Articles | Volume 40, issue 2
https://doi.org/10.5194/angeo-40-217-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-40-217-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dayside magnetopause reconnection and flux transfer events under radial interplanetary magnetic field (IMF): BepiColombo Earth-flyby observations
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
James A. Slavin
Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
Daniel Heyner
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Karlheinz J. Trattner
Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA
Johannes Z. D. Mieth
Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
Jiutong Zhao
School of Earth and Space Sciences, Peking University, Beijing 100871, China
Qiu-Gang Zong
School of Earth and Space Sciences, Peking University, Beijing 100871, China
Sae Aizawa
Institut de Recherche en Astrophysique et Planétologie, CNRS-UPS-CNES, Toulouse, France
Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan
Nicolas Andre
Institut de Recherche en Astrophysique et Planétologie, CNRS-UPS-CNES, Toulouse, France
Yoshifumi Saito
Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Kanagawa, Japan
Related authors
No articles found.
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814, https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Heliophysics spans a wide range of disciplines covering the study of the Sun and the different Solar System bodies, such as Earth and other planets, moons, comets, and asteroids, and their interactions with the Sun, focusing on plasma and atmospheric processes. A grass-roots effort has been recently started toward establishing a European Heliophysics Community (https://www.heliophysics.eu/). This white paper outlines the motivation, priorities, and a future vision of Heliophysics in Europe.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Qiugang Zong
Ann. Geophys., 40, 121–150, https://doi.org/10.5194/angeo-40-121-2022, https://doi.org/10.5194/angeo-40-121-2022, 2022
Short summary
Short summary
Magnetospheric physics is in an extremely vibrant phase, with a number of ongoing and highly successful missions, e.g., Cluster, THEMIS, Van Allen Probes, and the MMS spacecraft, providing the most amazing observations and data sets. Since there are many fundamental and unsolved problems, in this paper I have addressed selected topics of ULF wave–charged particle interactions which encompass many special fields of radiation belt, ring current and plasmaspheric physics.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Cited articles
Akhavan-Tafti, M., Slavin, J. A., Le, G., Eastwood, J. P., Strangeway, R. J., Russell, C. T., Nakamura, R., Baumjohann, W., Torbert, R. B., Giles, B. L., Gershman, D. J., and Burch, J. L.:
MMS Examination of FTEs at the Earth's Subsolar Magnetopause,
J. Geophys. Res.-Space,
123, 1224–1241, https://doi.org/10.1002/2017JA024681, 2018.
Belenkaya, E. S.:
Reconnection modes for near-radial interplanetary magnetic field,
J. Geophys. Res.-Space,
103, 26487–26494, https://doi.org/10.1029/98JA02270, 1998.
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H. R., and Ziethe, R.:
BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals,
Planet. Space Sci.,
58, 2–20, https://doi.org/10.1016/j.pss.2009.09.020, 2010.
Biskamp, D. and Welter, H.:
Coalescence of Magnetic Islands,
Phys. Rev. Lett.,
44, 1069–1072, https://doi.org/10.1103/PhysRevLett.44.1069, 1980.
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.:
Magnetospheric Multiscale Overview and Science Objectives,
Space Sci. Rev.,
199, 5–21, https://doi.org/10.1007/s11214-015-0164-9, 2016.
Burlaga, L. F.:
Magnetic clouds and force-free fields with constant alpha,
J. Geophys. Res.-Space,
93, 7217–7224, https://doi.org/10.1029/JA093iA07p07217, 1988.
Califano, F., Cerri, S. S., Faganello, M., Laveder, D., Sisti, M., and Kunz, M. W.:
Electron-Only Reconnection in Plasma Turbulence,
Frontiers in Physics,
8, 317, https://doi.org/10.3389/fphy.2020.00317, 2020.
Dorelli, J. C. and Bhattacharjee, A.:
On the generation and topology of flux transfer events,
J. Geophys. Res.-Space,
114, A06213, https://doi.org/10.1029/2008JA013410, 2009.
