Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Beatriz Sánchez-Cano
School of Physics and Astronomy, University of Leicester, Leicester, UK
Daniel Heyner
Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany
Sae Aizawa
IRAP, CNRS-UPS-CNES, Toulouse, France
Nicolas André
IRAP, CNRS-UPS-CNES, Toulouse, France
Ali Varsani
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Johannes Mieth
Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany
Stefano Orsini
Institute of Space Astrophysics and Planetology, INAF, Rome, Italy
Wolfgang Baumjohann
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
David Fischer
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Yoshifumi Futaana
Swedish Institute of Space Physics, Kiruna, Sweden
Richard Harrison
RAL Space, UKRI-STFC Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, UK
Harald Jeszenszky
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Iwai Kazumasa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Gunter Laky
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Herbert Lichtenegger
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Anna Milillo
Institute of Space Astrophysics and Planetology, INAF, Rome, Italy
Yoshizumi Miyoshi
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Ferdinand Plaschke
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Ingo Richter
Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany
Sebastián Rojas Mata
Swedish Institute of Space Physics, Kiruna, Sweden
Yoshifumi Saito
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
Daniel Schmid
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Daikou Shiota
National Institute of Information and Communications Technology, Tokyo, Japan
Cyril Simon Wedlund
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Related authors
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Gerlinde Timmermann, David Fischer, Hans-Ulrich Auster, Ingo Richter, Benjamin Grison, and Ferdinand Plaschke
EGUsphere, https://doi.org/10.5194/egusphere-2025-4095, https://doi.org/10.5194/egusphere-2025-4095, 2025
This preprint is open for discussion and under review for Geoscientific Instrumentation, Methods and Data Systems (GI).
Short summary
Short summary
We've compared the amplitude spectral densities of a fluxgate magnetometer (FGM) and an anisotropic magnetoresistive (AMR) magnetometer during ground testing with the amplitude spectral densities obtained in different regions of near-Earth space. The FGM can measure the fields in the different space regions and their fluctuations within a frequency range of 1 mHz to 2.5 Hz. The AMR magnetometer is only suitable for more turbulent regions such as the magnetosheath due to its higher noise levels.
Rumi Nakamura, Thierry Dudok de Wit, Geraint H. Jones, Matt G. G. T. Taylor, Nicolas C. Andre, Charlotte Goetz, Lina Z. Hadid, Laura A. Hayes, Heli Hietala, Caitriona M. Jackman, Larry Kepko, Aurelie Marchaudon, Adam Masters, Mathew Owens, Noora Partamies, Stefaan Poedts, Jonathan Rae, Yuri Shprits, Manuela Temmer, Daniel Verscharen, and Robert F. Wimmer-Schweingruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-3814, https://doi.org/10.5194/egusphere-2025-3814, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
Heliophysics spans a wide range of disciplines covering the study of the Sun and the different Solar System bodies, such as Earth and other planets, moons, comets, and asteroids, and their interactions with the Sun, focusing on plasma and atmospheric processes. A grass-roots effort has been recently started toward establishing a European Heliophysics Community (https://www.heliophysics.eu/). This white paper outlines the motivation, priorities, and a future vision of Heliophysics in Europe.
Yasuhito Narita, Daniel Schmid, and Uwe Motschmann
Ann. Geophys., 43, 417–425, https://doi.org/10.5194/angeo-43-417-2025, https://doi.org/10.5194/angeo-43-417-2025, 2025
Short summary
Short summary
It is often the case that only magnetic field data are available for in situ planetary studies using spacecraft. Either plasma data are not available or the data resolution is limited. Nevertheless, the theory of plasma instability tells us how to interpret the magnetic field data (wave frequency) in terms of flow speed and beam velocity, generating the instability. We invent an analysis tool for Mercury's upstream waves as an example.
Pekka T. Verronen, Akira Mizuno, Yoshizumi Miyoshi, Sandeep Kumar, Taku Nakajima, Shin-Ichiro Oyama, Tomoo Nagahama, Satonori Nozawa, Monika E. Szelag, Tuomas Häkkilä, Niilo Kalakoski, Antti Kero, Esa Turunen, Satoshi Kasahara, Shoichiro Yokota, Kunihiro Keika, Tomoaki Hori, Takefumi Mitani, Takeshi Takashima, and Iku Shinohara
EGUsphere, https://doi.org/10.5194/egusphere-2025-1691, https://doi.org/10.5194/egusphere-2025-1691, 2025
Short summary
Short summary
We use NO column density data from the Syowa station in Antarctica from 2012–2017. We compare these ground-based radiometer observations with results from a global atmosphere model to understand the year-to-year and day-to-day variability, shortcomings of current electron forcing, and how geomagnetic storms are driving the variability of NO. Our results demonstrate an underestimation in the magnitude of day-to-day variability in simulations, which calls for improved electron forcing in models.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
Ann. Geophys., 43, 151–173, https://doi.org/10.5194/angeo-43-151-2025, https://doi.org/10.5194/angeo-43-151-2025, 2025
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind, the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, and Yoshifumi Futaana
Ann. Geophys., 42, 419–429, https://doi.org/10.5194/angeo-42-419-2024, https://doi.org/10.5194/angeo-42-419-2024, 2024
Short summary
Short summary
The Sun ejects a stream of charged particles into space that have to flow around planets like Venus. We quantify how this flow varies with spatial location using spacecraft measurements of the particles and magnetic field taken over several years. We find that this flow is connected to interactions with the heavier charged particles that originate from Venus’ upper atmosphere. These interactions are not unique to Venus, so we compare our results to similar studies at Mars.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024, https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
Short summary
The magnetosheath is a transition layer surrounding the planetary magnetosphere. We develop an algorithm to compute the plasma flow velocity and magnetic field for a more general shape of magnetosheath using the concept of potential field and suitable coordinate transformation. Application to the empirical Earth magnetosheath region is shown in the paper. The developed algorithm is useful when interpreting the spacecraft data or simulation of the planetary magnetosheath region.
