnetic field (IMF); (2) solar wind transport into the magnetosphere caused by the K–H vortices, involving both ion and electron fluxes; and (3) typical portraits of the ion and electron fluxes in the regions of plasma transport. The unique characteristics may complement existing observations and enhance our understanding of the K–H vortices and transport process.
Chen Zeng, Suping Duan, Chi Wang, Lei Dai, Stephen Fuselier, James Burch, Roy Torbert, Barbara Giles, and Christopher Russell
Ann. Geophys., 38, 123–135, https://doi.org/10.5194/angeo-38-123-2020, https://doi.org/10.5194/angeo-38-123-2020, 2020
Short summary
Short summary
Oxygen ions are an important element in the mass and energy transport in the magnetospheric dynamic process during intense substorms (AE > 500 nT). We did this work to better understand the O+ at the dusk flank magnetopause varying with solar wind conditions and AE index during intense substorms. The results show the O+ abundance at the duskside magnetopause has a corresponding relation to that in the duskside near-Earth plasma sheet.
Johannes Z. D. Mieth, Dennis Frühauff, and Karl-Heinz Glassmeier
Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, https://doi.org/10.5194/angeo-37-163-2019, 2019
Short summary
Short summary
The magnetopause (MP) is the primary interaction region between solar wind and the magnetic field of planet Earth and understanding of its behaviour also helps to better understand space weather. One famous model of the MP is the Shue et al. model, designed for the dayside and near-Earth situation. We take data of the ARTEMIS mission orbiting the moon and compare the MP position and shape to the model. We find differences in the location prediction but good agreement for the MP normal direction.
Cited articles
Akhavan-Tafti, M., Slavin, J. A., Le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., and Burch, J. L.:
MMS Examination of FTEs at the Earth's Subsolar Magnetopause,
J. Geophys. Res.-Space,
123, 1224–1241, https://doi.org/10.1002/2017JA024681, 2018.
Belenkaya, E. S.:
Reconnection modes for near-radial interplanetary magnetic field,
J. Geophys. Res.-Space,
103, 26487–26494, https://doi.org/10.1029/98JA02270, 1998.
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., and Ziethe, R.:
BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals,
Planet. Space Sci.,
58, 2–20, https://doi.org/10.1016/j.pss.2009.09.020, 2010.
Biskamp, D. and Welter, H.:
Coalescence of Magnetic Islands,
Phys. Rev. Lett.,
44, 1069–1072, https://doi.org/10.1103/PhysRevLett.44.1069, 1980.
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.:
Magnetospheric Multiscale Overview and Science Objectives,
Space Sci. Rev.,
199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016.
Burlaga, L. F.:
Magnetic clouds and force-free fields with constant alpha,
J. Geophys. Res.-Space,
93, 7217–7224, https://doi.org/10.1029/JA093iA07p07217, 1988.
Califano, F., Cerri, S. S., Faganello, M., Laveder, D., Sisti, M., and Kunz, M. W.:
Electron-Only Reconnection in Plasma Turbulence,
Frontiers in Physics,
8, 317, https://doi.org/10.3389/fphy.2020.00317, 2020.
Dorelli, J. C. and Bhattacharjee, A.:
On the generation and topology of flux transfer events,
J. Geophys. Res.-Space,
114, A06213, https://doi.org/10.1029/2008JA013410, 2009.
Drake, J. F., Swisdak, M., Che, H., and Shay, M. A.:
Electron acceleration from contracting magnetic islands during reconnection,
Nature,
443, 553, https://doi.org/10.1038/nature05116, 2006.
Dungey, J. W.:
Interplanetary Magnetic Field and the Auroral Zones,
Phys. Rev. Lett.,
6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Fear, R. C., Trenchi, L., Coxon, J. C., and Milan, S. E.:
How Much Flux Does a Flux Transfer Event Transfer?,
J. Geophys. Res.-Space,
122, 12,310-312,327, https://doi.org/10.1002/2017JA024730, 2017.
Fermo, R. L., Drake, J. F., Swisdak, M., and Hwang, K. J.:
Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations,
J. Geophys. Res.-Space,
116, A09226, https://doi.org/10.1029/2010JA016271, 2011.