Drake, J. F., Swisdak, M., Che, H., and Shay, M. A.:
Electron acceleration from contracting magnetic islands during reconnection,
Nature,
443, 553, https://doi.org/10.1038/nature05116, 2006.
Dungey, J. W.:
Interplanetary Magnetic Field and the Auroral Zones,
Phys. Rev. Lett.,
6, 47–48, https://doi.org/10.1103/PhysRevLett.6.47, 1961.
Fear, R. C., Trenchi, L., Coxon, J. C., and Milan, S. E.:
How Much Flux Does a Flux Transfer Event Transfer?,
J. Geophys. Res.-Space,
122, 12,310-312,327, https://doi.org/10.1002/2017JA024730, 2017.
Fermo, R. L., Drake, J. F., Swisdak, M., and Hwang, K. J.:
Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations,
J. Geophys. Res.-Space,
116, A09226, https://doi.org/10.1029/2010JA016271, 2011.
Fuselier, S. A. and Lewis, W. S.:
Properties of Near-Earth Magnetic Reconnection from In-Situ Observations,
Space Sci. Rev.,
160, 95, https://doi.org/10.1007/s11214-011-9820-x, 2011.
Gou, X. C., Shi, Q. Q., Tian, A. M., Sun, W. J., Dunlop, M. W., Fu, S. Y., Zong, Q. G., Facskó, G., Nowada, M., Pu, Z. Y., Mailyan, B., Xiao, T., and Shen, X. C.:
Solar wind plasma entry observed by cluster in the high-latitude magnetospheric lobes,
J. Geophys. Res.-Space,
121, 4135–4144, https://doi.org/10.1002/2015JA021578, 2016.
Heyner, D., Auster, H. U., Fornaçon, K. H., Carr, C., Richter, I., Mieth, J. Z. D., Kolhey, P., Exner, W., Motschmann, U., Baumjohann, W., Matsuoka, A., Magnes, W., Berghofer, G., Fischer, D., Plaschke, F., Nakamura, R., Narita, Y., Delva, M., Volwerk, M., Balogh, A., Dougherty, M., Horbury, T., Langlais, B., Mandea, M., Masters, A., Oliveira, J. S., Sánchez-Cano, B., Slavin, J. A., Vennerstrøm, S., Vogt, J., Wicht, J., and Glassmeier, K. H.:
The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?,
Space Sci. Rev.,
217, 52, https://doi.org/10.1007/s11214-021-00822-x, 2021.
Hoilijoki, S., Ganse, U., Pfau-Kempf, Y., Cassak, P. A., Walsh, B. M., Hietala, H., von Alfthan, S., and Palmroth, M.:
Reconnection rates and X line motion at the magnetopause: Global 2D-3V hybrid-Vlasov simulation results,
J. Geophys. Res.-Space,
122, 2877–2888, https://doi.org/10.1002/2016JA023709, 2017.
Imber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt Jr., R. L., and Solomon, S. C.:
MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?,
J. Geophys. Res.-Space,
119, 5613–5623, https://doi.org/10.1002/2014ja019884, 2014.
Jasinski, J. M., Slavin, J. A., Arridge, C. S., Poh, G., Jia, X., Sergis, N., Coates, A. J., Jones, G. H., and Waite Jr., J. H.:
Flux transfer event observation at Saturn's dayside magnetopause by the Cassini spacecraft,
Geophys. Res. Lett.,
43, 6713–6723, https://doi.org/10.1002/2016GL069260, 2016.
Jasinski, J. M., Akhavan-Tafti, M., Sun, W., Slavin, J. A., Coates, A. J., Fuselier, S. A., Sergis, N., and Murphy, N.:
Flux Transfer Events at a Reconnection-Suppressed Magnetopause: Cassini Observations at Saturn,
J. Geophys. Res.-Space,
126, e2020JA028786, https://doi.org/10.1029/2020JA028786, 2021.