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Daniel Schmid and Yasuhito Narita
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-30, https://doi.org/10.5194/angeo-2022-30, 2023
Revised manuscript not accepted
Short summary
Short summary
Here we present a useful tool to diagnose the bow shock condition around planets on basis of magnetic field observations. From the upstream and downstream shock normal angle of the magnetic field, it is possible to approximate the relation between compression ratio, Alfvenic Mach number and the solar wind plasma beta. The tool is particularly helpful to study the solar wind conditions and bow shock characteristics during the planetary flybys of the ongoing BepiColombo mission.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
Katharina Ostaszewski, Karl-Heinz Glassmeier, Charlotte Goetz, Philip Heinisch, Pierre Henri, Sang A. Park, Hendrik Ranocha, Ingo Richter, Martin Rubin, and Bruce Tsurutani
Ann. Geophys., 39, 721–742, https://doi.org/10.5194/angeo-39-721-2021, https://doi.org/10.5194/angeo-39-721-2021, 2021
Short summary
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 9, 451–469, https://doi.org/10.5194/gi-9-451-2020, https://doi.org/10.5194/gi-9-451-2020, 2020
Short summary
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Cited articles
Anselmi, A. and Scoon, G. E. N.: BepiColombo, ESA's Mercury Cornerstone
mission, Planet. Space Sci., 49, 1409–1420,
https://doi.org/10.1016/S0032-0633(01)00082-4, 2001. a
Barabash, S., Sauvaud, J.-A., Gunell, H., Andersson, H., Grigoriev, A.,
Brinkfeldt, K., Holmström, M., Lundin, R., Yamauchi, M., Asamura, K.,
Baumjohann, W., Zhang, T., Coates, A., Linder, D., Kataria, D., Curtis, C.,
Hsieh, K., Sandel, B., Fedorov, A., Mazelle, C., Thocaven, J.-J., Grande, M.,
Koskinen, H. E., Kallio, E., Säles, T., Riihela, P., Kozyra, J., Krupp,
N., Woch, J., Luhmann, J., McKenna-Lawlor, S., Orsini, S.,
Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt,
P., Russell, C., Szego, K., Winningham, J., Frahm, R., Scherrer, J., Sharber,
J., Wurz, P., and Bochsler, P.: The analyser of space plasmas and energetic
atoms (ASPERA-4) for the Venus Express mission, Planet. Space Sci., 55,
1772–1792, https://doi.org/10.1016/j.pss.2007.01.014, 2007. a
Benkhoff, J., Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M.,
Ferri, P., Middleton, H. R., and Ziethe, R.: BepiColombo comprehensive
exploration of Mercury: Mission overview and science goals, Planet. Space
Sci., 58, 2–20, https://doi.org/10.1016/j.pss.2009.09.020, 2010. a, b
Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., and
Vaisberg, O.: The induced magnetospheres of Mars, Venus, and Titan, Space
Sci. Rev., 162, 113–171, https://doi.org/10.1007/s11214-011-9845-1, 2011. a, b, c
Bowen, T. A., Bale, S. D., Bandyopadhyay, R., Bonnell, J., Case, A., Chasapis,
A., Chen, C. H. K., Curry, S., Dudok de Wit, T., Goetz, K., Goodrich, K.,
Gruesbeck, J., Halekas, J., Harvey, P. R., Howes, G. G., Kasper, J., Korreck,
K., Larson, D., Livi, R., MacDowall, R. J., Malaspina, D. M., Mallet, A.,
McManus, M., Page, B., Pulupa, M., Raouafi, N., Stevens, M., and Whittlesey,
P.: Kinetic-scale turbulence in the Venusian magnetosheath, Geophys. Res. Lett., 48, e2020GL090783, https://doi.org/10.1029/2020GL090783, 2021. a
Browett, S. D., Fear, R. C., Grocott, A., and Milan, S. E.: Timescales for the
penetration of IMF By into the Earth's magnetotail, J. Geophys. Res.,
122, 579–593, https://doi.org/10.1002/2016JA023198, 2017. a
Brueckner, G., Howard, R., Koomen, M., Korendyke, C. M., Michels, D. J., Moses,
J. D., Socker, D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout, M. V.,
Simnett, R. S. G. M., Bedford, D. K., and Eyles, C. J.: The large angle
spectroscopic coronagraph (lasco), Sol. Phys., 162, 357–402, 1995. a
Davey, E. A., Lester, M., Milan, S. E., and Fear, R. C.: Storm and substorm
effects on magnetotail current sheet motion, J. Geophys. Res., 117, A02202,
https://doi.org/10.1029/2011JA017112, 2012. a
Delva, M., Zhang, T. L., Volwerk, M., Vörös, Z., and Pope, S. A.: Proton
cyclotron waves in the solar wind at Venus, Geophys. Res. Lett., 113,
E00B06, https://doi.org/10.1029/2008JE003148, 2008. a
Delva, M., Bertucci, C., Volwerk, M., Lundin, R., Mazelle, C., and Romanelli,
N.: Upstream proton cyclotron waves at Venus near solar maximum, J.