Fuselier, S. A. and Lewis, W. S.:
Properties of Near-Earth Magnetic Reconnection from In-Situ Observations,
Space Sci. Rev.,
160, 95, https://doi.org/10.1007/s11214-011-9820-x, 2011.
Gou, X. C., Shi, Q. Q., Tian, A. M., Sun, W. J., Dunlop, M. W., Fu, S. Y., Zong, Q. G., Facskó, G., Nowada, M., Pu, Z. Y., Mailyan, B., Xiao, T., and Shen, X. C.:
Solar wind plasma entry observed by cluster in the high-latitude magnetospheric lobes,
J. Geophys. Res.-Space,
121, 4135–4144, https://doi.org/10.1002/2015JA021578, 2016.
Heyner, D., Auster, H. U., Fornaçon, K. H., Carr, C., Richter, I., Mieth, J. Z. D., Kolhey, P., Exner, W., Motschmann, U., Baumjohann, W., Matsuoka, A., Magnes, W., Berghofer, G., Fischer, D., Plaschke, F., Nakamura, R., Narita, Y., Delva, M., Volwerk, M., Balogh, A., Dougherty, M., Horbury, T., Langlais, B., Mandea, M., Masters, A., Oliveira, J. S., Sánchez-Cano, B., Slavin, J. A., Vennerstrøm, S., Vogt, J., Wicht, J., and Glassmeier, K. H.:
The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?,
Space Sci. Rev.,
217, 52, https://doi.org/10.1007/s11214-021-00822-x, 2021.
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala, H., von Alfthan, S., and Palmroth, M.:
Reconnection rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov simulation results,
J. Geophys. Res.-Space,
122, 2877–2888, https://doi.org/10.1002/2016JA023709, 2017.
Imber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt Jr., R. L., and Solomon, S. C.:
MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?,
J. Geophys. Res.-Space,
119, 5613–5623, https://doi.org/10.1002/2014ja019884, 2014.
Jasinski, J. M., Slavin, J. A., Arridge, C. S., Poh, G., Jia, X., Sergis, N., Coates, A. J., Jones, G. H., and Waite Jr., J. H.:
Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft,
Geophys. Res. Lett.,
43, 6713–6723, https://doi.org/10.1002/2016GL069260, 2016.
Jasinski, J. M., Akhavan-Tafti, M., Sun, W., Slavin, J. A., Coates, A. J., Fuselier, S. A., Sergis, N., and Murphy, N.:
Flux Transfer Events at a Reconnection-Suppressed Magnetopause: Cassini Observations at Saturn,
J. Geophys. Res.-Space,
126, e2020JA028786, https://doi.org/10.1029/2020JA028786, 2021.
Kacem, I., Jacquey, C., Génot, V., Lavraud, B., Vernisse, Y., Marchaudon, A., Le Contel, O., Breuillard, H., Phan, T. D., Hasegawa, H., Oka, M., Trattner, K. J., Farrugia, C. J., Paulson, K., Eastwood, J. P., Fuselier, S. A., Turner, D., Eriksson, S., Wilder, F., Russell, C. T., Øieroset, M., Burch, J., Graham, D. B., Sauvaud, J. A., Avanov, L., Chandler, M., Coffey, V., Dorelli, J., Gershman, D. J., Giles, B. L., Moore, T. E., Saito, Y., Chen, L. J., and Penou, E.:
Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause,
J. Geophys. Res.-Space,
123, 1779–1793, https://doi.org/10.1002/2017JA024537, 2018.
Khrabrov, A. V. and Sonnerup, B. U. Ö.:
Error estimates for minimum variance analysis,
J. Geophys. Res.-Space,
103, 6641–6651, https://doi.org/10.1029/97JA03731, 1998.
King, J. H. and Papitashvili, N. E.:
Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data,
J. Geophys. Res.-Space,
110, A02104, https://doi.org/10.1029/2004ja010649, 2005.
Kivelson, M. G. and Khurana, K. K.:
Models of flux ropes embedded in a harris neutral sheet: Force-free solutions in low and high beta plasmas,
J. Geophys. Res.-Space,
100, 23637–23645, https://doi.org/10.1029/95JA01548, 1995.