Kacem, I., Jacquey, C., Génot, V., Lavraud, B., Vernisse, Y., Marchaudon, A., Le Contel, O., Breuillard, H., Phan, T. D., Hasegawa, H., Oka, M., Trattner, K. J., Farrugia, C. J., Paulson, K., Eastwood, J. P., Fuselier, S. A., Turner, D., Eriksson, S., Wilder, F., Russell, C. T., Øieroset, M., Burch, J., Graham, D. B., Sauvaud, J. A., Avanov, L., Chandler, M., Coffey, V., Dorelli, J., Gershman, D. J., Giles, B. L., Moore, T. E., Saito, Y., Chen, L. J., and Penou, E.:
Magnetic Reconnection at a Thin Current Sheet Separating Two Interlaced Flux Tubes at the Earth's Magnetopause,
J. Geophys. Res.-Space,
123, 1779–1793, https://doi.org/10.1002/2017JA024537, 2018.
Khrabrov, A. V. and Sonnerup, B. U. Ö.:
Error estimates for minimum variance analysis,
J. Geophys. Res.-Space,
103, 6641–6651, https://doi.org/10.1029/97JA03731, 1998.
King, J. H. and Papitashvili, N. E.:
Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data,
J. Geophys. Res.-Space,
110, A02104, https://doi.org/10.1029/2004ja010649, 2005.
Kivelson, M. G. and Khurana, K. K.:
Models of flux ropes embedded in a harris neutral sheet: Force-free solutions in low and high beta plasmas,
J. Geophys. Res.-Space,
100, 23637–23645, https://doi.org/10.1029/95JA01548, 1995.
Kuo, H., Russell, C. T., and Le, G.:
Statistical studies of flux transfer events,
J. Geophys. Res.-Space,
100, 3513–3519, https://doi.org/10.1029/94JA02498, 1995.
Lai, H. R., Wei, H. Y., Russell, C. T., Arridge, C. S., and Dougherty, M. K.:
Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size,
J. Geophys. Res.-Space,
117, A05222, https://doi.org/10.1029/2011ja017263, 2012.
Lee, L. C. and Fu, Z. F.:
A theory of magnetic flux transfer at the Earth's magnetopause,
Geophys. Res. Lett.,
12, 105–108, https://doi.org/10.1029/GL012i002p00105, 1985.
Lee, L. C., Ma, Z. W., Fu, Z. F., and Otto, A.:
Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas,
J. Geophys. Res.-Space,
98, 3943–3951, https://doi.org/10.1029/92JA02203, 1993.
Lepping, R. P., Jones, J. A., and Burlaga, L. F.:
Magnetic field structure of interplanetary magnetic clouds at 1 AU,
J. Geophys. Res.-Space,
95, 11957–11965, https://doi.org/10.1029/JA095iA08p11957, 1990.
Lockwood, M., Cowley, S. W. H., Smith, M. F., Rijnbeek, R. P., and Elphic, R. C.:
The contribution of flux transfer events to convection,
Geophys. Res. Lett.,
22, 1185–1188, https://doi.org/10.1029/95gl01008, 1995.
Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S.:
Patterns of potential magnetic field merging sites on the dayside magnetopause,
J. Geophys. Res.-Space,
89, 1739–1742, https://doi.org/10.1029/JA089iA03p01739, 1984.
Lundquist, S.:
Magnetohydrostatic fields,
Ark. Fys.,
2, 361–365, 1950.
Mangano, V., Dósa, M., Fränz, M., Milillo, A., Oliveira, J. S., Lee, Y. J., McKenna-Lawlor, S., Grassi, D., Heyner, D., Kozyrev, A. S., Peron, R., Helbert, J., Besse, S., de la Fuente, S., Montagnon, E., Zender, J., Volwerk, M., Chaufray, J.-Y., Slavin, J. A., Krüger, H., Maturilli, A., Cornet, T., Iwai, K., Miyoshi, Y., Lucente, M., Massetti, S., Schmidt, C. A., Dong, C., Quarati, F., Hirai, T., Varsani, A., Belyaev, D., Zhong, J., Kilpua, E. K. J., Jackson, B. V., Odstrcil, D., Plaschke, F., Vainio, R., Jarvinen, R., Ivanovski, S. L., Madár, Á., Erdős, G., Plainaki, C., Alberti, T., Aizawa, S., Benkhoff, J., Murakami, G., Quemerais, E., Hiesinger, H., Mitrofanov, I. G., Iess, L., Santoli, F., Orsini, S., Lichtenegger, H., Laky, G., Barabash, S., Moissl, R., Huovelin, J., Kasaba, Y., Saito, Y., Kobayashi, M., and Baumjohann, W.:
BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury,
Space Sci. Rev.,
217, 23, https://doi.org/10.1007/s11214-021-00797-9, 2021.
Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., Dósa, M., Griton, L., Heyner, D., Ho, G., Imber, S. M., Jia, X., Karlsson, T., Killen, R. M., Laurenza, M., Lindsay, S. T., McKenna-Lawlor, S., Mura, A., Raines, J. M., Rothery, D. A., André, N., Baumjohann, W., Berezhnoy, A., Bourdin, P. A., Bunce, E. J., Califano, F., Deca, J., de la Fuente, S., Dong, C., Grava, C., Fatemi, S., Henri, P., Ivanovski, S. L., Jackson, B. V., James, M., Kallio, E., Kasaba, Y., Kilpua, E., Kobayashi, M., Langlais, B., Leblanc, F., Lhotka, C., Mangano, V., Martindale, A., Massetti, S., Masters, A., Morooka, M., Narita, Y., Oliveira, J. S., Odstrcil, D., Orsini, S., Pelizzo, M. G., Plainaki, C., Plaschke, F., Sahraoui, F., Seki, K., Slavin, J. A., Vainio, R., Wurz, P., Barabash, S., Carr, C. M., Delcourt, D., Glassmeier, K. H., Grande, M., Hirahara, M., Huovelin, J., Korablev, O., Kojima, H., Lichtenegger, H., Livi, S., Matsuoka, A., Moissl, R., Moncuquet, M., Muinonen, K., Quèmerais, E., Saito, Y., Yagitani, S., Yoshikawa, I., and Wahlund, J. E.:
Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission,
Space Sci. Rev.,
216, 93, https://doi.org/10.1007/s11214-020-00712-8, 2020.
Montag, P., Egedal, J., Lichko, E., and Wetherton, B.:
Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence,
Phys. Plasmas,
24, 062906, https://doi.org/10.1063/1.4985302, 2017.
Murakami, G., Hayakawa, H., Ogawa, H., Matsuda, S., Seki, T., Kasaba, Y., Saito, Y., Yoshikawa, I., Kobayashi, M., Baumjohann, W., Matsuoka, A., Kojima, H., Yagitani, S., Moncuquet, M., Wahlund, J.-E., Delcourt, D., Hirahara, M., Barabash, S., Korablev, O., and Fujimoto, M.:
Mio—First Comprehensive Exploration of Mercury's Space Environment: Mission Overview,
Space Sci. Rev.,
216, 113, https://doi.org/10.1007/s11214-020-00733-3, 2020.
Øieroset, M., Phan, T. D., Haggerty, C., Shay, M. A., Eastwood, J. P., Gershman, D. J., Drake, J. F., Fujimoto, M., Ergun, R. E., Mozer, F. S., Oka, M., Torbert, R. B., Burch, J. L., Wang, S., Chen, L. J., Swisdak, M., Pollock, C., Dorelli, J. C., Fuselier, S. A., Lavraud, B., Giles, B. L., Moore, T. E., Saito, Y., Avanov, L. A., Paterson, W., Strangeway, R. J., Russell, C. T., Khotyaintsev, Y., Lindqvist, P. A., and Malakit, K.:
MMS observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause,
Geophys. Res. Lett.,
43, 5536–5544, https://doi.org/10.1002/2016GL069166, 2016.
Paschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S. J., Gosling, J. T., and Russell, C. T.:
Plasma and magnetic field characteristics of magnetic flux transfer events,
J. Geophys. Res.-Space,
87, 2159–2168, https://doi.org/10.1029/JA087iA04p02159, 1982.