Geophys. Res., 120, 344–354, https://doi.org/10.1002/2014JA020318, 2015. a
Delva, M., Volwerk, M., Jarvinen, R., and Bertucci, C.: Asymmetries in the
Magnetosheath field draping on Venus' nightside, J. Geophys. Res., 122,
10396–10407, https://doi.org/10.1002/2017JA024604, 2017. a, b
Dimmock, A. P., Alho, M., Kallio, E., Pope, S. A., Zhang, T. L., Pulkkinen, E.
K. T. I., Futaana, Y., and Coates, A. J.: The response of the Venusian
plasma environment to the passage of an ICME: Hybrid simulation results and
Venus Express observations, J. Geophys. Res., 123, 3580–3601, 2018. a
Dubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., and
Vaisberg, O.: Ion energization and escape on Mars and Venus, Space Sci.
Rev., 162, 173–211, https://doi.org/10.1007/s11214-011-9831-7, 2011. a
Eroshenko, E. G.: Unipolar induction effects in the magnetic tail of Venus,
Cosmic Res., 17, 93–105, 1979. a
Saito, Y., Delcourt, D., Hirahara, M., et al.: Pre-flight calibration and near-earth commissioning results of
mercury plasma particle experiment (mppe) onboard mmo (mio), Space Sci. Rev.,
submitted, 2021. a
Eyles, C., Harrison, R., and Davis, C.: The heliospheric imagers onboard the
stereo mission, Sol. Phys., 254, 387–445, 2009. a
Fairfield, D. H.: On the average configuraton of the geomagnetic tail, J.
Geophys. Res., 84, 1950–1958, https://doi.org/10.1029/JA084iA05p01950, 1979. a
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A.,
Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K.,
McComas, D. J., Raouafi, N. E., and Szabo, Z.: The Solar Probe Plus
mission: Humanity's first visit to our star, Space Sci. Rev., 204, 7–48,
https://doi.org/10.1007/s11214-015-0211-6, 2016. a
Futaana, Y., Stenberg Wieser, G., Barabash, S., and Luhmann, J. G.: Solar
wind interaction and impact on the Venus Atmosphere, Space Sci. Rev., 212,
1543–1509, https://doi.org/10.1007/s11214-017-0362-8, 2017. a
Gary, S. P.: The Mirror and Ion Cyclotron Anisotropy Instabilities, J. Geophys.
Res., 97, 8519–8529, https://doi.org/10.1029/92JA00299, 1992. a
Glassmeier, K. H., Auster, H. U., Heyner, D., Okrafka, K., Carr, C., Berghofer,
G., Anderson, B. J., Balogh, A., Baumjohann, W., Cargill, P., Christensen,
U., Delva, M., Dougherty, M., Fornaçon, K. H., Horbury, T. S., Lucek,
E. A., Magnes, W., Mandea, M., Matsuoka, A., Matsushima, M., Motschmann, U.,
Nakamura, R., Narita, Y., O'Brien, H., Richter, I., Schwingenschuh, K.,
Shibuya, H., Slavin, J. A., Sotin, C., Stoll, B., Tsunakawa, H., Vennerstrom,
S., Vogt, J., and Zhang, T.L.: The fluxgate magnetometer of the BepiColombo
Mercury Planetary Orbiter, Planet. Space Sci., 58, 287–299, 2010. a
Goodrich, K. A., Bonnell, J. W., Curry1, S., Livi, R., Whittlesey1, P., Mozer,
F., Malaspina3, D., Halekas4, J., McManus, M., Bale, S., Bowen, T., Case,
A., Dudok de Wit, T., Goetz, K., Harvey, P., Kasper, J., Larson, D.,
MacDowall, R., Pulupa, M., and Stevens, M.: Evidence of subproton-scale magnetic holes in the Venusian magnetosheath, Geophys. Res. Lett.,
48, e2020GL090329, https://doi.org/10.1002/essoar.10503890.1, 2021. a
Harrison, R. A., Davies, J. A., Barnes, D., Byrne, J. P., Perry, C. H.,
Bothmer, V., Eastwood, J. P., Gallagher, P. T., Kilpua, E. K. J., Möstl,
C., and. A. P. Rouillard, A. P. R., and Odstrčil, D.: CMEs in the
heliosphere: I. A statistical analysis of the observational properties of
CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1, Sol.
Phys., 293, 77, https://doi.org/10.1007/s11207-018-1297-2, 2018. a
HELCATS: Heliospheric Cataloguing, Analysis and Techniques Service, solar storms event lists, HELCATS [data set], available at: https://www.helcats-fp7.eu/index.html, last access: 15 September 2021. a
Heyner, D., Auster, H.-U., Fornacon, K.-H., Carr, C., Richter, I., Mieth, J.
Z. D., Kolhey, P., Exner, W., Motschmann, U., Baumjohann, W., Matsuoka, A.,
Magnes, W., Berhofer, G., Fischer, D., Plaschke, F., Nakamura, R., Narita,
Y., Delva, M., Volwerk, M., Balogh, A., Dougherty, M., Horbury, T., lanlais,
B., Mandea, M., Masters, A., Oliveira, J. S., Sánchez-Cano, B., Slavin,
J. A., Vennerstrøm, S., Vogt, J., Wicht, J., and Glassmeier, K.-H.: The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?, Space Sci. Rev., 217, 52, https://doi.org/10.1007/s11214-021-00822-x, 2021. a, b
Honig, T., Witasse, O. G., Evans, H., Nieminen, P., Kuulkers, E., Taylor, M. G.