Kuo, H., Russell, C. T., and Le, G.:
Statistical studies of flux transfer events,
J. Geophys. Res.-Space,
100, 3513–3519, https://doi.org/10.1029/94JA02498, 1995.
Lai, H. R., Wei, H. Y., Russell, C. T., Arridge, C. S., and Dougherty, M. K.:
Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size,
J. Geophys. Res.-Space,
117, A05222, https://doi.org/10.1029/2011ja017263, 2012.
Lee, L. C. and Fu, Z. F.:
A theory of magnetic flux transfer at the Earth's magnetopause,
Geophys. Res. Lett.,
12, 105–108, https://doi.org/10.1029/GL012i002p00105, 1985.
Lee, L. C., Ma, Z. W., Fu, Z. F., and Otto, A.:
Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas,
J. Geophys. Res.-Space,
98, 3943–3951, https://doi.org/10.1029/92JA02203, 1993.
Lepping, R. P., Jones, J. A., and Burlaga, L. F.:
Magnetic field structure of interplanetary magnetic clouds at 1 AU,
J. Geophys. Res.-Space,
95, 11957–11965, https://doi.org/10.1029/JA095iA08p11957, 1990.
Lockwood, M., Cowley, S. W. H., Smith, M. F., Rijnbeek, R. P., and Elphic, R. C.:
The contribution of flux transfer events to convection,
Geophys. Res. Lett.,
22, 1185–1188, https://doi.org/10.1029/95gl01008, 1995.
Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S.:
Patterns of potential magnetic field merging sites on the dayside magnetopause,
J. Geophys. Res.-Space,
89, 1739–1742, https://doi.org/10.1029/JA089iA03p01739, 1984.
Lundquist, S.:
Magnetohydrostatic fields,
Ark. Fys.,
2, 361–365, 1950.
Mangano, V., Dósa, M., Fränz, M., Milillo, A., Oliveira, J. S., Lee, Y. J., McKenna-Lawlor, S., Grassi, D., Heyner, D., Kozyrev, A. S., Peron, R., Helbert, J., Besse, S., de la Fuente, S., Montagnon, E., Zender, J., Volwerk, M., Chaufray, J.-Y., Slavin, J. A., Krüger, H., Maturilli, A., Cornet, T., Iwai, K., Miyoshi, Y., Lucente, M., Massetti, S., Schmidt, C. A., Dong, C., Quarati, F., Hirai, T., Varsani, A., Belyaev, D., Zhong, J., Kilpua, E. K. J., Jackson, B. V., Odstrcil, D., Plaschke, F., Vainio, R., Jarvinen, R., Ivanovski, S. L., Madár, Á., Erdős, G., Plainaki, C., Alberti, T., Aizawa, S., Benkhoff, J., Murakami, G., Quemerais, E., Hiesinger, H., Mitrofanov, I. G., Iess, L., Santoli, F., Orsini, S., Lichtenegger, H., Laky, G., Barabash, S., Moissl, R., Huovelin, J., Kasaba, Y., Saito, Y., Kobayashi, M., and Baumjohann, W.:
BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury,
Space Sci. Rev.,
217, 23, https://doi.org/10.1007/s11214-021-00797-9, 2021.
Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., Dósa, M., Griton, L., Heyner, D., Ho, G., Imber, S. M., Jia, X., Karlsson, T., Killen, R. M., Laurenza, M., Lindsay, S. T., McKenna-Lawlor, S., Mura, A., Raines, J. M., Rothery, D. A., André, N., Baumjohann, W., Berezhnoy, A., Bourdin, P. A., Bunce, E. J., Califano, F., Deca, J., de la Fuente, S., Dong, C., Grava, C., Fatemi, S., Henri, P., Ivanovski, S. L., Jackson, B. V., James, M., Kallio, E., Kasaba, Y., Kilpua, E., Kobayashi, M., Langlais, B., Leblanc, F., Lhotka, C., Mangano, V., Martindale, A., Massetti, S., Masters, A., Morooka, M., Narita, Y., Oliveira, J. S., Odstrcil, D., Orsini, S., Pelizzo, M. G., Plainaki, C., Plaschke, F., Sahraoui, F., Seki, K., Slavin, J. A., Vainio, R., Wurz, P., Barabash, S., Carr, C. M., Delcourt, D., Glassmeier, K. H., Grande, M., Hirahara, M., Huovelin, J., Korablev, O., Kojima, H., Lichtenegger, H., Livi, S., Matsuoka, A., Moissl, R., Moncuquet, M., Muinonen, K., Quèmerais, E., Saito, Y., Yagitani, S., Yoshikawa, I., and Wahlund, J. E.:
Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission,
Space Sci. Rev.,
216, 93, https://doi.org/10.1007/s11214-020-00712-8, 2020.