Phan, T. D., Sonnerup, B. U. Ö., and Lin, R. P.:
Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: Wind observations,
J. Geophys. Res.-Space,
106, 25489–25501, https://doi.org/10.1029/2001JA900054, 2001.
Phan, T. D., Eastwood, J. P., Shay, M. A., Drake, J. F., Sonnerup, B. U. Ö., Fujimoto, M., Cassak, P. A., Øieroset, M., Burch, J. L., Torbert, R. B., Rager, A. C., Dorelli, J. C., Gershman, D. J., Pollock, C., Pyakurel, P. S., Haggerty, C. C., Khotyaintsev, Y., Lavraud, B., Saito, Y., Oka, M., Ergun, R. E., Retino, A., Le Contel, O., Argall, M. R., Giles, B. L., Moore, T. E., Wilder, F. D., Strangeway, R. J., Russell, C. T., Lindqvist, P. A., and Magnes, W.:
Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath,
Nature,
557, 202–206, https://doi.org/10.1038/s41586-018-0091-5, 2018.
Pi, G., Shue, J.-H., Grygorov, K., Li, H.-M., Němeček, Z., Šafránková, J., Yang, Y.-H., and Wang, K.:
Evolution of the magnetic field structure outside the magnetopause under radial IMF conditions,
J. Geophys. Res.-Space,
122, 4051–4063, https://doi.org/10.1002/2015JA021809, 2017.
Poh, G., Slavin, J. A., Lu, S., Le, G., Ozturk, D. S., Sun, W.-J., Zou, S., Eastwood, J. P., Nakamura, R., Baumjohann, W., Russell, C. T., Gershman, D. J., Giles, B. L., Pollock, C. J., Moore, T. E., Torbert, R. B., and Burch, J. L.:
Dissipation of Earthward Propagating Flux Rope Through Re-reconnection with Geomagnetic Field: An MMS Case Study,
J. Geophys. Res.-Space,
124, 7477–7493, https://doi.org/10.1029/2018JA026451, 2019.
Pritchett, P. L. and Coroniti, F. V.:
Three-dimensional collisionless magnetic reconnection in the presence of a guide field,
J. Geophys. Res.-Space,
109, A01220, https://doi.org/10.1029/2003ja009999, 2004.
Raeder, J.: Flux Transfer Events: 1. generation mechanism for strong southward IMF, Ann. Geophys., 24, 381–392, https://doi.org/10.5194/angeo-24-381-2006, 2006.
Ricci, P., Brackbill, J. U., Daughton, W., and Lapenta, G.:
Collisionless magnetic reconnection in the presence of a guide field,
Phys. Plasmas,
11, 4102–4114, https://doi.org/10.1063/1.1768552, 2004.
Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., and Russell, C. T.:
A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers,
J. Geophys. Res.-Space,
89, 786–800, https://doi.org/10.1029/JA089iA02p00786, 1984.
Russell, C. T. and Elphic, R. C.:
Initial ISEE magnetometer results: magnetopause observations,
Space Sci. Rev.,
22, 681–715, https://doi.org/10.1007/BF00212619, 1978.
Russell, C. T. and Walker, R. J.:
Flux transfer events at Mercury,
J. Geophys. Res.-Space,
90, 11067–11074, https://doi.org/10.1029/JA090iA11p11067, 1985.