G. T., Heber, B., Guo, J., and Sánchez-Cano, B.: Multi-point galactic
cosmic ray measurements between 1 and 4.5 AU over a full solar cycle, Ann.
Geophys., 37, 903–918, https://doi.org/10.5194/angeo-37-903-2019, 2019. a, b
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J., Socker, D. G.,
Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M.,
Thompson, W. T., St Cyr, O. C., Mentzell, E., Mehalick, K., Lemen, J. R.,
Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., Moore, A.,
Harrison, R. A., Waltham, N. R., Lang, J., Davis, C. J., Eyles, C. J.,
Mapson-Menard, H., Simnett, G. M., Halain, J. P., Defise, J. M., Mazy, E.,
Rochus, P., Mercier, R., Ravet, M. F., Delmotte, F., Auchere, F.,
Delaboudiniere, J. P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper,
S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., and Carter, T.: Sun
Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space
Sci. Rev., 136, 67–115, https://doi.org/10.1007/s11214-008-9341-4, 2008. a
Iwai, K., Shiota, D., Tokumaru, M., Fujiki, K., Den, M., and Kubo, Y.:
Development of a coronal mass ejection arrival time forecasting system using
interplanetary scintillation observations, Earth Planet. Space, 71, 39,
https://doi.org/10.1186/s40623-019-1019-5, 2019. a
Jarvinen, R., Kallio, E., and Dyadechkin, S.: Hemispheric asymmetries of the
Venus plasma environment, J. Geophys. Res., 118, 4551–4563,
https://doi.org/10.1002/jgra.50387, 2013. a, b
Kajdič, P., Sánchez-Cano, B., Neves-Ribeiro, L., Witasse, O.,
Bernal, G. C., Rojas-Castillo, D., Nilsson, H., and Fedorov, A.:
Interaction of Space Weather Phenomena With Mars Plasma Environment During
Solar Minimum 23/24, J. Geophys. Res., 126, e2020JA028442,
https://doi.org/10.1029/2020JA028442, 2021. a, b
Kivelson, M. G., Kennel, C. F., McPherron, R. L., Southwood, D. J., Walker,
R. J., Hammond, C. M., Khurana, K. K., Strangeway, R. J., and Coleman, P. J.:
Magnetic field studies of the solar wind interaction with Venus from the
Galileo flyby, Science, 253, 1518–1522,
https://doi.org/10.1126/science.253.5027.1518, 1991. a
Luhmann, J. G., Russell, C. T., and Elphic, R. C.: Spatial Distributions of
Magnetic Field Fluctuations in the Dayside Magnetosheath, J. Geophys. Res.,
91, 1711–1715, https://doi.org/10.1029/JA091iA02p01711, 1986. a
Malaspina, D. M., Goodrich, K., Livi, R., Halekas, J., McManus, M., Curry,
S., Bale, S. D., Bonnell, J. W., Dudok de Wit, T., Goetz, K., Harvey,
P. F., MacDowall, R. J., Pulupa, M., Case, A. W., Kasper, I., Korreck,
K. E., Larson, D., Stevens, M. L., and Whittlesey, P.: Plasma double layers
at the boundary between Venus and the Solar wind, Geophys. Res. Lett.,
47, e2020GL090115, https://doi.org/10.1029/2020GL090115, 2020. a
Mangano, V., Dósa, M., Fränz, M., Milillo, A., Lee, J. S. O. Y. J.,
McKenna-Lawlor, S., Grassi, D., Heyner, D., Kozyrev, A. S., Peron, R.,
Helbert, J., Besse, S., de la Fuente, S., Montagnon, E., Zender, J.,
Volwerk, M., Chaufray, J., Slavin, J. A., Krüger, H., Maturilli, A.,
Cornet, T., Iwai, K., Miyoshi, Y., Lucente, M., Massetti, S., Schmidt, C. A.,
Dong, C., Quarati, F., Hirai, T., Varsani, A., Belyaev, D., Zhong, J.,
Kilpua, E. K. J., Jackson, B. V., Odstrcil, D., Plaschke, F., Vainio, R.,
Jarvinen, R., Lambrov Ivanovski, S., Madár, A., Erdös, G.,
Plainaki, C., Alberti, T., Aizawa, S., Benkhoff, J., Murakami, G., Quemerais,
E., Hiesinger, H., Mitrofanov, I. G., l. Iess, Santoli, F., Orsini, S.,
Lichtenegger, H., Laky, G., Barabash, S., Moissl, R., Huovelin, J., Kasaba,
Y., Saito, Y., Kobayashi, M., and Baumjohann, W.: BepiColombo Science
Investigations During Cruise and Flybys at the [Earth, Venus and Mercury,
Space Sci. Rev., 217, 23, https://doi.org/10.1007/s11214-021-00797-9, 2021. a
Martinecz, C., Boesswetter, A., Fränz, M., Roussos, E., Woch, J., Krupp,
N., Dubinin, E., Motschmann, U., Wiehle, S., Simon, S., Barabash, S., Lundin,
R., Zhang, T. L., Lammer, H., Lichtenegger, H., and Kulikov, Y.: Correction
to “Plasma environment of Venus: Comparison of Venus Express ASPERA-4
measurements with 3-D hybrid simulations”, J. Geophys. Res., 114, E00B98,
https://doi.org/10.1029/2009JE003377, 2009a. a
Martinecz, C., Boesswetter, A., Fränz, M., Roussos, E., Woch, J., Krupp,
N., Dubinin, E., Motschmann, U., Wiehle, S., Simon, S., Barabash, S., Lundin,
R., Zhang, T. L., Lammer, H., Lichtenegger, H., and Kulikov, Y.: Plasma
environment of Venus: Comparison of Venus Express ASPERA-4 measurements
with 3-D hybrid simulations, J. Geophys. Res., 114, E00B30,
https://doi.org/10.1029/2008JE003174, 2009b. a, b
McKenna-Lawlor, S., Jackson, B., and Odstrcil, D.: Space weather at planet
Venus during the forthcoming BepiColombo flybys, Planet. Space Sci., 152,
176–185, 2018. a
Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Dósa, S.