Montag, P., Egedal, J., Lichko, E., and Wetherton, B.:
Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence,
Phys. Plasmas,
24, 062906, https://doi.org/10.1063/1.4985302, 2017.
Murakami, G., Hayakawa, H., Ogawa, H., Matsuda, S., Seki, T., Kasaba, Y., Saito, Y., Yoshikawa, I., Kobayashi, M., Baumjohann, W., Matsuoka, A., Kojima, H., Yagitani, S., Moncuquet, M., Wahlund, J.-E., Delcourt, D., Hirahara, M., Barabash, S., Korablev, O., and Fujimoto, M.:
Mio—First Comprehensive Exploration of Mercury's Space Environment: Mission Overview,
Space Sci. Rev.,
216, 113, https://doi.org/10.1007/s11214-020-00733-3, 2020.
Øieroset, M., Phan, T. D., Haggerty, C., Shay, M. A., Eastwood, J. P., Gershman, D. J., Drake, J. F., Fujimoto, M., Ergun, R. E., Mozer, F. S., Oka, M., Torbert, R. B., Burch, J. L., Wang, S., Chen, L. J., Swisdak, M., Pollock, C., Dorelli, J. C., Fuselier, S. A., Lavraud, B., Giles, B. L., Moore, T. E., Saito, Y., Avanov, L. A., Paterson, W., Strangeway, R. J., Russell, C. T., Khotyaintsev, Y., Lindqvist, P. A., and Malakit, K.:
MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause,
Geophys. Res. Lett.,
43, 5536–5544, https://doi.org/10.1002/2016GL069166, 2016.
Paschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S. J., Gosling, J. T., and Russell, C. T.:
Plasma and magnetic field characteristics of magnetic flux transfer events,
J. Geophys. Res.-Space,
87, 2159–2168, https://doi.org/10.1029/JA087iA04p02159, 1982.
Phan, T. D., Sonnerup, B. U. Ö., and Lin, R. P.:
Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: Wind observations,
J. Geophys. Res.-Space,
106, 25489–25501, https://doi.org/10.1029/2001JA900054, 2001.
Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L., Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C., Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y., Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles, B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T., Lindqvist, P. A., and Magnes, W.:
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath,
Nature,
557, 202–206, https://doi.org/10.1038/s41586-018-0091-5, 2018.
Pi, G., Shue, J.-H., Grygorov, K., Li, H.-M., Němeček, Z., Šafránková, J., Yang, Y.-H., and Wang, K.:
Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions,
J. Geophys. Res.-Space,
122, 4051–4063, https://doi.org/10.1002/2015JA021809, 2017.
Poh, G., Slavin, J. A., Lu, S., Le, G., Ozturk, D. S., Sun, W.-J., Zou, S., Eastwood, J. P., Nakamura, R., Baumjohann, W., Russell, C. T., Gershman, D. J., Giles, B. L., Pollock, C. J., Moore, T. E., Torbert, R. B., and Burch, J. L.:
Dissipation of Earthward Propagating Flux Rope Through Re-reconnection with Geomagnetic Field: An MMS Case Study,
J. Geophys. Res.-Space,
124, 7477–7493, https://doi.org/10.1029/2018JA026451, 2019.
Pritchett, P. L. and Coroniti, F. V.:
Three-dimensional collisionless magnetic reconnection in the presence of a guide field,
J. Geophys. Res.-Space,
109, A01220, https://doi.org/10.1029/2003ja009999, 2004.
Raeder, J.: Flux Transfer Events: 1. generation mechanism for strong southward IMF, Ann. Geophys., 24, 381–392, https://doi.org/10.5194/angeo-24-381-2006, 2006.
Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G.:
Collisionless magnetic reconnection in the presence of a guide field,
Phys. Plasmas,
11, 4102–4114, https://doi.org/10.1063/1.1768552, 2004.
Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., and Russell, C. T.:
A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers,
J. Geophys. Res.-Space,
89, 786–800, https://doi.org/10.1029/JA089iA02p00786, 1984.
Russell, C. T. and Elphic, R. C.:
Initial ISEE magnetometer results: magnetopause observations,
Space Sci. Rev.,
22, 681–715, https://doi.org/10.1007/BF00212619, 1978.
Russell, C. T. and Walker, R. J.:
Flux transfer events at Mercury,
J. Geophys. Res.-Space,
90, 11067–11074, https://doi.org/10.1029/JA090iA11p11067, 1985.
Saito, Y., Delcourt, D., Hirahara, M., Barabash, S., André, N., Takashima, T., Asamura, K., Yokota, S., Wieser, M., Nishino, M. N., Oka, M., Futaana, Y., Harada, Y., Sauvaud, J.-A., Louarn, P., Lavraud, B., Génot, V., Mazelle, C., Dandouras, I., Jacquey, C., Aoustin, C., Barthe, A., Cadu, A., Fedorov, A., Frezoul, A.-M., Garat, C., Le Comte, E., Lee, Q.-M., Médale, J.-L., Moirin, D., Penou, E., Petiot, M., Peyre, G., Rouzaud, J., Séran, H.-C., Nĕmec?ek, Z., S?afránková, J., Marcucci, M. F., Bruno, R., Consolini, G., Miyake, W., Shinohara, I., Hasegawa, H., Seki, K., Coates, A. J., Leblanc, F., Verdeil, C., Katra, B., Fontaine, D., Illiano, J.-M., Berthelier, J.-J., Techer, J.-D., Fraenz, M., Fischer, H., Krupp, N., Woch, J., Bührke, U., Fiethe, B., Michalik, H., Matsumoto, H., Yanagimachi, T., Miyoshi, Y., Mitani, T., Shimoyama, M., Zong, Q., Wurz, P., Andersson, H., Karlsson, S., Holmström, M., Kazama, Y., Ip, W.-H., Hoshino, M., Fujimoto, M., Terada, N., Keika, K., and BepiColombo Mio, M. T.:
Pre-flight Calibration and Near-Earth Commissioning Results of the Mercury Plasma Particle Experiment (MPPE) Onboard MMO (Mio),
Space Sci. Rev.,
217, 70, https://doi.org/10.1007/s11214-021-00839-2, 2021.
Saunders, M. A., Russell, C. T., and Sckopke, N.:
Flux transfer events: Scale size and interior structure,
Geophys. Res. Lett.,
11, 131–134, https://doi.org/10.1029/GL011i002p00131, 1984.
Sauvaud, J. A., Fedorov, A., Aoustin, C., Seran, H. C., Le Comte, E., Petiot, M., Rouzaud, J., Saito, Y., Dandouras, J., Jacquey, C., Louarn, P., Mazelle, C., and Médale, J. L.:
The Mercury Electron Analyzers for the Bepi Colombo mission,
Adv. Space Res.,
46, 1139–1148, https://doi.org/10.1016/j.asr.2010.05.022, 2010.
Schindler, K., Pfirsch, D., and Wobig, H.:
Stability of two-dimensional collision-free plasmas,
Plasma Physics,
15, 1165–1184, https://doi.org/10.1088/0032-1028/15/12/001, 1973.
Shi, Q. Q., Zong, Q. G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., Xia, L. D., Liu, Z. X., Fazakerley, A. N., Reme, H., and Lucek, E.:
Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field,
J. Geophys. Res.-Space,
114, A12219, https://doi.org/10.1029/2009JA014475, 2009.
Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., Nowada, M., Wang, Y. B., Sun, W. J., Xiao, T., Reme, H., Carr, C., Fazakerley, A. N., and Lucek, E.:
Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times,
Nat. Commun.,
4, 1466, https://doi.org/10.1038/ncomms2476, 2013.
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., and Zurbuchen, T. H.:
MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere,
Science,
324, 606, https://doi.org/10.1126/science.1172011, 2009.