Saito, Y., Delcourt, D., Hirahara, M., Barabash, S., André, N., Takashima, T., Asamura, K., Yokota, S., Wieser, M., Nishino, M. N., Oka, M., Futaana, Y., Harada, Y., Sauvaud, J.-A., Louarn, P., Lavraud, B., Génot, V., Mazelle, C., Dandouras, I., Jacquey, C., Aoustin, C., Barthe, A., Cadu, A., Fedorov, A., Frezoul, A.-M., Garat, C., Le Comte, E., Lee, Q.-M., Médale, J.-L., Moirin, D., Penou, E., Petiot, M., Peyre, G., Rouzaud, J., Séran, H.-C., Nĕmec?ek, Z., S?afránková, J., Marcucci, M. F., Bruno, R., Consolini, G., Miyake, W., Shinohara, I., Hasegawa, H., Seki, K., Coates, A. J., Leblanc, F., Verdeil, C., Katra, B., Fontaine, D., Illiano, J.-M., Berthelier, J.-J., Techer, J.-D., Fraenz, M., Fischer, H., Krupp, N., Woch, J., Bührke, U., Fiethe, B., Michalik, H., Matsumoto, H., Yanagimachi, T., Miyoshi, Y., Mitani, T., Shimoyama, M., Zong, Q., Wurz, P., Andersson, H., Karlsson, S., Holmström, M., Kazama, Y., Ip, W.-H., Hoshino, M., Fujimoto, M., Terada, N., Keika, K., and BepiColombo Mio, M. T.:
Pre-flight Calibration and Near-Earth Commissioning Results of the Mercury Plasma Particle Experiment (MPPE) Onboard MMO (Mio),
Space Sci. Rev.,
217, 70, https://doi.org/10.1007/s11214-021-00839-2, 2021.
Saunders, M. A., Russell, C. T., and Sckopke, N.:
Flux transfer events: Scale size and interior structure,
Geophys. Res. Lett.,
11, 131–134, https://doi.org/10.1029/GL011i002p00131, 1984.
Sauvaud, J. A., Fedorov, A., Aoustin, C., Seran, H. C., Le Comte, E., Petiot, M., Rouzaud, J., Saito, Y., Dandouras, J., Jacquey, C., Louarn, P., Mazelle, C., and Médale, J. L.:
The Mercury Electron Analyzers for the Bepi Colombo mission,
Adv. Space Res.,
46, 1139–1148, https://doi.org/10.1016/j.asr.2010.05.022, 2010.
Schindler, K., Pfirsch, D., and Wobig, H.:
Stability of two-dimensional collision-free plasmas,
Plasma Physics,
15, 1165–1184, https://doi.org/10.1088/0032-1028/15/12/001, 1973.
Shi, Q. Q., Zong, Q. G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Wang, Y. F., Chen, Y., Li, L., Xia, L. D., Liu, Z. X., Fazakerley, A. N., Reme, H., and Lucek, E.:
Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field,
J. Geophys. Res.-Space,
114, A12219, https://doi.org/10.1029/2009JA014475, 2009.
Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., Nowada, M., Wang, Y. B., Sun, W. J., Xiao, T., Reme, H., Carr, C., Fazakerley, A. N., and Lucek, E.:
Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times,
Nat. Commun.,
4, 1466, https://doi.org/10.1038/ncomms2476, 2013.
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., and Zurbuchen, T. H.:
MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere,
Science,
324, 606, https://doi.org/10.1126/science.1172011, 2009.
Slavin, J. A., Lepping, R. P., Wu, C.-C., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Killen, R. M., Korth, H., Krimigis, S. M., McClintock, W. E., McNutt Jr., R. L., Sarantos, M., Schriver, D., Solomon, S. C., Trávníček, P., and Zurbuchen, T. H.:
MESSENGER observations of large flux transfer events at Mercury,
Geophys. Res. Lett.,
37, L02105, https://doi.org/10.1029/2009gl041485, 2010.
Slavin, J. A., Imber, S. M., Boardsen, S. A., DiBraccio, G. A., Sundberg, T., Sarantos, M., Nieves-Chinchilla, T., Szabo, A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M., Johnson, C. L., Winslow, R. M., Killen, R. M., McNutt Jr., R. L., and Solomon, S. C.:
MESSENGER observations of a flux-transfer-event shower at Mercury,
J. Geophys. Res.-Space,
117, A00M06, https://doi.org/10.1029/2012ja017926, 2012.
Song, P. and Russell, C. T.:
Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field,
J. Geophys. Res.-Space,
97, 1411–1420, https://doi.org/10.1029/91JA02377, 1992.
Sonnerup, B. U. Ö.:
Magnetopause reconnection rate,
J. Geohys. Res.,
79, 1546–1549, https://doi.org/10.1029/JA079i010p01546, 1974.
Sonnerup, B. U. Ö. and Cahill Jr., L. J.:
Magnetopause structure and attitude from Explorer 12 observations,
J. Geohys. Res.,
72, 171–183, https://doi.org/10.1029/JZ072i001p00171, 1967.
Sonnerup, B. U. Ö. and Scheible, M.:
Minimum and maximum variance analysis,
in: Analysis methods for multi-spacecraft data,
edited by: Paschmann, G. and Daly, P. W.,
ESA Publication, Noordwijk, Netherlands, 185–220, 1998.
Sonnerup, B. U. Ö., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. R., Gosling, J. T., and Russell, C. T.:
Evidence for magnetic field reconnection at the Earth's magnetopause,
J. Geophys. Res.-Space,
86, 10049–10067, https://doi.org/10.1029/JA086iA12p10049, 1981.
Stawarz, J. E., Eastwood, J. P., Phan, T. D., Gingell, I. L., Shay, M. A., Burch, J. L., Ergun, R. E., Giles, B. L., Gershman, D. J., Contel, O. L., Lindqvist, P. A., Russell, C. T., Strangeway, R. J., Torbert, R. B., Argall, M. R., Fischer, D., Magnes, W., and Franci, L.:
Properties of the Turbulence Associated with Electron-only Magnetic Reconnection in Earth's Magnetosheath,
Astrophys J.,
877, L37, https://doi.org/10.3847/2041-8213/ab21c8, 2019.
Sun, W., Dewey, R. M., Aizawa, S., Huang, J., Slavin, J. A., Fu, S., Wei, Y., and Bowers, C. F.:
Review of Mercury's dynamic magnetosphere: Post-MESSENGER era and comparative magnetospheres,
Sci. China Earth Sci.,
65, 25–74, https://doi.org/10.1007/s11430-021-9828-0, 2022.
Sun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., Raines, J. M., Livi, S., Saito, Y., Gershman, D. J., DiBraccio, G. A., Imber, S. M., Guo, J. P., Fu, S. Y., Zong, Q. G., and Zhao, J. T.:
Flux Transfer Event Showers at Mercury: Dependence on Plasma β and Magnetic Shear and Their Contribution to the Dungey Cycle,
Geophys. Res. Lett.,
47, e2020GL089784, https://doi.org/10.1029/2020GL089784, 2020a.
Sun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., Jasinski, J. M., Jia, X., and Akhavan-Tafti, M.:
MESSENGER Observations of Mercury's Nightside Magnetosphere Under Extreme Solar Wind Conditions: Reconnection-Generated Structures and Steady Convection,
J. Geophys. Res.-Space,
125, e2019JA027490, https://doi.org/10.1029/2019ja027490, 2020b.
Tang, B. B., Wang, C., and Li, W. Y.:
The magnetosphere under the radial interplanetary magnetic field: A numerical study,
J. Geophys. Res.-Space,
118, 7674–7682, https://doi.org/10.1002/2013JA019155, 2013.
Toledo-Redondo, S., Hwang , K.-J., Escoubet , C. P., Lavraud , B., Fornieles , J., Aunai , N., Fear , R. C., Dargent , J., Fu, H. S., Fuselier , S. A., Genestreti , K. J., Khotyaintsev , Y. V., Li, W. Y., Norgren , C., and Phan , T. D.:
Solar Wind—Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions: Simultaneous Multi-Point Observations,
J. Geophys. Res.-Space,
126, e2021JA029506, https://doi.org/10.1029/2021JA029506, 2021.
Trattner, K. J., Mulcock, J. S., Petrinec, S. M., and Fuselier, S. A.:
Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions,
J. Geophys. Res.-Space,
112, A08210, https://doi.org/10.1029/2007JA012270, 2007.
Trattner, K. J., Petrinec, S. M., Fuselier, S. A., and Phan, T. D.:
The location of reconnection at the magnetopause: Testing the maximum magnetic shear model with THEMIS observations,
J. Geophys. Res.-Space,
117, A01201, https://doi.org/10.1029/2011JA016959, 2012.
Trattner, K. J., Burch, J. L., Ergun, R., Eriksson, S., Fuselier, S. A., Giles, B. L., Gomez, R. G., Grimes, E. W., Lewis, W. S., Mauk, B., Petrinec, S. M., Russell, C. T., Strangeway, R. J., Trenchi, L., and Wilder, F. D.:
The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model,
J. Geophys. Res.-Space,
122, 11991–12005, https://doi.org/10.1002/2017JA024488, 2017.
Trattner, K. J., Fuselier, S. A., Petrinec, S. M., Burch, J. L., Ergun, R., and Grimes, E. W.:
Long and Active Magnetopause Reconnection X-Lines During Changing IMF Conditions,
J. Geophys. Res.-Space,
126, e2020JA028926, https://doi.org/10.1029/2020JA028926, 2021.
Walker, R. J. and Russell, C. T.:
Flux transfer events at the Jovian magnetopause,
J. Geophys. Res.-Space,
90, 7397–7404, https://doi.org/10.1029/JA090iA08p07397, 1985.
Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J., Raeder, J., Russell, C. T., Kawano, H., Zong, Q.-G., Zhang, H., Zhang, X. X., and Friedel, R. H.:
Initial results of high-latitude magnetopause and low-latitude flank flux transfer events from 3 years of Cluster observations,
J. Geophys. Res.-Space,
110, A11221, https://doi.org/10.1029/2005JA011150, 2005.
Wang, Y. L., Elphic, R. C., Lavraud, B., Taylor, M. G. G. T., Birn, J., Russell, C. T., Raeder, J., Kawano, H., and Zhang, X. X.:
Dependence of flux transfer events on solar wind conditions from 3 years of Cluster observations,
J. Geophys. Res.-Space,
111, A04224, https://doi.org/10.1029/2005JA011342, 2006.
Zhang, H., Khurana, K. K., Kivelson, M. G., Angelopoulos, V., Pu, Z. Y., Zong, Q.-G., Liu, J., and Zhou, X.-Z.:
Modeling a force-free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft,
J. Geophys. Res.-Space,
113, A00C05, https://doi.org/10.1029/2008ja013451, 2008.
Zhao, J. T., Sun, W.-J., Zong, Q. G., Slavin, J. A., Zhou, X. Z., Dewey, R. M., Poh, G. K., and Raines, J. M.:
A Statistical Study of the Force Balance and Structure in the Flux Ropes in Mercury's Magnetotail,
J. Geophys. Res.-Space,
124, 5143–5157, https://doi.org/10.1029/2018ja026329, 2019.
Zhong, J., Wei, Y., Lee, L. C., He, J. S., Slavin, J. A., Pu, Z. Y., Zhang, H., Wang, X. G., and Wan, W. X.:
Formation of Macroscale Flux Transfer Events at Mercury,
Astrophys J.,
893, L18, https://doi.org/10.3847/2041-8213/ab8566, 2020.
Zhou, M., Berchem, J., Walker, R. J., El-Alaoui, M., Deng, X., Cazzola, E., Lapenta, G., Goldstein, M. L., Paterson, W. R., Pang, Y., Ergun, R. E., Lavraud, B., Liang, H., Russell, C. T., Strangeway, R. J., Zhao, C., Giles, B. L., Pollock, C. J., Lindqvist, P. A., Marklund, G., Wilder, F. D., Khotyaintsev, Y. V., Torbert, R. B., and Burch, J. L.:
Coalescence of Macroscopic Flux Ropes at the Subsolar Magnetopause: Magnetospheric Multiscale Observations,
Phys. Rev. Lett.,
119, 055101, https://doi.org/10.1103/PhysRevLett.119.055101, 2017.
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's...