A. M., Griton, L., Heyner, D., Ho, G., Imber, S., Jia, X., Karlsson, T.,
Killen, R., Laurenza, M., Lindsay, S., McKenna-Lawlor, S., Mura, A.,
Raines, J., Rothery, D., André, N., Baumjohann, W., Berezhnoy, A.,
Bourdin, P., Bunce, E., Califano, F., Deca, J., de la Fuente, S., Dong, C.,
Grava, C., Fatemi, S., Henri, P., Ivanovski, S., Jackson, B., James, M.,
Kallio, E., Kasaba, Y., Kilpua, E., Kobayashi, M., Langlais, B., Leblanc, F.,
Lhotka, C., Mangano, V., Martindale, A., Massetti, S., Masters, A., Morooka,
M., Narita, Y., Oliveira, J., Odstrcil, D., Orsini, S., Pelizzo, M.,
Plainaki, C., Plaschke, F., Sahraoui, F., Seki, K., Slavin, J., Vainio, R.,
Wurz, P., Barabash, S., Carr, C., Delcourt, D., Glassmeier, K.-H., Grande,
M., Hirahara, M., Huovelin, J., Korablev, O., Kojima, H., Lichtenegger, H.,
Livia, S., Matsuoka, A., Moiss, R., Moncuquet, M., Muinonen, K.,
Quèmerais, E., Saito, Y., Yagitani, S., Yoshikawa, I., and Wahlund,
J.-E.: Investigating Mercury's Environment with the Two-Spacecraft
BepiColombo Mission, Space Sci. Rev., 216, 93,
https://doi.org/10.1007/s11214-020-00712-8, 2020. a
Müller, D., Marsden, R. G., St. Cyr, O. C., Gilbert, H. R., and The
Solar Orbiter Team: Solar orbiter: Exploring the Sun–Heliosphere
connection, Sol. Phys., 285, 25–70, 2013. a
Müller, D., St. Cyr, O. C., Zouganelis, I., Gilbert, H. R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T. S., Howard, R. A., Krucker, S., Maksimovic, M., Owen, C. J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S. K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D. M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J. C., Wimmer-Schweingruber, R. F., Marsch, E., Velli, M., De Groof, A., Walsh, A., and Williams, D.: The Solar
Orbiter mission: science overview, Astron. Astrophys., 642, A1, https://doi.org/10.1051/0004-6361/202038467, 2020. a
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., and Schatten,
K. H.: Magnetic field observations nere Mercury: Preliminary results from
Mariner 10, Science, 185, 151–160, https://doi.org/10.1126/science.185.4146.151,
1974. a
Odstrčil, D. and Pizzo, V. J.: Three-dimensional propagation of CMEs in
a structured solar wind flow: 1. CME launched within the streamer belt, J.
Geophys. Res., 104, 483–492, https://doi.org/10.1029/1998JA900019,
1999a. a
Odstrčil, D. and Pizzo, V. J.: Three-dimensional propagation of CMEs in
a structured solar wind flow: 2. CME launched adjacent to the streamer
belt, J. Geophys. Res., 104, 493–504, https://doi.org/10.1029/1998JA900038,
1999b. a
Orsini, S., Livi, S., Torkar, K., Barabash, S., Milillo, A., Wurz, P., Di
Lellis, A. D., Kallio, E., and the SERENA team: SERENA: A suite of four
instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for
particle detection in the Hermean environment, Planet. Space Sci., 58, 166 –181, https://doi.org/10.1016/j.pss.2008.09.012, 2010. a
Orsini, S., Livia, S., Lichtenegger, H., Barabasha, S., Milillo, A., De
Angelis, E., Phillips, M., Laky, G., Wieser, M., Olivieri, A., Plainaki, C.,
Ho, G., Killen, R., Slavin, J., Wurz, P., Berthelier, J.-J., Dandouras, I.,
Kallio, E., McKenna-Lawlor, S., Szalai, S., Torkar, K., Vaisberg, O.,
Allegrini, F., Daglis, I., Dong, C., Escoubet, C., Fatemi, S., Fränz, M.,
Ivanovski, S., Krupp, N., Lammer, H., Leblanc, F., Mangano, V., Mura, A.,
Nilsson, H., Raines, J., Rispoli, R., Sarantos, M., Smith, H., Szego, K.,
Aronica, A., Camozzi, F., Di Lellis, A., Fremuth, G., Giner, F., Gurnee,
R., Hayes, J., Jeszenszky, H., Tominetti, F., Trantham, B., Balaz, J.,
Baumjohann, W., Brienza, D., Bührke, U., Bush, M., Cantatore, M.,
Cibella, S., Colasanti, L., Cremonese, G., Cremonesi, L., D'Alessandro, M.,
Delcourt, D., Delva, M., Desai, M., Fama, M., Ferris, M., Fischer, H.,
Gaggero, A., Gamborino, D., Garnier, P., Gibson, W., Goldstein, R., Grande,
M., Grishin, V., Haggerty, D., Holmström, M., Horvath, I., Hsieh, K.-C.,
Jacques, A., Johnson, R., Kazakov, A., Kecskemety, K., Krüger, H.,
Küürbisch, C., Lazzarotto, F., Leblanc, F., Leichtfried, M., Leoni, R.,
Loose, A., Maschietti, D., Massetti, S., Mattioli, F., Miller, G., Moissenko,