Slavin, J. A., Lepping, R. P., Wu, C.-C., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Killen, R. M., Korth, H., Krimigis, S. M., McClintock, W. E., McNutt Jr., R. L., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., and Zurbuchen, T. H.:
MESSENGER observations of large flux transfer events at Mercury,
Geophys. Res. Lett.,
37, L02105, https://doi.org/10.1029/2009gl041485, 2010.
Slavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves-Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt Jr., R. L., and Solomon, S. C.:
MESSENGER observations of a flux-transfer-event shower at Mercury,
J. Geophys. Res.-Space,
117, A00M06, https://doi.org/10.1029/2012ja017926, 2012.
Song, P. and Russell, C. T.:
Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field,
J. Geophys. Res.-Space,
97, 1411–1420, https://doi.org/10.1029/91JA02377, 1992.
Sonnerup, B. U. Ö.:
Magnetopause reconnection rate,
J. Geohys. Res.,
79, 1546–1549, https://doi.org/10.1029/JA079i010p01546, 1974.
Sonnerup, B. U. Ö. and Cahill Jr., L. J.:
Magnetopause structure and attitude from Explorer 12 observations,
J. Geohys. Res.,
72, 171–183, https://doi.org/10.1029/JZ072i001p00171, 1967.
Sonnerup, B. U. Ö. and Scheible, M.:
Minimum and maximum variance analysis,
in: Analysis methods for multi-spacecraft data,
edited by: Paschmann, G. and Daly, P. W.,
ESA Publication, Noordwijk, Netherlands, 185–220, 1998.
Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T.:
Evidence for magnetic field reconnection at the Earth's magnetopause,
J. Geophys. Res.-Space,
86, 10049–10067, https://doi.org/10.1029/JA086iA12p10049, 1981.
Stawarz, J. E., Eastwood, J. P., Phan, T. D., Gingell, I. L., Shay, M. A., Burch, J. L., Ergun, R. E., Giles, B. L., Gershman, D. J., Contel, O. L., Lindqvist, P. A., Russell, C. T., Strangeway, R. J., Torbert, R. B., Argall, M. R., Fischer, D., Magnes, W., and Franci, L.:
Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth's Magnetosheath,
Astrophys J.,
877, L37, https://doi.org/10.3847/2041-8213/ab21c8, 2019.
Sun, W., Dewey, R. M., Aizawa, S., Huang, J., Slavin, J. A., Fu, S., Wei, Y., and Bowers, C. F.:
Review of Mercury's dynamic magnetosphere: Post-MESSENGER era and comparative magnetospheres,
Sci. China Earth Sci.,
65, 25–74, https://doi.org/10.1007/s11430-021-9828-0, 2022.
Sun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., Raines, J. M., Livi, S., Saito, Y., Gershman, D. J., DiBraccio, G. A., Imber, S. M., Guo, J. P., Fu, S. Y., Zong, Q. G., and Zhao, J. T.:
Flux Transfer Event Showers at Mercury: Dependence on Plasma β and Magnetic Shear and Their Contribution to the Dungey Cycle,
Geophys. Res. Lett.,
47, e2020GL089784, https://doi.org/10.1029/2020GL089784, 2020a.
Sun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., Jasinski, J. M., Jia, X., and Akhavan-Tafti, M.:
MESSENGER Observations of Mercury's Nightside Magnetosphere Under Extreme Solar Wind Conditions: Reconnection-Generated Structures and Steady Convection,
J. Geophys. Res.-Space,
125, e2019JA027490, https://doi.org/10.1029/2019ja027490, 2020b.
Tang, B. B., Wang, C., and Li, W. Y.:
The magnetosphere under the radial interplanetary magnetic field: A numerical study,
J. Geophys. Res.-Space,
118, 7674–7682, https://doi.org/10.1002/2013JA019155, 2013.
Toledo-Redondo, S., Hwang , K.-J., Escoubet , C. P., Lavraud , B., Fornieles , J., Aunai , N., Fear , R. C., Dargent , J., Fu, H. S., Fuselier , S. A., Genestreti , K. J., Khotyaintsev , Y. V., Li, W. Y., Norgren , C., and Phan , T. D.:
Solar Wind—Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions: Simultaneous Multi-Point Observations,
J. Geophys. Res.-Space,
126, e2021JA029506, https://doi.org/10.1029/2021JA029506, 2021.