D., Morbidini, A., Noschese, R., Nuccilli, F., Nunez, C., Paschalidis, N.,
Persyn, S., Piazza, D., Oja, M., Ryno, J., Schmidt, W., Scheer, J.,
Shestakov, A., Shuvalov, S., Seki, K., Selci, S., Smith, K., Sordini, R.,
Svensson, J., Szalai, L., Toublanc, D., Urdiales, C., Varsani, A., Vertolli,
N., Wallner, R., Wahlstroem, P., Wilson, P., and Zampieri, S.: SERENA:
Particle Instrument Suite for Determining the Sun-Mercury Interaction from
BepiColombo, Space Sci. Rev., 217, 11, https://doi.org/10.1007/a11214-020-00787-3,
2021a. a
Orsini, S., Livia, S., Lichtenegger, H., Barabasha, S., Milillo, A., De
Angelis, E., Phillips, M., Laky, G., Wieser, M., Olivieri, A., Plainaki, C.,
Ho, G., Killen, R., Slavin, J., Wurz, P., Berthelier, J.-J., Dandouras, I.,
Kallio, E., McKenna-Lawlor, S., Szalai, S., Torkar, K., Vaisberg, O.,
Allegrini, F., Daglis, I., Dong, C., Escoubet, C., Fatemi, S., Fränz, M.,
Ivanovski, S., Krupp, N., Lammer, H., Leblanc, F., Mangano, V., Mura, A.,
Nilsson, H., Raines, J., Rispoli, R., Sarantos, M., Smith, H., Szego, K.,
Aronica, A., Camozzi, F., Di Lellis, A., Fremuth, G., Giner, F., Gurnee,
R., Hayes, J., Jeszenszky, H., Tominetti, F., Trantham, B., Balaz, J.,
Baumjohann, W., Brienza, D., Bührke, U., Bush, M., Cantatore, M.,
Cibella, S., Colasanti, L., Cremonese, G., Cremonesi, L., D'Alessandro, M.,
Delcourt, D., Delva, M., Desai, M., Fama, M., Ferris, M., Fischer, H.,
Gaggero, A., Gamborino, D., Garnier, P., Gibson, W., Goldstein, R., Grande,
M., Grishin, V., Haggerty, D., Holmström, M., Horvath, I., Hsieh, K.-C.,
Jacques, A., Johnson, R., Kazakov, A., Kecskemety, K., Krüger, H.,
Küürbisch, C., Lazzarotto, F., Leblanc, F., Leichtfried, M., Leoni, R.,
Loose, A., Maschietti, D., Massetti, S., Mattioli, F., Miller, G., Moissenko,
D., Morbidini, A., Noschese, R., Nuccilli, F., Nunez, C., Paschalidis, N.,
Persyn, S., Piazza, D., Oja, M., Ryno, J., Schmidt, W., Scheer, J.,
Shestakov, A., Shuvalov, S., Seki, K., Selci, S., Smith, K., Sordini, R.,
Svensson, J., Szalai, L., Toublanc, D., Urdiales, C., Varsani, A., Vertolli,
N., Wallner, R., Wahlstroem, P., Wilson, P., and Zampieri, S.: Correction to:
SERENA: Particle Instrument Suite for Determining the Sun-Mercury
Interaction from BepiColombo, Space Sci. Rev., 217, 30,
https://doi.org/10.1007/S11214-021-00809-8, 2021b. a
Phillips, J. L. and McComas, D. J.: The magnetosheath and magnetotail of
Venus, Space Sci. Rev., 55, 1–80, https://doi.org/10.1007/BF00177135, 1991. a, b
Pinto, M., Sanchez-Cano, B., Moissl, R., Cardoso, C., Goncalves, P., Assis,
P., Vainio, R., Oleynik, P., Lehtolainen, A., Grande, M., and McComas, A.:
The Bepicolombo Radiation Monitor, BERM, Space Sci. Rev., submitted,
2021. a
Poh, G., Sun, W., Clink, K. M., Slavin, J. A., Dewey, R. M., Jia, X., Raines,
J. M., DiBraccio, G. A., and Espley, J. R.: Large-Amplitude Oscillatory
Motion of Mercury's Cross-Tail Current Sheet, J. Geophys. Res., 125,
e2020JA027783, https://doi.org/10.1029/2020JA027783, 2020. a
PSA: ESA's Planetary Science Archive, Venus Express MAG and ASPERA-4 data, PSA [data set], available at: https://archives.esac.esa.int/psa/#!Table View/Venus Express=mission, last access: 15 September 2021. a
Russell, C. T., Luhmann, J. G., Elphic, R. C., and Scarf, F. L.: The distant
bow shock and magnetotail of Venus: Magnetic field and plasma wave
observations, Geophys. Res. Lett., 8, 843–846,
https://doi.org/10.1029/GL008i007p00843, 1981. a, b
Saito, Y., Sauvaud, J. A., Hirahara, M., Barabash, S., Delcourt, D., Takashima,
T., Asamura, K., and BepiColombo MMO/MPPE team: Scientific objectives and
instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard
MMO, Planet. Space Sci., 58, 182–200, https://doi.org/10.1016/j.pss.2008.06.003,
2010. a
Sánchez-Cano, B., Hall, B. E. S., Lester, M., Mays, M. L., Witasse, O.,
Ambrosi, R., Andrews, D., Cartacci, M., Cicchetti, A., Holström, M.,
Imber, S., Kajdič, P., Milan, S. E., Noschese, R., Osdtrcil, D.,
Opgenoorth, H., Plaut, J., Ramstad, R., and Reyes-Ayala, K. I.: Mars plasma
system response to solar wind disturbances during solar minimum, J. Geophys.
Res., 122, 6611–6634, https://doi.org/10.1002/2016JA023587, 2017. a
Saunders, M. A. and Russell, C. T.: Avarage dimensino and magnetic structure of
the distant Venus magnetotail, J. Geophys. Res., 91, 5589–5604,
https://doi.org/10.1029/JA091iA05p05589, 1986. a
Schmid, D., Narita, Y., Plaschke, F., Volwerk, M., Nakamura, R., and Baumjohann, W.: Magnetosheath plasma flow model around Mercury, Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, 2021. a
Semkova, J., Koleva, R., Benghin, V., Dachev, T., Matviichuk, Y., Tomov, B.,
Krastev, K., Maltchev, S., Dimitrov, P., Mitrofanov, I., Malahov, A.,
Golovin, D., Mokrousov, M., Sanin, A., Litvak, M., Kozyrev, A., Tretyakov,
V., Nikiforov, S., Vostrukhin, A., Fedosov, F., Grebennikova, N., Zelenyi,
L., Shurshakov, V., and Drobishev, S.: Charged particles radiation
measurements with Liulin-MO dosimeter of FREND instrument aboard
ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars
orbit, Icarus, 303, 53–66, 2018. a
Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Volwerk,
M., Balogh, A., Rème, H., Sauvaud, J.-A., André, M., and Klecker, B.:
Current sheet flapping motion and structure observed by Cluster, Geophys.
Res. Lett., 30, 1327, https://doi.org/10.1029/2002GL016500, 2003. a, b, c
Shiota, D. and Kataoka, R.: Magnetohydrodynamic simulation of interplanetary
propagation of multiple coronal mass ejections with internal magnetic flux
rope (SUSANOO-CME), Space Weather, 14, 56–75,
https://doi.org/10.1002/2015SW001308, 2016. a, b
Shiota, D., Kataoka, R., Miyoshi, Y., Hara, T., Tao, C., Masunaga, K., Futaana,
Y., and Terada, N.: Inner heliosphere MHD modeling system applicable to
space weather forecasting for the other planets, Space Weather, 12, 187–204, https://doi.org/10.1002/2013SW000989, 2014. a, b
SOHO: NASA's SOlar and Heliospheric Observatory, Movie Theater, c2 images, SOHO [data set], available at: https://soho.nascom.nasa.gov/data/Theater/, last access: 15 September 2021. a
Spreiter, J., Summers, A., and Alksne, A.: Hydromagnetic flow around the
magnetosphere, Planet. Space Sci., 14, 223–253,
https://doi.org/10.1016/0032-0633(66)90124-3, 1966. a
Spreiter, J. R. and Stahara, S. S.: Gasdynamic and magnetohydrodynamic modeling
of the magnetosheath: a tutorial, Adv. Space Res., 14, 5–19,
https://doi.org/10.1016/0273-1177(94)90042-6, 1994. a
Svedhem, H., Titov, D. V., McCoy, D., Lebreton, J.-P., Barabash, S., Bertaux,
J.-L., Drossart, P., Formisano, V., Häusler, B., Korablev, O.,
Markiewicz, W. J., Nevejans, D., Pätzold, M., Piccioni, G., Zhang, T. L.,
Taylor, F. W., Lellouch, E., Koschny, D., Witasse, O., Eggel, H., Warhaut,
M., Accomazzo, A., Rodriguez-Canabal, J., Fabrega, J., Schirmann, T.,
Clochet, A., and Coradini, M.: Venus Express: The first European missionn
to Venus, Planet. Space Sci., 55, 1636–1652,
2007. a
Verigin, M. I., Gringauz, K. I., Gombosi, T., Breus, T. K., Bezrukikh, V. V., Remizov, A. P., and Volkov, G. I.: Plasma near Venus from the Venera 9
and 10 Wide-Angle analyzer data, J. Geophys. Res., 83, 3721–3728, 1978. a
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and
Glassmeier, K.-H.: First identification of mirror mode waves in Venus’
magnetosheath?, Geophys. Res. Lett., 35, L12204, 2008a. a
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and
Glassmeier, K.-H.: Mirror-mode-like structures in Venus’ induced
magnetosphere, J. Geophys. Res., 113, E00B16, https://doi.org/10.1029/2008JE003154, 2008b. a
Volwerk, M., Delva, M., Futaana, Y., Retinò, A., Vörös, Z., Zhang,
T. L., Baumjohann, W., and Barabash, S.: Substorm activity in Venus's
magnetotail, Ann. Geophys., 27, 2321–2330,
https://doi.org/10.5194/angeo-27-2321-2009, 2009. a
Volwerk, M., Delva, M., Futaana, Y., Retinò, A., Vörös, Z., Zhang,
T. L., Baumjohann, W., and Barabash, S.: Corrigendum to “Substorm activity
in Venus’s magnetotail” published in Ann. Geophys., 27, 2321–2330,
https://doi.org/10.5194/angeo-27-2321-2009, 2009, Ann. Geophys., 28, 1877–1878,
https://doi.org/10.5194/angeo-28-1877-2010, 2010. a
Volwerk, M., Schmid, D., Tsurutani, B. T., Delva, M., Plaschke, F., Narita, Y.,
Zhang, T. L., and Glassmeier, K.-H.: Mirror mode waves in Venus's
magnetosheath: solar minimum vs. solar maximum, Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, 2016. a
Volwerk, M., Horbury, T. S., Woodham, L. D., Bale, S. D., Simon Wedlund, C.,
Schmid, D., Allen, R. C., Angelini, V., Bauumjohann, W., Berger, L., Edberg,
N. J. T., Evans, V., Hadid, L. Z., Ho, G. C., Khotyaintsev, Y. V., Magnes,
W., Maksimovic, M., O'Brien, H., Steller, M. B., Rodriguez-Pacheco, J.,
and Wimmer-Scheingruber, R. F.: Solar Orbiter's first Venus Flyby:
MAG observations of structures and waves associated with the induced
Venusian magnetosphere, Astron. Astrophys., in press, 2021. a, b
Vörös, Z., Zhang, T., Leubner, M. P., Volwerk, M., Delva, M., Baumjohann,
W., and Kudela, K.: Magnetic fluctuations and turbulence in the Venus
magnetosheath and wake, Geophys. Res. Lett., 35, L11102,
https://doi.org/10.1029/2008GL033879, 2008a.