Trattner, K. J., Mulcock, J. S., Petrinec, S. M., and Fuselier, S. A.:
Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions,
J. Geophys. Res.-Space,
112, A08210, https://doi.org/10.1029/2007JA012270, 2007.
Trattner, K. J., Petrinec, S. M., Fuselier, S. A., and Phan, T. D.:
The location of reconnection at the magnetopause: Testing the maximum magnetic shear model with THEMIS observations,
J. Geophys. Res.-Space,
117, A01201, https://doi.org/10.1029/2011JA016959, 2012.
Trattner, K. J., Burch, J. L., Ergun, R., Eriksson, S., Fuselier, S. A., Giles, B. L., Gomez, R. G., Grimes, E. W., Lewis, W. S., Mauk, B., Petrinec, S. M., Russell, C. T., Strangeway, R. J., Trenchi, L., and Wilder, F. D.:
The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model,
J. Geophys. Res.-Space,
122, 11991–12005, https://doi.org/10.1002/2017JA024488, 2017.
Trattner, K. J., Fuselier, S. A., Petrinec, S. M., Burch, J. L., Ergun, R., and Grimes, E. W.:
Long and Active Magnetopause Reconnection X-Lines During Changing IMF Conditions,
J. Geophys. Res.-Space,
126, e2020JA028926, https://doi.org/10.1029/2020JA028926, 2021.
Walker, R. J. and Russell, C. T.:
Flux transfer events at the Jovian magnetopause,
J. Geophys. Res.-Space,
90, 7397–7404, https://doi.org/10.1029/JA090iA08p07397, 1985.
Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J., Raeder, J., Russell, C. T., Kawano, H., Zong, Q.-G., Zhang, H., Zhang, X. X., and Friedel, R. H.:
Initial results of high-latitude magnetopause and low-latitude flank flux transfer events from 3 years of Cluster observations,
J. Geophys. Res.-Space,
110, A11221, https://doi.org/10.1029/2005JA011150, 2005.
Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J., Russell, C. T., Raeder, J., Kawano, H., and Zhang, X. X.:
Dependence of flux transfer events on solar wind conditions from 3 years of Cluster observations,
J. Geophys. Res.-Space,
111, A04224, https://doi.org/10.1029/2005JA011342, 2006.
Zhang, H., Khurana, K. K., Kivelson, M. G., Angelopoulos, V., Pu, Z. Y., Zong, Q.-G., Liu, J., and Zhou, X.-Z.:
Modeling a force-free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft,
J. Geophys. Res.-Space,
113, A00C05, https://doi.org/10.1029/2008ja013451, 2008.
Zhao, J. T., Sun, W.-J., Zong, Q. G., Slavin, J. A., Zhou, X. Z., Dewey, R. M., Poh, G. K., and Raines, J. M.:
A Statistical Study of the Force Balance and Structure in the Flux Ropes in Mercury's Magnetotail,
J. Geophys. Res.-Space,
124, 5143–5157, https://doi.org/10.1029/2018ja026329, 2019.
Zhong, J., Wei, Y., Lee, L. C., He, J. S., Slavin, J. A., Pu, Z. Y., Zhang, H., Wang, X. G., and Wan, W. X.:
Formation of Macroscale Flux Transfer Events at Mercury,
Astrophys J.,
893, L18, https://doi.org/10.3847/2041-8213/ab8566, 2020.
Zhou, M., Berchem, J., Walker, R. J., El-Alaoui, M., Deng, X., Cazzola, E., Lapenta, G., Goldstein, M. L., Paterson, W. R., Pang, Y., Ergun, R. E., Lavraud, B., Liang, H., Russell, C. T., Strangeway, R. J., Zhao, C., Giles, B. L., Pollock, C. J., Lindqvist, P. A., Marklund, G., Wilder, F. D., Khotyaintsev, Y. V., Torbert, R. B., and Burch, J. L.:
Coalescence of Macroscopic Flux Ropes at the Subsolar Magnetopause: Magnetospheric Multiscale Observations,
Phys. Rev. Lett.,
119, 055101, https://doi.org/10.1103/PhysRevLett.119.055101, 2017.
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's...