a
Vörös, Z., Zhang, T. L., Leaner, M. P., Volwerk, M., Delva, M., and
Baumjohann, W.: Intermittent turbulence, noisy fluctuations, and wavy
structures in the Venusian magnetosheath and wake, J. Geophys. Res., 113,
E00B21, https://doi.org/10.1029/2008JE003159, 2008b. a
Witasse, O., Sánchez-Cano, B., Mays, M. L., Kajdic, P., Opgenoorth, H.,
Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J.,
Wimmer-Schweingruber, R. F., Turc, L., Taylor, M. G. G. T., Roussos, E.,
Rouillard, A., Richter, I., Richardson, J. D., Ramstad, R., Provan, G.,
Posner, A., Plaut, J. J., Odstrcil, D., Nilsson, H., Niemenen, P., Milan,
S. E., Mandt, K., Lohf, H., Lester, M., Lebreton, J.-P., Kuulkers, E., Krupp,
N., Koenders, C., James, M. K., Intzekara, D., Holmstrom, M., Hassler, D. M.,
Hall, B. E. S., Guo, J., Goldstein, R., Goetz, C., Glassmeier, K. H.,
Génot, V., Evans, H., Espley, J., Edberg, N. J. T., Dougherty, M.,
Cowley, S. W. H., Burch, J., Behar, E., Barabash, S., Andrews, D. J., and
Altobelli, N.: Interplanetary coronal mass ejection observed at STEREO-A,
Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en
route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9
AU, J. Geophys. Res., 122, 7865–7890, https://doi.org/10.1002/2017JA023884, 2017. a
Zhang, T. L., Nakamura, R., Volwerk, M., Runov, A., Baumjohann, W.,
Eichelberger, H. U., Carr, C., Balogh, A., Sergeev, V., Shi, J. K., and
Fornaçon, K.-H.: Double Star/Cluster observation of neutral sheet
oscillations on August 5, 2004, Ann. Geophys., 23, 2909–2914, 2005. a
Zhang, T. L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell,
C. T., Barabash, S., Balikhin, M., Berghofer, G., Biernat, H. K., Lammer, H.,
Lichtenegger, H., Magnes, W., Nakamura, R., Penz, T., Schwingenschuh, K.,
Vörös, Z., Zambelli, W., Fornacon, K.-H., Glassmeier, K.-H., Richter,
I., Carr, C., Kudela, K., Shi, J. K., Zhao, H., Motschmann, U., and Lebreton,
J.-P.: Magnetic field investigation of the Venus plasma environment: Expected
new results, Planet. Space Sci., 54, 1336–1343,
https://doi.org/10.1016/j.pss.2006.04.018, 2006. a
Zhang, T. L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C. T., Barabash,
S., Balikin, M., Pope, S., Glassmeier, K.-H., Wang, C., and Kudela, K.:
Initial Venus Express magnetic field observations of the magnetic barrier
at solar minimum, Planet. Space Sci., 56, 790–795,
https://doi.org/10.1016/j.pss.2007.10.013, 2008a. a
Zhang, T. L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C. T., Wei,
H. Y., Wang, C., Balikhin, M., barabash, S., Auster, H.-U., and Kudela, K.:
Induced magnetosphere and its outer boundary at Venus, J. Gephys. Res.,
113, E00B20, https://doi.org/10.1029/2008JE003215, 2008b. a, b, c
Zhang, T. L., Lu, Q., Baumjohann, W., Russell, C. T., Fedorov, A., Barabash,
S., Coates, A. J., Du, A. M., Cao, J. B., Nakamura, R., Teh, W. L., Wang,
R. S., Dou, X. K., Wang, X., Glassmeier, K. H., Auster, H. U., and Balikin,
M.: Magnetic reconnection in the near Venusian magnetotail, Science, 336,
567–570, https://doi.org/10.1126/science.1217013, 2010. a
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach...