Articles | Volume 39, issue 5
https://doi.org/10.5194/angeo-39-811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-811-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Beatriz Sánchez-Cano
School of Physics and Astronomy, University of Leicester, Leicester, UK
Daniel Heyner
Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany
Sae Aizawa
IRAP, CNRS-UPS-CNES, Toulouse, France
Nicolas André
IRAP, CNRS-UPS-CNES, Toulouse, France
Ali Varsani
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Johannes Mieth
Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany
Stefano Orsini
Institute of Space Astrophysics and Planetology, INAF, Rome, Italy
Wolfgang Baumjohann
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
David Fischer
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Yoshifumi Futaana
Swedish Institute of Space Physics, Kiruna, Sweden
Richard Harrison
RAL Space, UKRI-STFC Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire, UK
Harald Jeszenszky
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Iwai Kazumasa
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Gunter Laky
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Herbert Lichtenegger
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Anna Milillo
Institute of Space Astrophysics and Planetology, INAF, Rome, Italy
Yoshizumi Miyoshi
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Rumi Nakamura
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Ferdinand Plaschke
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Ingo Richter
Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany
Sebastián Rojas Mata
Swedish Institute of Space Physics, Kiruna, Sweden
Yoshifumi Saito
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
Daniel Schmid
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Daikou Shiota
National Institute of Information and Communications Technology, Tokyo, Japan
Cyril Simon Wedlund
Space Research Institute, Austrian Academy of Sciences, Graz, Austria
Related authors
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Martin Volwerk
Ann. Geophys., 36, 831–839, https://doi.org/10.5194/angeo-36-831-2018, https://doi.org/10.5194/angeo-36-831-2018, 2018
Short summary
Short summary
Using Voyager 1 observations of Jupiter's Io plasma torus, we have determined the location of maximum brightness depending on longitude and the location of Jupiter’s moon Io. We obtain a third viewing direction of the torus (after Voyager 2 and ground observations) and thus two locations, left and right of Jupiter, which are important for the correct modeling of this structure. We also find that a narrow ribbon-like structure only appears when the brightness of the torus exceeds a certain value.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
Ingo Richter, Hans-Ulrich Auster, Gerhard Berghofer, Chris Carr, Emanuele Cupido, Karl-Heinz Fornaçon, Charlotte Goetz, Philip Heinisch, Christoph Koenders, Bernd Stoll, Bruce T. Tsurutani, Claire Vallat, Martin Volwerk, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, https://doi.org/10.5194/angeo-34-609-2016, 2016
Short summary
Short summary
We have analysed the magnetic field measurements performed on the ROSETTA orbiter and the lander PHILAE during PHILAE's descent to comet 67P/Churyumov-Gerasimenko on 12 November 2014. We observed a new type of low-frequency wave with amplitudes of ~ 3 nT, frequencies of 20–50 mHz, wavelengths of ~ 300 km, and propagation velocities of ~ 6 km s−1. The waves are generated in a ~ 100 km region around the comet a show a highly correlated behaviour, which could only be determined by two-point observations.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
M. Volwerk, K.-H. Glassmeier, M. Delva, D. Schmid, C. Koenders, I. Richter, and K. Szegö
Ann. Geophys., 32, 1441–1453, https://doi.org/10.5194/angeo-32-1441-2014, https://doi.org/10.5194/angeo-32-1441-2014, 2014
Short summary
Short summary
We discuss three flybys (within an 8-day time span) of comet 1P/Halley by VEGA 1, 2 and Giotto. Looking at two different plasma phenomena: mirror mode waves and field line draping; we study the differences in SW--comet interaction between these three flybys. We find that on this time scale (comparable to Rosetta's orbits) there is a significant difference, both caused by changing outgassing rate of the comet and changes in the solar wind. We discuss implications for Rosetta RPC observations.
D. Schmid, M. Volwerk, F. Plaschke, Z. Vörös, T. L. Zhang, W. Baumjohann, and Y. Narita
Ann. Geophys., 32, 651–657, https://doi.org/10.5194/angeo-32-651-2014, https://doi.org/10.5194/angeo-32-651-2014, 2014
M. Volwerk, C. Koenders, M. Delva, I. Richter, K. Schwingenschuh, M. S. Bentley, and K.-H. Glassmeier
Ann. Geophys., 31, 2201–2206, https://doi.org/10.5194/angeo-31-2201-2013, https://doi.org/10.5194/angeo-31-2201-2013, 2013
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
M. Volwerk, X. Jia, C. Paranicas, W. S. Kurth, M. G. Kivelson, and K. K. Khurana
Ann. Geophys., 31, 45–59, https://doi.org/10.5194/angeo-31-45-2013, https://doi.org/10.5194/angeo-31-45-2013, 2013
Sebastián Rojas Mata, Gabriella Stenberg Wieser, Tielong Zhang, and Yoshifumi Futaana
Ann. Geophys., 42, 419–429, https://doi.org/10.5194/angeo-42-419-2024, https://doi.org/10.5194/angeo-42-419-2024, 2024
Short summary
Short summary
The Sun ejects a stream of charged particles into space that have to flow around planets like Venus. We quantify how this flow varies with spatial location using spacecraft measurements of the particles and magnetic field taken over several years. We find that this flow is connected to interactions with the heavier charged particles that originate from Venus’ upper atmosphere. These interactions are not unique to Venus, so we compare our results to similar studies at Mars.
Niklas Grimmich, Adrian Pöppelwerth, Martin Owain Archer, David Gary Sibeck, Ferdinand Plaschke, Wenli Mo, Vicki Toy-Edens, Drew Lawson Turner, Hyangpyo Kim, and Rumi Nakamura
EGUsphere, https://doi.org/10.5194/egusphere-2024-2956, https://doi.org/10.5194/egusphere-2024-2956, 2024
Short summary
Short summary
The boundary of Earth's magnetic field, the magnetopause, deflects and reacts to the solar wind - the energetic particles emanating from the Sun. We find that certain types of solar wind favour the occurrence of deviations between the magnetopause locations observed by spacecraft and those predicted by models. In addition, the turbulent region in front of the magnetopause, the foreshock, has a large influence on the location of the magnetopause and thus on the accuracy of the model predictions.
Niklas Grimmich, Ferdinand Plaschke, Benjamin Grison, Fabio Prencipe, Christophe Philippe Escoubet, Martin Owain Archer, Ovidiu Dragos Constantinescu, Stein Haaland, Rumi Nakamura, David Gary Sibeck, Fabien Darrouzet, Mykhaylo Hayosh, and Romain Maggiolo
Ann. Geophys., 42, 371–394, https://doi.org/10.5194/angeo-42-371-2024, https://doi.org/10.5194/angeo-42-371-2024, 2024
Short summary
Short summary
In our study, we looked at the boundary between the Earth's magnetic field and the interplanetary magnetic field emitted by the Sun, called the magnetopause. While other studies focus on the magnetopause motion near Earth's Equator, we have studied it in polar regions. The motion of the magnetopause is faster towards the Earth than towards the Sun. We also found that the occurrence of unusual magnetopause locations is due to similar solar influences in the equatorial and polar regions.
Adrian Pöppelwerth, Georg Glebe, Johannes Z. D. Mieth, Florian Koller, Tomas Karlsson, Zoltán Vörös, and Ferdinand Plaschke
Ann. Geophys., 42, 271–284, https://doi.org/10.5194/angeo-42-271-2024, https://doi.org/10.5194/angeo-42-271-2024, 2024
Short summary
Short summary
In the magnetosheath, a near-Earth region of space, we observe increases in plasma velocity and density, so-called jets. As they propagate towards Earth, jets interact with the ambient plasma. We study this interaction with three spacecraft simultaneously to infer their sizes. While previous studies have investigated their size almost exclusively statistically, we demonstrate a new method of determining the sizes of individual jets.
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Yasuhito Narita, Daniel Schmid, and Simon Toepfer
Ann. Geophys., 42, 79–89, https://doi.org/10.5194/angeo-42-79-2024, https://doi.org/10.5194/angeo-42-79-2024, 2024
Short summary
Short summary
The magnetosheath is a transition layer surrounding the planetary magnetosphere. We develop an algorithm to compute the plasma flow velocity and magnetic field for a more general shape of magnetosheath using the concept of potential field and suitable coordinate transformation. Application to the empirical Earth magnetosheath region is shown in the paper. The developed algorithm is useful when interpreting the spacecraft data or simulation of the planetary magnetosheath region.
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Leonard Schulz, Karl-Heinz Glassmeier, Ferdinand Plaschke, Simon Toepfer, and Uwe Motschmann
Ann. Geophys., 41, 449–463, https://doi.org/10.5194/angeo-41-449-2023, https://doi.org/10.5194/angeo-41-449-2023, 2023
Short summary
Short summary
The upper detection limit in reciprocal space, the spatial Nyquist limit, is derived for arbitrary spatial dimensions for the wave telescope analysis technique. This is important as future space plasma missions will incorporate larger numbers of spacecraft (>4). Our findings are a key element in planning the spatial distribution of future multi-point spacecraft missions. The wave telescope is a multi-dimensional power spectrum estimator; hence, this can be applied to other fields of research.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Yasuhito Narita, Simon Toepfer, and Daniel Schmid
Ann. Geophys., 41, 87–91, https://doi.org/10.5194/angeo-41-87-2023, https://doi.org/10.5194/angeo-41-87-2023, 2023
Short summary
Short summary
Magnetopause is a shielding boundary of planetary magnetic field. Many mathematical models have been proposed to describe or to reproduce the magnetopause location, but they are restricted to the real-number functions. In this work, we analytically develop a magnetopause model in the complex-number domain, which is advantageous in deforming the magnetopause shape in a conformal (angle-preserving) way, and is suited to compare different models or map one model onto another.
Daniel Schmid and Yasuhito Narita
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-30, https://doi.org/10.5194/angeo-2022-30, 2023
Revised manuscript not accepted
Short summary
Short summary
Here we present a useful tool to diagnose the bow shock condition around planets on basis of magnetic field observations. From the upstream and downstream shock normal angle of the magnetic field, it is possible to approximate the relation between compression ratio, Alfvenic Mach number and the solar wind plasma beta. The tool is particularly helpful to study the solar wind conditions and bow shock characteristics during the planetary flybys of the ongoing BepiColombo mission.
Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, and Yoshifumi Saito
Ann. Geophys., 40, 217–229, https://doi.org/10.5194/angeo-40-217-2022, https://doi.org/10.5194/angeo-40-217-2022, 2022
Short summary
Short summary
This paper presents observations of FTE-type flux ropes on the dayside during BepiColombo's Earth flyby. FTE-type flux ropes are a well-known feature of magnetic reconnection on the magnetopause, and they can be used to constrain the location of reconnection X-lines. Our study suggests that the magnetopause X-line passed BepiColombo from the north as it traversed the magnetopause. Moreover, our results also strongly support coalescence creating larger flux ropes by combining smaller ones.
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
Katharina Ostaszewski, Karl-Heinz Glassmeier, Charlotte Goetz, Philip Heinisch, Pierre Henri, Sang A. Park, Hendrik Ranocha, Ingo Richter, Martin Rubin, and Bruce Tsurutani
Ann. Geophys., 39, 721–742, https://doi.org/10.5194/angeo-39-721-2021, https://doi.org/10.5194/angeo-39-721-2021, 2021
Short summary
Short summary
Plasma waves are an integral part of cometary physics, as they facilitate the transfer of energy and momentum. From intermediate to strong activity, nonlinear asymmetric plasma and magnetic field enhancements dominate the inner coma of 67P/CG. We present a statistical survey of these structures from December 2014 to June 2016, facilitated by Rosetta's unprecedented long mission duration. Using a 1D MHD model, we show they can be described as a combination of nonlinear and dissipative effects.
Daniel Schmid, Yasuhito Narita, Ferdinand Plaschke, Martin Volwerk, Rumi Nakamura, and Wolfgang Baumjohann
Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, https://doi.org/10.5194/angeo-39-563-2021, 2021
Short summary
Short summary
In this work we present the first analytical magnetosheath plasma flow model for the space environment around Mercury. The proposed model is relatively simple to implement and provides the possibility to trace the flow lines inside the Hermean magnetosheath. It can help to determine the the local plasma conditions of a spacecraft in the magnetosheath exclusively on the basis of the upstream solar wind parameters.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Yasuhito Narita, Ferdinand Plaschke, Werner Magnes, David Fischer, and Daniel Schmid
Geosci. Instrum. Method. Data Syst., 10, 13–24, https://doi.org/10.5194/gi-10-13-2021, https://doi.org/10.5194/gi-10-13-2021, 2021
Short summary
Short summary
The systematic error of calibrated fluxgate magnetometer data is studied for a spinning spacecraft. The major error comes from the offset uncertainty when the ambient magnetic field is low, while the error represents the combination of non-orthogonality, misalignment to spacecraft reference direction, and gain when the ambient field is high. The results are useful in developing future high-precision magnetometers and an error estimate in scientific studies using magnetometer data.
Ovidiu Dragoş Constantinescu, Hans-Ulrich Auster, Magda Delva, Olaf Hillenmaier, Werner Magnes, and Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 9, 451–469, https://doi.org/10.5194/gi-9-451-2020, https://doi.org/10.5194/gi-9-451-2020, 2020
Short summary
Short summary
We propose a gradiometer-based technique for cleaning multi-sensor magnetic field data acquired on board spacecraft. The technique takes advantage on the fact that the maximum-variance direction of many AC disturbances on board spacecraft does not change over time. We apply the proposed technique to the SOSMAG instrument on board GeoKompsat-2A. We analyse the performance and limitations of the technique and discuss in detail how various disturbances are removed.
Alexander Lukin, Anton Artemyev, Evgeny Panov, Rumi Nakamura, Anatoly Petrukovich, Robert Ergun, Barbara Giles, Yuri Khotyaintsev, Per Arne Lindqvist, Christopher Russell, and Robert Strangeway
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2020-76, https://doi.org/10.5194/angeo-2020-76, 2020
Revised manuscript not accepted
Short summary
Short summary
We have collected statistics of 81 fast plasma flow events in the magnetotail with clear MMS observations of kinetic Alfven waves (KAWs). We show that KAWs electric field magnitudes correlates with thermal/subthermal electron flux anisotropy: wider energy range of electron anisotropic population corresponds to higher KAWs’ electric field intensity. These results indicate on an important role of KAWs in production of thermal field-aligned electron population of the Earth’s magnetotail.
Arianna Piccialli, Julie A. Rathbun, Anny-Chantal Levasseur-Regourd, Anni Määttänen, Anna Milillo, Miriam Rengel, Alessandra Rotundi, Matt Taylor, Olivier Witasse, Francesca Altieri, Pierre Drossart, and Ann Carine Vandaele
Adv. Geosci., 53, 169–182, https://doi.org/10.5194/adgeo-53-169-2020, https://doi.org/10.5194/adgeo-53-169-2020, 2020
Short summary
Short summary
As a way of measuring success in planetary science, we analyzed the participation of female scientists in ESA Solar System missions: we counted the original science team members of 10 missions over a period of 38 years and determined the percentage of women within each team. Although the number of female scientists in the field has been constantly increasing in Europe, we found that gender gaps that existed 38 years ago have persisted into the present.
Daniel Schmid, Ferdinand Plaschke, Yasuhito Narita, Daniel Heyner, Johannes Z. D. Mieth, Brian J. Anderson, Martin Volwerk, Ayako Matsuoka, and Wolfgang Baumjohann
Ann. Geophys., 38, 823–832, https://doi.org/10.5194/angeo-38-823-2020, https://doi.org/10.5194/angeo-38-823-2020, 2020
Short summary
Short summary
Recently, the two-spacecraft mission BepiColombo was launched to explore Mercury. To measure the magnetic field precisely, in-flight calibration of the magnetometer offset is needed. Usually, the offset is evaluated from magnetic field observations in the solar wind. Since one of the spacecraft will remain within Mercury's magnetic environment, we examine an alternative calibration method. We show that this method is applicable and may be a valuable tool to determine the offset accurately.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Ferdinand Plaschke, Maria Jernej, Heli Hietala, and Laura Vuorinen
Ann. Geophys., 38, 287–296, https://doi.org/10.5194/angeo-38-287-2020, https://doi.org/10.5194/angeo-38-287-2020, 2020
Short summary
Short summary
Jets of solar-wind plasma commonly hit the Earth's magnetosphere. Using data from the four Magnetospheric Multiscale (MMS) spacecraft, we show statistically that within jets the magnetic field is more aligned with the plasma flow direction than outside of these jets. Our study confirms prior simulation results, but it also shows that the average effect is moderate. The jets' magnetic field is important with respect to their impact on space weather.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Ferdinand Plaschke
Geosci. Instrum. Method. Data Syst., 8, 285–291, https://doi.org/10.5194/gi-8-285-2019, https://doi.org/10.5194/gi-8-285-2019, 2019
Short summary
Short summary
Measuring the magnetic field onboard spacecraft requires regular in-flight calibration activities. Among those, determining the output of magnetometers under vanishing ambient magnetic fields, the so-called magnetometer offsets, is essential. Typically, characteristic rotations in solar wind magnetic fields are used to obtain these offsets. This paper addresses the question of how many solar wind data are needed to reach certain accuracy levels in offset determination.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 37, 971–988, https://doi.org/10.5194/angeo-37-971-2019, https://doi.org/10.5194/angeo-37-971-2019, 2019
Short summary
Short summary
The mirror mode starts as a zero-frequency ion fluid instability and saturates quasi-linearly at very low magnetic level, while forming extended magnetic bubbles. These trap the adiabatically bouncing electron component which forms pairs near the mirror points. The large pair anisotropy causes further growth beyond quasilinear level. Including pressure equilibrium gives and estimate of the required pair density.
Thomas Honig, Olivier G. Witasse, Hugh Evans, Petteri Nieminen, Erik Kuulkers, Matt G. G. T. Taylor, Bernd Heber, Jingnan Guo, and Beatriz Sánchez-Cano
Ann. Geophys., 37, 903–918, https://doi.org/10.5194/angeo-37-903-2019, https://doi.org/10.5194/angeo-37-903-2019, 2019
Short summary
Short summary
We analysed data from radiation monitors aboard different spacecraft such as Rosetta and Integral. From the data, we extracted the evolution of galactic cosmic rays as a function of time (over a full solar cycle) and position (from 1 to 4.5 AU). In the main results, we confirm the overall evolution (anti-correlation) of the fluxes with respect to the solar activity. We found a surprising result, which is a decrease in the flux of galactic cosmic rays around comet 67P.
Yasuhito Narita, Wolfgang Baumjohann, and Rudolf A. Treumann
Ann. Geophys., 37, 825–834, https://doi.org/10.5194/angeo-37-825-2019, https://doi.org/10.5194/angeo-37-825-2019, 2019
Short summary
Short summary
Scaling laws and energy spectra for the electric field, magnetic field, flow velocity, and density are theoretically derived for small-scale turbulence in space plasma on which the electrons behave as a fluid but the ions more as individual particles due to the difference in the mass (the Hall effect). Our theoretical model offers an explanation for the small-scale turbulence spectra measured in near-Earth space.
Laura Vuorinen, Heli Hietala, and Ferdinand Plaschke
Ann. Geophys., 37, 689–697, https://doi.org/10.5194/angeo-37-689-2019, https://doi.org/10.5194/angeo-37-689-2019, 2019
Short summary
Short summary
Before the solar wind encounters the Earth's magnetic field, it is first slowed down and deflected by the Earth's bow shock. We find that downstream of the bow shock regions where the shock normal and the solar wind magnetic field are almost parallel and the shock is more rippled, plasma jets with high earthward velocities are observed significantly more often than elsewhere downstream of the shock. Our results help us forecast the occurrence of these jets and their effects on Earth.
Rudolf A. Treumann, Wolfgang Baumjohann, and Yasuhito Narita
Ann. Geophys., 37, 183–199, https://doi.org/10.5194/angeo-37-183-2019, https://doi.org/10.5194/angeo-37-183-2019, 2019
Short summary
Short summary
Occasional deviations in density and magnetic power spectral densities in an intermediate frequency range are interpreted as an ion-inertial-range response to either the Kolmogorov or Iroshnikov–Kraichnan inertial-range turbulent velocity spectrum.
Johannes Z. D. Mieth, Dennis Frühauff, and Karl-Heinz Glassmeier
Ann. Geophys., 37, 163–169, https://doi.org/10.5194/angeo-37-163-2019, https://doi.org/10.5194/angeo-37-163-2019, 2019
Short summary
Short summary
The magnetopause (MP) is the primary interaction region between solar wind and the magnetic field of planet Earth and understanding of its behaviour also helps to better understand space weather. One famous model of the MP is the Shue et al. model, designed for the dayside and near-Earth situation. We take data of the ARTEMIS mission orbiting the moon and compare the MP position and shape to the model. We find differences in the location prediction but good agreement for the MP normal direction.
Ferdinand Plaschke, Hans-Ulrich Auster, David Fischer, Karl-Heinz Fornaçon, Werner Magnes, Ingo Richter, Dragos Constantinescu, and Yasuhito Narita
Geosci. Instrum. Method. Data Syst., 8, 63–76, https://doi.org/10.5194/gi-8-63-2019, https://doi.org/10.5194/gi-8-63-2019, 2019
Short summary
Short summary
Raw output of spacecraft magnetometers has to be converted into meaningful units and coordinate systems before it is usable for scientific applications. This conversion is defined by 12 calibration parameters, 8 of which are more easily determined in flight if the spacecraft is spinning. We present theory and advanced algorithms to determine these eight parameters. They take into account the physical magnetometer and spacecraft behavior, making them superior to previously published algorithms.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 36, 1563–1576, https://doi.org/10.5194/angeo-36-1563-2018, https://doi.org/10.5194/angeo-36-1563-2018, 2018
Short summary
Short summary
Historical AMPTE-IRM and Equator-S (Eq-S) observations of magnetic mirror modes in the magnetosheath already support the probably coexistence of ion and electron branches on the mirror mode.
Ching-Chang Cheng, Christopher T. Russell, Ian R. Mann, Eric Donovan, and Wolfgang Baumjohann
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-116, https://doi.org/10.5194/angeo-2018-116, 2018
Preprint withdrawn
Short summary
Short summary
The comparison of geomagnetic active and quite events of double substorm onsets responsive to IMF variations shows that the occurrence sequence of all required substorm signatures looks the same and not different for small and large Kp. Double substorm onsets responsive to IMF variations can be characterized with two-stage magnetic dipolarizations in the magnetotail, two auroral breakups of which the first occurring at lower latitudes than the second, and two consecutive Pi2-Ps6 band pulsations.
Minna Palmroth, Heli Hietala, Ferdinand Plaschke, Martin Archer, Tomas Karlsson, Xóchitl Blanco-Cano, David Sibeck, Primož Kajdič, Urs Ganse, Yann Pfau-Kempf, Markus Battarbee, and Lucile Turc
Ann. Geophys., 36, 1171–1182, https://doi.org/10.5194/angeo-36-1171-2018, https://doi.org/10.5194/angeo-36-1171-2018, 2018
Short summary
Short summary
Magnetosheath jets are high-velocity plasma structures that are commonly observed within the Earth's magnetosheath. Previously, they have mainly been investigated with spacecraft observations, which do not allow us to infer their spatial sizes, temporal evolution, or origin. This paper shows for the first time their dimensions, evolution, and origins within a simulation whose dimensions are directly comparable to the Earth's magnetosphere. The results are compared to previous observations.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 36, 1015–1026, https://doi.org/10.5194/angeo-36-1015-2018, https://doi.org/10.5194/angeo-36-1015-2018, 2018
Short summary
Short summary
The physics of the magnetic mirror mode in its final state of saturation, the thermodynamic equilibrium, is re-examined to demonstrate that the mirror mode is the classical analogue of a superconducting effect in an anisotropic-pressure space plasma. Three different spatial correlation scales are identified which control the behaviour of its evolution into large-amplitude chains of mirror bubbles.
Martin Volwerk
Ann. Geophys., 36, 831–839, https://doi.org/10.5194/angeo-36-831-2018, https://doi.org/10.5194/angeo-36-831-2018, 2018
Short summary
Short summary
Using Voyager 1 observations of Jupiter's Io plasma torus, we have determined the location of maximum brightness depending on longitude and the location of Jupiter’s moon Io. We obtain a third viewing direction of the torus (after Voyager 2 and ground observations) and thus two locations, left and right of Jupiter, which are important for the correct modeling of this structure. We also find that a narrow ribbon-like structure only appears when the brightness of the torus exceeds a certain value.
Ferdinand Plaschke and Heli Hietala
Ann. Geophys., 36, 695–703, https://doi.org/10.5194/angeo-36-695-2018, https://doi.org/10.5194/angeo-36-695-2018, 2018
Short summary
Short summary
Fast jets of solar wind particles drive through a slower environment in the magnetosheath, located sunward of the region dominated by the Earth’s magnetic field. THEMIS multi-spacecraft observations show that jets push ambient particles out of their way. These particles flow around the faster jets into the jets’ wake. Thereby, jets stir the magnetosheath, changing the properties of this key region whose particles and magnetic fields can directly interact with the Earth’s magnetic field.
Tomas Karlsson, Ferdinand Plaschke, Heli Hietala, Martin Archer, Xóchitl Blanco-Cano, Primož Kajdič, Per-Arne Lindqvist, Göran Marklund, and Daniel J. Gershman
Ann. Geophys., 36, 655–677, https://doi.org/10.5194/angeo-36-655-2018, https://doi.org/10.5194/angeo-36-655-2018, 2018
Short summary
Short summary
We have studied fast plasma jets outside of Earth’s magnetic environment. Such jets are small-scale structures with a limited lifetime, which may be important in determining the properties of the near-Earth space environment, due to their concentrated kinetic energy. We have used data from the NASA Magnetospheric MultiScale (MMS) satellites to study their properties in detail, to understand how these jets are formed. We have found evidence that there are at least two different types of jets.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 35, 1353–1360, https://doi.org/10.5194/angeo-35-1353-2017, https://doi.org/10.5194/angeo-35-1353-2017, 2017
Short summary
Short summary
Poynting's theorem provides a way to determine the spectrum of the dissipation function in magnetic turbulence. It is shown that it includes all contributions of the mechanical part of turbulence. Application to solar wind data identifies the inertial range as a state of self-organization and brings the Taylor hypothesis into question.
Sudong Xiao, Tielong Zhang, Guoqiang Wang, Martin Volwerk, Yasong Ge, Daniel Schmid, Rumi Nakamura, Wolfgang Baumjohann, and Ferdinand Plaschke
Ann. Geophys., 35, 1015–1022, https://doi.org/10.5194/angeo-35-1015-2017, https://doi.org/10.5194/angeo-35-1015-2017, 2017
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 35, 999–1013, https://doi.org/10.5194/angeo-35-999-2017, https://doi.org/10.5194/angeo-35-999-2017, 2017
Short summary
Short summary
It is suggested that collisionless reconnection under conditions of very strong current-parallel guide fields in dilute plasmas should become a rather efficient source of electromagnetic radiation in the free space modes X and O and their harmonics. The mechanism is based on the electron cyclotron maser instability (ECMI), which can be excited by the anisotropic weakly relativistic electron distribution in the many inertial lengths long electron exhausts caused in reconnection.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 35, 683–690, https://doi.org/10.5194/angeo-35-683-2017, https://doi.org/10.5194/angeo-35-683-2017, 2017
Short summary
Short summary
We extend the Klimontovich (1967) formulation of kinetic theory of the evolution of the microscopic phase space density to taking into account that the interaction between particles separated from each other at a distance is not instantaneous but requires the transport of information. This is done by reference to the retarded potentials. We derive the fundamental causal Liouville equation for the phase space density of a system composed of a very large number of charged particles.
Dennis Frühauff, Johannes Z. D. Mieth, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 253–262, https://doi.org/10.5194/angeo-35-253-2017, https://doi.org/10.5194/angeo-35-253-2017, 2017
Short summary
Short summary
The determination of the polytropic index the plasma sheet of Earth's magnetosphere using THEMIS data. The data set reveals that the active magnetotail density and pressure data are well correlated. Yet, considering broad distributions of specific entropies, the evaluation is best performed on shorter timescales.
Dennis Frühauff, Ferdinand Plaschke, and Karl-Heinz Glassmeier
Ann. Geophys., 35, 117–121, https://doi.org/10.5194/angeo-35-117-2017, https://doi.org/10.5194/angeo-35-117-2017, 2017
Short summary
Short summary
Vector magnetic field instruments mounted on spacecraft require precise in-flight calibration of the offsets of all three axes, i.e., the output in vanishing ambient field. While calibration of the spin plane offsets is trivial, we apply a new technique for determining the spin axis offset, not relying on solar wind data but on magnetosheath encounters. This technique is successfully applied to the satellites of the THEMIS mission to update the calibration parameters of the complete mission.
Martin Volwerk, Daniel Schmid, Bruce T. Tsurutani, Magda Delva, Ferdinand Plaschke, Yasuhito Narita, Tielong Zhang, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, https://doi.org/10.5194/angeo-34-1099-2016, 2016
Short summary
Short summary
The behaviour of mirror mode waves in Venus's magnetosheath is investigated for solar minimum and maximum conditions. It is shown that the total observational rate of these waves does not change much; however, the distribution over the magnetosheath is significantly different, as well as the growth and decay of the waves during these different solar activity conditions.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
Ferdinand Plaschke and Yasuhito Narita
Ann. Geophys., 34, 759–766, https://doi.org/10.5194/angeo-34-759-2016, https://doi.org/10.5194/angeo-34-759-2016, 2016
Short summary
Short summary
Spacecraft-mounted magnetic field instruments (magnetometers) need to be routinely calibrated. This involves determining the magnetometer outputs in vanishing ambient magnetic fields, the so-called offsets. We introduce and test a new method to determine these offsets with high accuracy, the mirror mode method, which is complementary to existing methods. The mirror mode method should be highly beneficial to current and future magnetic field observations near Earth, other planets, and comets.
Egor V. Yushkov, Anton V. Artemyev, Anatoly A. Petrukovich, and Rumi Nakamura
Ann. Geophys., 34, 739–750, https://doi.org/10.5194/angeo-34-739-2016, https://doi.org/10.5194/angeo-34-739-2016, 2016
Short summary
Short summary
In the paper we study flapping wave structures, generated in the neutral plane of the Earth magnetotail. Investigated flapping is an important process of magnetosphere dynamics, connected with magnetic energy transformation and magnetic storm formation. Large separation of Cluster spacecraft allows us to estimate both local and global properties of flapping current sheets, the typical flapping times and propagation directions.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 34, 737–738, https://doi.org/10.5194/angeo-34-737-2016, https://doi.org/10.5194/angeo-34-737-2016, 2016
Short summary
Short summary
The rigorous derivation of the Jüttner (covariant Boltzmann) distribution is provided for anisotropic pressure (or temperature) tensors. It was in similar form anticipated first by Gladd (1983). Its manifestly covariant version follows straightforwardly from its scalar property.
Rudolf A. Treumann, Wolfgang Baumjohann, and Yasuhito Narita
Ann. Geophys., 34, 673–689, https://doi.org/10.5194/angeo-34-673-2016, https://doi.org/10.5194/angeo-34-673-2016, 2016
Short summary
Short summary
In support of low-frequency electromagnetic turbulence we formulate the inverse scattering theory of electromagnetic fluctuations in plasma. Its solution provides the turbulent response function which contains all information of the dynamical causes of the electromagnetic fluctuations. This is of basic interest in any electromagnetic turbulence. It requires measurement of magnetic and electric fluctuations but makes no direct use of the turbulent power spectral density.
Ingo Richter, Hans-Ulrich Auster, Gerhard Berghofer, Chris Carr, Emanuele Cupido, Karl-Heinz Fornaçon, Charlotte Goetz, Philip Heinisch, Christoph Koenders, Bernd Stoll, Bruce T. Tsurutani, Claire Vallat, Martin Volwerk, and Karl-Heinz Glassmeier
Ann. Geophys., 34, 609–622, https://doi.org/10.5194/angeo-34-609-2016, https://doi.org/10.5194/angeo-34-609-2016, 2016
Short summary
Short summary
We have analysed the magnetic field measurements performed on the ROSETTA orbiter and the lander PHILAE during PHILAE's descent to comet 67P/Churyumov-Gerasimenko on 12 November 2014. We observed a new type of low-frequency wave with amplitudes of ~ 3 nT, frequencies of 20–50 mHz, wavelengths of ~ 300 km, and propagation velocities of ~ 6 km s−1. The waves are generated in a ~ 100 km region around the comet a show a highly correlated behaviour, which could only be determined by two-point observations.
Rudolf A. Treumann and Wolfgang Baumjohann
Ann. Geophys., 34, 557–564, https://doi.org/10.5194/angeo-34-557-2016, https://doi.org/10.5194/angeo-34-557-2016, 2016
Short summary
Short summary
It is demonstrated that the statistical mechanical partition function can be used to construct various different forms of phase space distributions. This indicates that its structure is not restricted to the Gibbs–Boltzmann factor prescription based on counting statistics. Consequences concerning generalised Lorentzians and more general distribution functions are discussed.
Takuma Nakamura, Rumi Nakamura, and Hiroshi Haseagwa
Ann. Geophys., 34, 357–367, https://doi.org/10.5194/angeo-34-357-2016, https://doi.org/10.5194/angeo-34-357-2016, 2016
Short summary
Short summary
Magnetic reconnection is a key process in space and laboratory plasmas which transfers energies through the magnetic field topology change. The topology change in this process takes place in a small scale region called the electron diffusion region (EDR). In this paper, using high-resolution fully kinetic simulations, we successfully obtained the firm scaling laws of spatial dimensions of the EDR. The obtained scalings allow us to precisely predict observable dimensions of the EDR in real space.
Sudong Xiao, Tielong Zhang, Yasong Ge, Guoqiang Wang, Wolfgang Baumjohann, and Rumi Nakamura
Ann. Geophys., 34, 303–311, https://doi.org/10.5194/angeo-34-303-2016, https://doi.org/10.5194/angeo-34-303-2016, 2016
Y. Narita, R. Nakamura, W. Baumjohann, K.-H. Glassmeier, U. Motschmann, and H. Comişel
Ann. Geophys., 34, 85–89, https://doi.org/10.5194/angeo-34-85-2016, https://doi.org/10.5194/angeo-34-85-2016, 2016
Short summary
Short summary
Four-spacecraft Cluster observations of turbulent fluctuations in the magnetic reconnection region in the geomagnetic tail show for the first time an indication of ion Bernstein waves, electromagnetic waves that propagate nearly perpendicular to the mean magnetic field and are in resonance with ions. Bernstein waves may influence current sheet dynamics in the reconnection outflow such as a bifurcation of the current sheet.
R. Kataoka, Y. Fukuda, H. A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, H. Dahlgren, and D. Hampton
Ann. Geophys., 34, 41–44, https://doi.org/10.5194/angeo-34-41-2016, https://doi.org/10.5194/angeo-34-41-2016, 2016
Short summary
Short summary
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the emission altitude of rapidly varying fine-scale structures. The new method unveiled that very different types of aurora appear in the same direction at different altitudes.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
M. Volwerk, K.-H. Glassmeier, M. Delva, D. Schmid, C. Koenders, I. Richter, and K. Szegö
Ann. Geophys., 32, 1441–1453, https://doi.org/10.5194/angeo-32-1441-2014, https://doi.org/10.5194/angeo-32-1441-2014, 2014
Short summary
Short summary
We discuss three flybys (within an 8-day time span) of comet 1P/Halley by VEGA 1, 2 and Giotto. Looking at two different plasma phenomena: mirror mode waves and field line draping; we study the differences in SW--comet interaction between these three flybys. We find that on this time scale (comparable to Rosetta's orbits) there is a significant difference, both caused by changing outgassing rate of the comet and changes in the solar wind. We discuss implications for Rosetta RPC observations.
A. Varsani, C. J. Owen, A. N. Fazakerley, C. Forsyth, A. P. Walsh, M. André, I. Dandouras, and C. M. Carr
Ann. Geophys., 32, 1093–1117, https://doi.org/10.5194/angeo-32-1093-2014, https://doi.org/10.5194/angeo-32-1093-2014, 2014
R. A. Treumann and W. Baumjohann
Ann. Geophys., 32, 975–989, https://doi.org/10.5194/angeo-32-975-2014, https://doi.org/10.5194/angeo-32-975-2014, 2014
D. Schmid, M. Volwerk, F. Plaschke, Z. Vörös, T. L. Zhang, W. Baumjohann, and Y. Narita
Ann. Geophys., 32, 651–657, https://doi.org/10.5194/angeo-32-651-2014, https://doi.org/10.5194/angeo-32-651-2014, 2014
R. A. Treumann and W. Baumjohann
Ann. Geophys., 32, 643–650, https://doi.org/10.5194/angeo-32-643-2014, https://doi.org/10.5194/angeo-32-643-2014, 2014
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
I. Y. Vasko, A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 32, 133–146, https://doi.org/10.5194/angeo-32-133-2014, https://doi.org/10.5194/angeo-32-133-2014, 2014
R. Nakamura, F. Plaschke, R. Teubenbacher, L. Giner, W. Baumjohann, W. Magnes, M. Steller, R. B. Torbert, H. Vaith, M. Chutter, K.-H. Fornaçon, K.-H. Glassmeier, and C. Carr
Geosci. Instrum. Method. Data Syst., 3, 1–11, https://doi.org/10.5194/gi-3-1-2014, https://doi.org/10.5194/gi-3-1-2014, 2014
R. A. Treumann and W. Baumjohann
Nonlin. Processes Geophys., 21, 143–148, https://doi.org/10.5194/npg-21-143-2014, https://doi.org/10.5194/npg-21-143-2014, 2014
M. Volwerk, C. Koenders, M. Delva, I. Richter, K. Schwingenschuh, M. S. Bentley, and K.-H. Glassmeier
Ann. Geophys., 31, 2201–2206, https://doi.org/10.5194/angeo-31-2201-2013, https://doi.org/10.5194/angeo-31-2201-2013, 2013
F. Plaschke, H. Hietala, and V. Angelopoulos
Ann. Geophys., 31, 1877–1889, https://doi.org/10.5194/angeo-31-1877-2013, https://doi.org/10.5194/angeo-31-1877-2013, 2013
Y. Narita, R. Nakamura, and W. Baumjohann
Ann. Geophys., 31, 1605–1610, https://doi.org/10.5194/angeo-31-1605-2013, https://doi.org/10.5194/angeo-31-1605-2013, 2013
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
R. A. Treumann and W. Baumjohann
Ann. Geophys., 31, 1191–1193, https://doi.org/10.5194/angeo-31-1191-2013, https://doi.org/10.5194/angeo-31-1191-2013, 2013
A. V. Artemyev, A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi
Ann. Geophys., 31, 1109–1114, https://doi.org/10.5194/angeo-31-1109-2013, https://doi.org/10.5194/angeo-31-1109-2013, 2013
M. Volwerk, N. André, C. S. Arridge, C. M. Jackman, X. Jia, S. E. Milan, A. Radioti, M. F. Vogt, A. P. Walsh, R. Nakamura, A. Masters, and C. Forsyth
Ann. Geophys., 31, 817–833, https://doi.org/10.5194/angeo-31-817-2013, https://doi.org/10.5194/angeo-31-817-2013, 2013
C. Nabert, K.-H. Glassmeier, and F. Plaschke
Ann. Geophys., 31, 419–437, https://doi.org/10.5194/angeo-31-419-2013, https://doi.org/10.5194/angeo-31-419-2013, 2013
M. Volwerk, X. Jia, C. Paranicas, W. S. Kurth, M. G. Kivelson, and K. K. Khurana
Ann. Geophys., 31, 45–59, https://doi.org/10.5194/angeo-31-45-2013, https://doi.org/10.5194/angeo-31-45-2013, 2013
A. Alexandrova, R. Nakamura, V. S. Semenov, I. V. Kubyshkin, S. Apatenkov, E. V. Panov, D. Korovinskiy, H. Biernat, W. Baumjohann, K.-H. Glassmeier, and J. P. McFadden
Ann. Geophys., 30, 1727–1741, https://doi.org/10.5194/angeo-30-1727-2012, https://doi.org/10.5194/angeo-30-1727-2012, 2012
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetotail
Dynamics of variable dusk–dawn flow associated with magnetotail current sheet flapping
Ion distribution functions in magnetotail reconnection: global hybrid-Vlasov simulation results
Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations
Acceleration of protons and heavy ions to suprathermal energies during dipolarizations in the near-Earth magnetotail
Quasi-separatrix layers induced by ballooning instability in the near-Earth magnetotail
Magnetic dipolarizations inside geosynchronous orbit with tailward ion flows
Turbulent processes in the Earth's magnetotail: spectral and statistical research
A possible source mechanism for magnetotail current sheet flapping
On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling
James H. Lane, Adrian Grocott, Nathan A. Case, and Maria-Theresia Walach
Ann. Geophys., 39, 1037–1053, https://doi.org/10.5194/angeo-39-1037-2021, https://doi.org/10.5194/angeo-39-1037-2021, 2021
Short summary
Short summary
The Sun's magnetic field is carried across space by the solar wind – a hot plasma
streamof ions and electrons – forming the interplanetary magnetic field (IMF). The IMF can introduce asymmetries in the Earth's magnetic field, giving plasma flowing within it a direction dependent on IMF orientation. Electric currents in near-Earth space can also influence these plasma flows. We investigate these two competing mechanisms and find that the currents can prevent the IMF from controlling the flow.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Guoqiang Wang, Tielong Zhang, Mingyu Wu, Daniel Schmid, Yufei Hao, and Martin Volwerk
Ann. Geophys., 38, 309–318, https://doi.org/10.5194/angeo-38-309-2020, https://doi.org/10.5194/angeo-38-309-2020, 2020
Short summary
Short summary
Currents are believed to exist in mirror-mode structures and to be self-consistent with the magnetic field depression. Bipolar currents are found in two ion-scale magnetic dips. The bipolar current in a small-size magnetic dip is mainly contributed by electron velocities, which is mainly formed by the magnetic gradient–curvature drift. For another large-size magnetic dip, the bipolar current is mainly caused by an ion bipolar velocity, which can be explained by the ion drift motions.
Andrei Y. Malykhin, Elena E. Grigorenko, Elena A. Kronberg, Patrick W. Daly, and Ludmila V. Kozak
Ann. Geophys., 37, 549–559, https://doi.org/10.5194/angeo-37-549-2019, https://doi.org/10.5194/angeo-37-549-2019, 2019
Short summary
Short summary
In this work we present an analysis of the dynamics of suprathermal ions of different masses (H+, He+, O+) during prolonged dipolarizations in the near-Earth magnetotail according to Cluster/RAPID observations in 2001–2005. All dipolarizations from our database were associated with fast flow braking and consisted of multiple dipolarization fronts (DFs). We found statistically that fluxes of suprathermal ions started to increase ~ 1 min before the dipolarization onset and continued.
Ping Zhu, Zechen Wang, Jun Chen, Xingting Yan, and Rui Liu
Ann. Geophys., 37, 325–335, https://doi.org/10.5194/angeo-37-325-2019, https://doi.org/10.5194/angeo-37-325-2019, 2019
Short summary
Short summary
Our research explores a new method for identifying where and when the magnetic field lines in Earth's magnetotail may change its topology through the reconnection process, during which a sudden release of magnetic energy can lead to the brightening of aurora, a process called substorm. Traditionally, the magnetic reconnection was often interpreted using a two-dimensional model, which however does not capture the intrinsically three-dimensional nature of reconnection physics, as we have revealed.
Xiaoying Sun, Weining William Liu, and Suping Duan
Ann. Geophys., 37, 289–297, https://doi.org/10.5194/angeo-37-289-2019, https://doi.org/10.5194/angeo-37-289-2019, 2019
Liudmyla V. Kozak, Bohdan A. Petrenko, Anthony T. Y. Lui, Elena A. Kronberg, Elena E. Grigorenko, and Andrew S. Prokhorenkov
Ann. Geophys., 36, 1303–1318, https://doi.org/10.5194/angeo-36-1303-2018, https://doi.org/10.5194/angeo-36-1303-2018, 2018
Short summary
Short summary
We analysed the turbulent processes in the Earth's magnetotail in the regions of magnetic field dipolarization and compared them with known models. We used spectral and statistical methods for analysis measurements from the Cluster-II mission. We have obtained a significant difference for turbulent processes depending on observed scales. Our results can be interesting for classification of the turbulent processes in both hydrodynamics and magnetohydrodynamics environments.
Liisa Juusola, Yann Pfau-Kempf, Urs Ganse, Markus Battarbee, Thiago Brito, Maxime Grandin, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1027–1035, https://doi.org/10.5194/angeo-36-1027-2018, https://doi.org/10.5194/angeo-36-1027-2018, 2018
Short summary
Short summary
The Earth's magnetic field is shaped by the solar wind. On the dayside the field is compressed and on the nightside it is stretched as a long tail. The tail has been observed to occasionally undergo flapping motions, but the origin of these motions is not understood. We study the flapping using a numerical simulation of the near-Earth space. We present a possible explanation for how the flapping could be initiated by a passing disturbance and then maintained as a standing wave.
Daniil B. Korovinskiy, Darya I. Kubyshkina, Vladimir S. Semenov, Marina V. Kubyshkina, Nikolai V. Erkaev, and Stefan A. Kiehas
Ann. Geophys., 36, 641–653, https://doi.org/10.5194/angeo-36-641-2018, https://doi.org/10.5194/angeo-36-641-2018, 2018
Short summary
Short summary
The Harris–Fadeev–Kan–Manankova family of exact two-dimensional equilibria is generalized to reproduce the slow decrease of the normal magnetic component in the tailward direction, and the magnetotail current sheet bending and shifting in the vertical plane, arising from the Earth dipole tilting and the solar wind nonradial propagation. The analytical solution is found to fit the empirical T96 model, especially, at distances beyond 10–15 Earth radii at high levels of magnetospheric activity.
Cited articles
Anselmi, A. and Scoon, G. E. N.: BepiColombo, ESA's Mercury Cornerstone
mission, Planet. Space Sci., 49, 1409–1420,
https://doi.org/10.1016/S0032-0633(01)00082-4, 2001. a
Barabash, S., Sauvaud, J.-A., Gunell, H., Andersson, H., Grigoriev, A.,
Brinkfeldt, K., Holmström, M., Lundin, R., Yamauchi, M., Asamura, K.,
Baumjohann, W., Zhang, T., Coates, A., Linder, D., Kataria, D., Curtis, C.,
Hsieh, K., Sandel, B., Fedorov, A., Mazelle, C., Thocaven, J.-J., Grande, M.,
Koskinen, H. E., Kallio, E., Säles, T., Riihela, P., Kozyra, J., Krupp,
N., Woch, J., Luhmann, J., McKenna-Lawlor, S., Orsini, S.,
Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt,
P., Russell, C., Szego, K., Winningham, J., Frahm, R., Scherrer, J., Sharber,
J., Wurz, P., and Bochsler, P.: The analyser of space plasmas and energetic
atoms (ASPERA-4) for the Venus Express mission, Planet. Space Sci., 55,
1772–1792, https://doi.org/10.1016/j.pss.2007.01.014, 2007. a
Benkhoff, J., Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M.,
Ferri, P., Middleton, H. R., and Ziethe, R.: BepiColombo comprehensive
exploration of Mercury: Mission overview and science goals, Planet. Space
Sci., 58, 2–20, https://doi.org/10.1016/j.pss.2009.09.020, 2010. a, b
Bertucci, C., Duru, F., Edberg, N., Fraenz, M., Martinecz, C., Szego, K., and
Vaisberg, O.: The induced magnetospheres of Mars, Venus, and Titan, Space
Sci. Rev., 162, 113–171, https://doi.org/10.1007/s11214-011-9845-1, 2011. a, b, c
Bowen, T. A., Bale, S. D., Bandyopadhyay, R., Bonnell, J., Case, A., Chasapis,
A., Chen, C. H. K., Curry, S., Dudok de Wit, T., Goetz, K., Goodrich, K.,
Gruesbeck, J., Halekas, J., Harvey, P. R., Howes, G. G., Kasper, J., Korreck,
K., Larson, D., Livi, R., MacDowall, R. J., Malaspina, D. M., Mallet, A.,
McManus, M., Page, B., Pulupa, M., Raouafi, N., Stevens, M., and Whittlesey,
P.: Kinetic-scale turbulence in the Venusian magnetosheath, Geophys. Res. Lett., 48, e2020GL090783, https://doi.org/10.1029/2020GL090783, 2021. a
Browett, S. D., Fear, R. C., Grocott, A., and Milan, S. E.: Timescales for the
penetration of IMF By into the Earth's magnetotail, J. Geophys. Res.,
122, 579–593, https://doi.org/10.1002/2016JA023198, 2017. a
Brueckner, G., Howard, R., Koomen, M., Korendyke, C. M., Michels, D. J., Moses,
J. D., Socker, D. G., Dere, K. P., Lamy, P. L., Llebaria, A., Bout, M. V.,
Simnett, R. S. G. M., Bedford, D. K., and Eyles, C. J.: The large angle
spectroscopic coronagraph (lasco), Sol. Phys., 162, 357–402, 1995. a
Davey, E. A., Lester, M., Milan, S. E., and Fear, R. C.: Storm and substorm
effects on magnetotail current sheet motion, J. Geophys. Res., 117, A02202,
https://doi.org/10.1029/2011JA017112, 2012. a
Delva, M., Zhang, T. L., Volwerk, M., Vörös, Z., and Pope, S. A.: Proton
cyclotron waves in the solar wind at Venus, Geophys. Res. Lett., 113,
E00B06, https://doi.org/10.1029/2008JE003148, 2008. a
Delva, M., Bertucci, C., Volwerk, M., Lundin, R., Mazelle, C., and Romanelli,
N.: Upstream proton cyclotron waves at Venus near solar maximum, J.
Geophys. Res., 120, 344–354, https://doi.org/10.1002/2014JA020318, 2015. a
Delva, M., Volwerk, M., Jarvinen, R., and Bertucci, C.: Asymmetries in the
Magnetosheath field draping on Venus' nightside, J. Geophys. Res., 122,
10396–10407, https://doi.org/10.1002/2017JA024604, 2017. a, b
Dimmock, A. P., Alho, M., Kallio, E., Pope, S. A., Zhang, T. L., Pulkkinen, E.
K. T. I., Futaana, Y., and Coates, A. J.: The response of the Venusian
plasma environment to the passage of an ICME: Hybrid simulation results and
Venus Express observations, J. Geophys. Res., 123, 3580–3601, 2018. a
Dubinin, E., Fraenz, M., Fedorov, A., Lundin, R., Edberg, N., Duru, F., and
Vaisberg, O.: Ion energization and escape on Mars and Venus, Space Sci.
Rev., 162, 173–211, https://doi.org/10.1007/s11214-011-9831-7, 2011. a
Eroshenko, E. G.: Unipolar induction effects in the magnetic tail of Venus,
Cosmic Res., 17, 93–105, 1979. a
Saito, Y., Delcourt, D., Hirahara, M., et al.: Pre-flight calibration and near-earth commissioning results of
mercury plasma particle experiment (mppe) onboard mmo (mio), Space Sci. Rev.,
submitted, 2021. a
Eyles, C., Harrison, R., and Davis, C.: The heliospheric imagers onboard the
stereo mission, Sol. Phys., 254, 387–445, 2009. a
Fairfield, D. H.: On the average configuraton of the geomagnetic tail, J.
Geophys. Res., 84, 1950–1958, https://doi.org/10.1029/JA084iA05p01950, 1979. a
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A.,
Kasper, J. C., Kinnison, J., Kusterer, M., Lario, D., Lockwood, M. K.,
McComas, D. J., Raouafi, N. E., and Szabo, Z.: The Solar Probe Plus
mission: Humanity's first visit to our star, Space Sci. Rev., 204, 7–48,
https://doi.org/10.1007/s11214-015-0211-6, 2016. a
Futaana, Y., Stenberg Wieser, G., Barabash, S., and Luhmann, J. G.: Solar
wind interaction and impact on the Venus Atmosphere, Space Sci. Rev., 212,
1543–1509, https://doi.org/10.1007/s11214-017-0362-8, 2017. a
Gary, S. P.: The Mirror and Ion Cyclotron Anisotropy Instabilities, J. Geophys.
Res., 97, 8519–8529, https://doi.org/10.1029/92JA00299, 1992. a
Glassmeier, K. H., Auster, H. U., Heyner, D., Okrafka, K., Carr, C., Berghofer,
G., Anderson, B. J., Balogh, A., Baumjohann, W., Cargill, P., Christensen,
U., Delva, M., Dougherty, M., Fornaçon, K. H., Horbury, T. S., Lucek,
E. A., Magnes, W., Mandea, M., Matsuoka, A., Matsushima, M., Motschmann, U.,
Nakamura, R., Narita, Y., O'Brien, H., Richter, I., Schwingenschuh, K.,
Shibuya, H., Slavin, J. A., Sotin, C., Stoll, B., Tsunakawa, H., Vennerstrom,
S., Vogt, J., and Zhang, T.L.: The fluxgate magnetometer of the BepiColombo
Mercury Planetary Orbiter, Planet. Space Sci., 58, 287–299, 2010. a
Goodrich, K. A., Bonnell, J. W., Curry1, S., Livi, R., Whittlesey1, P., Mozer,
F., Malaspina3, D., Halekas4, J., McManus, M., Bale, S., Bowen, T., Case,
A., Dudok de Wit, T., Goetz, K., Harvey, P., Kasper, J., Larson, D.,
MacDowall, R., Pulupa, M., and Stevens, M.: Evidence of subproton-scale magnetic holes in the Venusian magnetosheath, Geophys. Res. Lett.,
48, e2020GL090329, https://doi.org/10.1002/essoar.10503890.1, 2021. a
Harrison, R. A., Davies, J. A., Barnes, D., Byrne, J. P., Perry, C. H.,
Bothmer, V., Eastwood, J. P., Gallagher, P. T., Kilpua, E. K. J., Möstl,
C., and. A. P. Rouillard, A. P. R., and Odstrčil, D.: CMEs in the
heliosphere: I. A statistical analysis of the observational properties of
CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1, Sol.
Phys., 293, 77, https://doi.org/10.1007/s11207-018-1297-2, 2018. a
HELCATS: Heliospheric Cataloguing, Analysis and Techniques Service, solar storms event lists, HELCATS [data set], available at: https://www.helcats-fp7.eu/index.html, last access: 15 September 2021. a
Heyner, D., Auster, H.-U., Fornacon, K.-H., Carr, C., Richter, I., Mieth, J.
Z. D., Kolhey, P., Exner, W., Motschmann, U., Baumjohann, W., Matsuoka, A.,
Magnes, W., Berhofer, G., Fischer, D., Plaschke, F., Nakamura, R., Narita,
Y., Delva, M., Volwerk, M., Balogh, A., Dougherty, M., Horbury, T., lanlais,
B., Mandea, M., Masters, A., Oliveira, J. S., Sánchez-Cano, B., Slavin,
J. A., Vennerstrøm, S., Vogt, J., Wicht, J., and Glassmeier, K.-H.: The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?, Space Sci. Rev., 217, 52, https://doi.org/10.1007/s11214-021-00822-x, 2021. a, b
Honig, T., Witasse, O. G., Evans, H., Nieminen, P., Kuulkers, E., Taylor, M. G.
G. T., Heber, B., Guo, J., and Sánchez-Cano, B.: Multi-point galactic
cosmic ray measurements between 1 and 4.5 AU over a full solar cycle, Ann.
Geophys., 37, 903–918, https://doi.org/10.5194/angeo-37-903-2019, 2019. a, b
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J., Socker, D. G.,
Plunkett, S. P., Korendyke, C. M., Cook, J. W., Hurley, A., Davila, J. M.,
Thompson, W. T., St Cyr, O. C., Mentzell, E., Mehalick, K., Lemen, J. R.,
Wuelser, J. P., Duncan, D. W., Tarbell, T. D., Wolfson, C. J., Moore, A.,
Harrison, R. A., Waltham, N. R., Lang, J., Davis, C. J., Eyles, C. J.,
Mapson-Menard, H., Simnett, G. M., Halain, J. P., Defise, J. M., Mazy, E.,
Rochus, P., Mercier, R., Ravet, M. F., Delmotte, F., Auchere, F.,
Delaboudiniere, J. P., Bothmer, V., Deutsch, W., Wang, D., Rich, N., Cooper,
S., Stephens, V., Maahs, G., Baugh, R., McMullin, D., and Carter, T.: Sun
Earth Connection Coronal and Heliospheric Investigation (SECCHI), Space
Sci. Rev., 136, 67–115, https://doi.org/10.1007/s11214-008-9341-4, 2008. a
Iwai, K., Shiota, D., Tokumaru, M., Fujiki, K., Den, M., and Kubo, Y.:
Development of a coronal mass ejection arrival time forecasting system using
interplanetary scintillation observations, Earth Planet. Space, 71, 39,
https://doi.org/10.1186/s40623-019-1019-5, 2019. a
Jarvinen, R., Kallio, E., and Dyadechkin, S.: Hemispheric asymmetries of the
Venus plasma environment, J. Geophys. Res., 118, 4551–4563,
https://doi.org/10.1002/jgra.50387, 2013. a, b
Kajdič, P., Sánchez-Cano, B., Neves-Ribeiro, L., Witasse, O.,
Bernal, G. C., Rojas-Castillo, D., Nilsson, H., and Fedorov, A.:
Interaction of Space Weather Phenomena With Mars Plasma Environment During
Solar Minimum 23/24, J. Geophys. Res., 126, e2020JA028442,
https://doi.org/10.1029/2020JA028442, 2021. a, b
Kivelson, M. G., Kennel, C. F., McPherron, R. L., Southwood, D. J., Walker,
R. J., Hammond, C. M., Khurana, K. K., Strangeway, R. J., and Coleman, P. J.:
Magnetic field studies of the solar wind interaction with Venus from the
Galileo flyby, Science, 253, 1518–1522,
https://doi.org/10.1126/science.253.5027.1518, 1991. a
Luhmann, J. G., Russell, C. T., and Elphic, R. C.: Spatial Distributions of
Magnetic Field Fluctuations in the Dayside Magnetosheath, J. Geophys. Res.,
91, 1711–1715, https://doi.org/10.1029/JA091iA02p01711, 1986. a
Malaspina, D. M., Goodrich, K., Livi, R., Halekas, J., McManus, M., Curry,
S., Bale, S. D., Bonnell, J. W., Dudok de Wit, T., Goetz, K., Harvey,
P. F., MacDowall, R. J., Pulupa, M., Case, A. W., Kasper, I., Korreck,
K. E., Larson, D., Stevens, M. L., and Whittlesey, P.: Plasma double layers
at the boundary between Venus and the Solar wind, Geophys. Res. Lett.,
47, e2020GL090115, https://doi.org/10.1029/2020GL090115, 2020. a
Mangano, V., Dósa, M., Fränz, M., Milillo, A., Lee, J. S. O. Y. J.,
McKenna-Lawlor, S., Grassi, D., Heyner, D., Kozyrev, A. S., Peron, R.,
Helbert, J., Besse, S., de la Fuente, S., Montagnon, E., Zender, J.,
Volwerk, M., Chaufray, J., Slavin, J. A., Krüger, H., Maturilli, A.,
Cornet, T., Iwai, K., Miyoshi, Y., Lucente, M., Massetti, S., Schmidt, C. A.,
Dong, C., Quarati, F., Hirai, T., Varsani, A., Belyaev, D., Zhong, J.,
Kilpua, E. K. J., Jackson, B. V., Odstrcil, D., Plaschke, F., Vainio, R.,
Jarvinen, R., Lambrov Ivanovski, S., Madár, A., Erdös, G.,
Plainaki, C., Alberti, T., Aizawa, S., Benkhoff, J., Murakami, G., Quemerais,
E., Hiesinger, H., Mitrofanov, I. G., l. Iess, Santoli, F., Orsini, S.,
Lichtenegger, H., Laky, G., Barabash, S., Moissl, R., Huovelin, J., Kasaba,
Y., Saito, Y., Kobayashi, M., and Baumjohann, W.: BepiColombo Science
Investigations During Cruise and Flybys at the [Earth, Venus and Mercury,
Space Sci. Rev., 217, 23, https://doi.org/10.1007/s11214-021-00797-9, 2021. a
Martinecz, C., Boesswetter, A., Fränz, M., Roussos, E., Woch, J., Krupp,
N., Dubinin, E., Motschmann, U., Wiehle, S., Simon, S., Barabash, S., Lundin,
R., Zhang, T. L., Lammer, H., Lichtenegger, H., and Kulikov, Y.: Correction
to “Plasma environment of Venus: Comparison of Venus Express ASPERA-4
measurements with 3-D hybrid simulations”, J. Geophys. Res., 114, E00B98,
https://doi.org/10.1029/2009JE003377, 2009a. a
Martinecz, C., Boesswetter, A., Fränz, M., Roussos, E., Woch, J., Krupp,
N., Dubinin, E., Motschmann, U., Wiehle, S., Simon, S., Barabash, S., Lundin,
R., Zhang, T. L., Lammer, H., Lichtenegger, H., and Kulikov, Y.: Plasma
environment of Venus: Comparison of Venus Express ASPERA-4 measurements
with 3-D hybrid simulations, J. Geophys. Res., 114, E00B30,
https://doi.org/10.1029/2008JE003174, 2009b. a, b
McKenna-Lawlor, S., Jackson, B., and Odstrcil, D.: Space weather at planet
Venus during the forthcoming BepiColombo flybys, Planet. Space Sci., 152,
176–185, 2018. a
Milillo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Dósa, S.
A. M., Griton, L., Heyner, D., Ho, G., Imber, S., Jia, X., Karlsson, T.,
Killen, R., Laurenza, M., Lindsay, S., McKenna-Lawlor, S., Mura, A.,
Raines, J., Rothery, D., André, N., Baumjohann, W., Berezhnoy, A.,
Bourdin, P., Bunce, E., Califano, F., Deca, J., de la Fuente, S., Dong, C.,
Grava, C., Fatemi, S., Henri, P., Ivanovski, S., Jackson, B., James, M.,
Kallio, E., Kasaba, Y., Kilpua, E., Kobayashi, M., Langlais, B., Leblanc, F.,
Lhotka, C., Mangano, V., Martindale, A., Massetti, S., Masters, A., Morooka,
M., Narita, Y., Oliveira, J., Odstrcil, D., Orsini, S., Pelizzo, M.,
Plainaki, C., Plaschke, F., Sahraoui, F., Seki, K., Slavin, J., Vainio, R.,
Wurz, P., Barabash, S., Carr, C., Delcourt, D., Glassmeier, K.-H., Grande,
M., Hirahara, M., Huovelin, J., Korablev, O., Kojima, H., Lichtenegger, H.,
Livia, S., Matsuoka, A., Moiss, R., Moncuquet, M., Muinonen, K.,
Quèmerais, E., Saito, Y., Yagitani, S., Yoshikawa, I., and Wahlund,
J.-E.: Investigating Mercury's Environment with the Two-Spacecraft
BepiColombo Mission, Space Sci. Rev., 216, 93,
https://doi.org/10.1007/s11214-020-00712-8, 2020. a
Müller, D., Marsden, R. G., St. Cyr, O. C., Gilbert, H. R., and The
Solar Orbiter Team: Solar orbiter: Exploring the Sun–Heliosphere
connection, Sol. Phys., 285, 25–70, 2013. a
Müller, D., St. Cyr, O. C., Zouganelis, I., Gilbert, H. R., Marsden, R., Nieves-Chinchilla, T., Antonucci, E., Auchère, F., Berghmans, D., Horbury, T. S., Howard, R. A., Krucker, S., Maksimovic, M., Owen, C. J., Rochus, P., Rodriguez-Pacheco, J., Romoli, M., Solanki, S. K., Bruno, R., Carlsson, M., Fludra, A., Harra, L., Hassler, D. M., Livi, S., Louarn, P., Peter, H., Schühle, U., Teriaca, L., del Toro Iniesta, J. C., Wimmer-Schweingruber, R. F., Marsch, E., Velli, M., De Groof, A., Walsh, A., and Williams, D.: The Solar
Orbiter mission: science overview, Astron. Astrophys., 642, A1, https://doi.org/10.1051/0004-6361/202038467, 2020. a
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., and Schatten,
K. H.: Magnetic field observations nere Mercury: Preliminary results from
Mariner 10, Science, 185, 151–160, https://doi.org/10.1126/science.185.4146.151,
1974. a
Odstrčil, D. and Pizzo, V. J.: Three-dimensional propagation of CMEs in
a structured solar wind flow: 1. CME launched within the streamer belt, J.
Geophys. Res., 104, 483–492, https://doi.org/10.1029/1998JA900019,
1999a. a
Odstrčil, D. and Pizzo, V. J.: Three-dimensional propagation of CMEs in
a structured solar wind flow: 2. CME launched adjacent to the streamer
belt, J. Geophys. Res., 104, 493–504, https://doi.org/10.1029/1998JA900038,
1999b. a
Orsini, S., Livi, S., Torkar, K., Barabash, S., Milillo, A., Wurz, P., Di
Lellis, A. D., Kallio, E., and the SERENA team: SERENA: A suite of four
instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for
particle detection in the Hermean environment, Planet. Space Sci., 58, 166 –181, https://doi.org/10.1016/j.pss.2008.09.012, 2010. a
Orsini, S., Livia, S., Lichtenegger, H., Barabasha, S., Milillo, A., De
Angelis, E., Phillips, M., Laky, G., Wieser, M., Olivieri, A., Plainaki, C.,
Ho, G., Killen, R., Slavin, J., Wurz, P., Berthelier, J.-J., Dandouras, I.,
Kallio, E., McKenna-Lawlor, S., Szalai, S., Torkar, K., Vaisberg, O.,
Allegrini, F., Daglis, I., Dong, C., Escoubet, C., Fatemi, S., Fränz, M.,
Ivanovski, S., Krupp, N., Lammer, H., Leblanc, F., Mangano, V., Mura, A.,
Nilsson, H., Raines, J., Rispoli, R., Sarantos, M., Smith, H., Szego, K.,
Aronica, A., Camozzi, F., Di Lellis, A., Fremuth, G., Giner, F., Gurnee,
R., Hayes, J., Jeszenszky, H., Tominetti, F., Trantham, B., Balaz, J.,
Baumjohann, W., Brienza, D., Bührke, U., Bush, M., Cantatore, M.,
Cibella, S., Colasanti, L., Cremonese, G., Cremonesi, L., D'Alessandro, M.,
Delcourt, D., Delva, M., Desai, M., Fama, M., Ferris, M., Fischer, H.,
Gaggero, A., Gamborino, D., Garnier, P., Gibson, W., Goldstein, R., Grande,
M., Grishin, V., Haggerty, D., Holmström, M., Horvath, I., Hsieh, K.-C.,
Jacques, A., Johnson, R., Kazakov, A., Kecskemety, K., Krüger, H.,
Küürbisch, C., Lazzarotto, F., Leblanc, F., Leichtfried, M., Leoni, R.,
Loose, A., Maschietti, D., Massetti, S., Mattioli, F., Miller, G., Moissenko,
D., Morbidini, A., Noschese, R., Nuccilli, F., Nunez, C., Paschalidis, N.,
Persyn, S., Piazza, D., Oja, M., Ryno, J., Schmidt, W., Scheer, J.,
Shestakov, A., Shuvalov, S., Seki, K., Selci, S., Smith, K., Sordini, R.,
Svensson, J., Szalai, L., Toublanc, D., Urdiales, C., Varsani, A., Vertolli,
N., Wallner, R., Wahlstroem, P., Wilson, P., and Zampieri, S.: SERENA:
Particle Instrument Suite for Determining the Sun-Mercury Interaction from
BepiColombo, Space Sci. Rev., 217, 11, https://doi.org/10.1007/a11214-020-00787-3,
2021a. a
Orsini, S., Livia, S., Lichtenegger, H., Barabasha, S., Milillo, A., De
Angelis, E., Phillips, M., Laky, G., Wieser, M., Olivieri, A., Plainaki, C.,
Ho, G., Killen, R., Slavin, J., Wurz, P., Berthelier, J.-J., Dandouras, I.,
Kallio, E., McKenna-Lawlor, S., Szalai, S., Torkar, K., Vaisberg, O.,
Allegrini, F., Daglis, I., Dong, C., Escoubet, C., Fatemi, S., Fränz, M.,
Ivanovski, S., Krupp, N., Lammer, H., Leblanc, F., Mangano, V., Mura, A.,
Nilsson, H., Raines, J., Rispoli, R., Sarantos, M., Smith, H., Szego, K.,
Aronica, A., Camozzi, F., Di Lellis, A., Fremuth, G., Giner, F., Gurnee,
R., Hayes, J., Jeszenszky, H., Tominetti, F., Trantham, B., Balaz, J.,
Baumjohann, W., Brienza, D., Bührke, U., Bush, M., Cantatore, M.,
Cibella, S., Colasanti, L., Cremonese, G., Cremonesi, L., D'Alessandro, M.,
Delcourt, D., Delva, M., Desai, M., Fama, M., Ferris, M., Fischer, H.,
Gaggero, A., Gamborino, D., Garnier, P., Gibson, W., Goldstein, R., Grande,
M., Grishin, V., Haggerty, D., Holmström, M., Horvath, I., Hsieh, K.-C.,
Jacques, A., Johnson, R., Kazakov, A., Kecskemety, K., Krüger, H.,
Küürbisch, C., Lazzarotto, F., Leblanc, F., Leichtfried, M., Leoni, R.,
Loose, A., Maschietti, D., Massetti, S., Mattioli, F., Miller, G., Moissenko,
D., Morbidini, A., Noschese, R., Nuccilli, F., Nunez, C., Paschalidis, N.,
Persyn, S., Piazza, D., Oja, M., Ryno, J., Schmidt, W., Scheer, J.,
Shestakov, A., Shuvalov, S., Seki, K., Selci, S., Smith, K., Sordini, R.,
Svensson, J., Szalai, L., Toublanc, D., Urdiales, C., Varsani, A., Vertolli,
N., Wallner, R., Wahlstroem, P., Wilson, P., and Zampieri, S.: Correction to:
SERENA: Particle Instrument Suite for Determining the Sun-Mercury
Interaction from BepiColombo, Space Sci. Rev., 217, 30,
https://doi.org/10.1007/S11214-021-00809-8, 2021b. a
Phillips, J. L. and McComas, D. J.: The magnetosheath and magnetotail of
Venus, Space Sci. Rev., 55, 1–80, https://doi.org/10.1007/BF00177135, 1991. a, b
Pinto, M., Sanchez-Cano, B., Moissl, R., Cardoso, C., Goncalves, P., Assis,
P., Vainio, R., Oleynik, P., Lehtolainen, A., Grande, M., and McComas, A.:
The Bepicolombo Radiation Monitor, BERM, Space Sci. Rev., submitted,
2021. a
Poh, G., Sun, W., Clink, K. M., Slavin, J. A., Dewey, R. M., Jia, X., Raines,
J. M., DiBraccio, G. A., and Espley, J. R.: Large-Amplitude Oscillatory
Motion of Mercury's Cross-Tail Current Sheet, J. Geophys. Res., 125,
e2020JA027783, https://doi.org/10.1029/2020JA027783, 2020. a
PSA: ESA's Planetary Science Archive, Venus Express MAG and ASPERA-4 data, PSA [data set], available at: https://archives.esac.esa.int/psa/#!Table View/Venus Express=mission, last access: 15 September 2021. a
Russell, C. T., Luhmann, J. G., Elphic, R. C., and Scarf, F. L.: The distant
bow shock and magnetotail of Venus: Magnetic field and plasma wave
observations, Geophys. Res. Lett., 8, 843–846,
https://doi.org/10.1029/GL008i007p00843, 1981. a, b
Saito, Y., Sauvaud, J. A., Hirahara, M., Barabash, S., Delcourt, D., Takashima,
T., Asamura, K., and BepiColombo MMO/MPPE team: Scientific objectives and
instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard
MMO, Planet. Space Sci., 58, 182–200, https://doi.org/10.1016/j.pss.2008.06.003,
2010. a
Sánchez-Cano, B., Hall, B. E. S., Lester, M., Mays, M. L., Witasse, O.,
Ambrosi, R., Andrews, D., Cartacci, M., Cicchetti, A., Holström, M.,
Imber, S., Kajdič, P., Milan, S. E., Noschese, R., Osdtrcil, D.,
Opgenoorth, H., Plaut, J., Ramstad, R., and Reyes-Ayala, K. I.: Mars plasma
system response to solar wind disturbances during solar minimum, J. Geophys.
Res., 122, 6611–6634, https://doi.org/10.1002/2016JA023587, 2017. a
Saunders, M. A. and Russell, C. T.: Avarage dimensino and magnetic structure of
the distant Venus magnetotail, J. Geophys. Res., 91, 5589–5604,
https://doi.org/10.1029/JA091iA05p05589, 1986. a
Schmid, D., Narita, Y., Plaschke, F., Volwerk, M., Nakamura, R., and Baumjohann, W.: Magnetosheath plasma flow model around Mercury, Ann. Geophys., 39, 563–570, https://doi.org/10.5194/angeo-39-563-2021, 2021. a
Semkova, J., Koleva, R., Benghin, V., Dachev, T., Matviichuk, Y., Tomov, B.,
Krastev, K., Maltchev, S., Dimitrov, P., Mitrofanov, I., Malahov, A.,
Golovin, D., Mokrousov, M., Sanin, A., Litvak, M., Kozyrev, A., Tretyakov,
V., Nikiforov, S., Vostrukhin, A., Fedosov, F., Grebennikova, N., Zelenyi,
L., Shurshakov, V., and Drobishev, S.: Charged particles radiation
measurements with Liulin-MO dosimeter of FREND instrument aboard
ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars
orbit, Icarus, 303, 53–66, 2018. a
Sergeev, V., Runov, A., Baumjohann, W., Nakamura, R., Zhang, T. L., Volwerk,
M., Balogh, A., Rème, H., Sauvaud, J.-A., André, M., and Klecker, B.:
Current sheet flapping motion and structure observed by Cluster, Geophys.
Res. Lett., 30, 1327, https://doi.org/10.1029/2002GL016500, 2003. a, b, c
Shiota, D. and Kataoka, R.: Magnetohydrodynamic simulation of interplanetary
propagation of multiple coronal mass ejections with internal magnetic flux
rope (SUSANOO-CME), Space Weather, 14, 56–75,
https://doi.org/10.1002/2015SW001308, 2016. a, b
Shiota, D., Kataoka, R., Miyoshi, Y., Hara, T., Tao, C., Masunaga, K., Futaana,
Y., and Terada, N.: Inner heliosphere MHD modeling system applicable to
space weather forecasting for the other planets, Space Weather, 12, 187–204, https://doi.org/10.1002/2013SW000989, 2014. a, b
SOHO: NASA's SOlar and Heliospheric Observatory, Movie Theater, c2 images, SOHO [data set], available at: https://soho.nascom.nasa.gov/data/Theater/, last access: 15 September 2021. a
Spreiter, J., Summers, A., and Alksne, A.: Hydromagnetic flow around the
magnetosphere, Planet. Space Sci., 14, 223–253,
https://doi.org/10.1016/0032-0633(66)90124-3, 1966. a
Spreiter, J. R. and Stahara, S. S.: Gasdynamic and magnetohydrodynamic modeling
of the magnetosheath: a tutorial, Adv. Space Res., 14, 5–19,
https://doi.org/10.1016/0273-1177(94)90042-6, 1994. a
Svedhem, H., Titov, D. V., McCoy, D., Lebreton, J.-P., Barabash, S., Bertaux,
J.-L., Drossart, P., Formisano, V., Häusler, B., Korablev, O.,
Markiewicz, W. J., Nevejans, D., Pätzold, M., Piccioni, G., Zhang, T. L.,
Taylor, F. W., Lellouch, E., Koschny, D., Witasse, O., Eggel, H., Warhaut,
M., Accomazzo, A., Rodriguez-Canabal, J., Fabrega, J., Schirmann, T.,
Clochet, A., and Coradini, M.: Venus Express: The first European missionn
to Venus, Planet. Space Sci., 55, 1636–1652,
2007. a
Verigin, M. I., Gringauz, K. I., Gombosi, T., Breus, T. K., Bezrukikh, V. V., Remizov, A. P., and Volkov, G. I.: Plasma near Venus from the Venera 9
and 10 Wide-Angle analyzer data, J. Geophys. Res., 83, 3721–3728, 1978. a
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and
Glassmeier, K.-H.: First identification of mirror mode waves in Venus’
magnetosheath?, Geophys. Res. Lett., 35, L12204, 2008a. a
Volwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., and
Glassmeier, K.-H.: Mirror-mode-like structures in Venus’ induced
magnetosphere, J. Geophys. Res., 113, E00B16, https://doi.org/10.1029/2008JE003154, 2008b. a
Volwerk, M., Delva, M., Futaana, Y., Retinò, A., Vörös, Z., Zhang,
T. L., Baumjohann, W., and Barabash, S.: Substorm activity in Venus's
magnetotail, Ann. Geophys., 27, 2321–2330,
https://doi.org/10.5194/angeo-27-2321-2009, 2009. a
Volwerk, M., Delva, M., Futaana, Y., Retinò, A., Vörös, Z., Zhang,
T. L., Baumjohann, W., and Barabash, S.: Corrigendum to “Substorm activity
in Venus’s magnetotail” published in Ann. Geophys., 27, 2321–2330,
https://doi.org/10.5194/angeo-27-2321-2009, 2009, Ann. Geophys., 28, 1877–1878,
https://doi.org/10.5194/angeo-28-1877-2010, 2010. a
Volwerk, M., Schmid, D., Tsurutani, B. T., Delva, M., Plaschke, F., Narita, Y.,
Zhang, T. L., and Glassmeier, K.-H.: Mirror mode waves in Venus's
magnetosheath: solar minimum vs. solar maximum, Ann. Geophys., 34, 1099–1108, https://doi.org/10.5194/angeo-34-1099-2016, 2016. a
Volwerk, M., Horbury, T. S., Woodham, L. D., Bale, S. D., Simon Wedlund, C.,
Schmid, D., Allen, R. C., Angelini, V., Bauumjohann, W., Berger, L., Edberg,
N. J. T., Evans, V., Hadid, L. Z., Ho, G. C., Khotyaintsev, Y. V., Magnes,
W., Maksimovic, M., O'Brien, H., Steller, M. B., Rodriguez-Pacheco, J.,
and Wimmer-Scheingruber, R. F.: Solar Orbiter's first Venus Flyby:
MAG observations of structures and waves associated with the induced
Venusian magnetosphere, Astron. Astrophys., in press, 2021. a, b
Vörös, Z., Zhang, T., Leubner, M. P., Volwerk, M., Delva, M., Baumjohann,
W., and Kudela, K.: Magnetic fluctuations and turbulence in the Venus
magnetosheath and wake, Geophys. Res. Lett., 35, L11102,
https://doi.org/10.1029/2008GL033879, 2008a.
a
Vörös, Z., Zhang, T. L., Leaner, M. P., Volwerk, M., Delva, M., and
Baumjohann, W.: Intermittent turbulence, noisy fluctuations, and wavy
structures in the Venusian magnetosheath and wake, J. Geophys. Res., 113,
E00B21, https://doi.org/10.1029/2008JE003159, 2008b. a
Witasse, O., Sánchez-Cano, B., Mays, M. L., Kajdic, P., Opgenoorth, H.,
Elliott, H. A., Richardson, I. G., Zouganelis, I., Zender, J.,
Wimmer-Schweingruber, R. F., Turc, L., Taylor, M. G. G. T., Roussos, E.,
Rouillard, A., Richter, I., Richardson, J. D., Ramstad, R., Provan, G.,
Posner, A., Plaut, J. J., Odstrcil, D., Nilsson, H., Niemenen, P., Milan,
S. E., Mandt, K., Lohf, H., Lester, M., Lebreton, J.-P., Kuulkers, E., Krupp,
N., Koenders, C., James, M. K., Intzekara, D., Holmstrom, M., Hassler, D. M.,
Hall, B. E. S., Guo, J., Goldstein, R., Goetz, C., Glassmeier, K. H.,
Génot, V., Evans, H., Espley, J., Edberg, N. J. T., Dougherty, M.,
Cowley, S. W. H., Burch, J., Behar, E., Barabash, S., Andrews, D. J., and
Altobelli, N.: Interplanetary coronal mass ejection observed at STEREO-A,
Mars, comet 67P/Churyumov-Gerasimenko, Saturn, and New Horizons en
route to Pluto: Comparison of its Forbush decreases at 1.4, 3.1, and 9.9
AU, J. Geophys. Res., 122, 7865–7890, https://doi.org/10.1002/2017JA023884, 2017. a
Zhang, T. L., Nakamura, R., Volwerk, M., Runov, A., Baumjohann, W.,
Eichelberger, H. U., Carr, C., Balogh, A., Sergeev, V., Shi, J. K., and
Fornaçon, K.-H.: Double Star/Cluster observation of neutral sheet
oscillations on August 5, 2004, Ann. Geophys., 23, 2909–2914, 2005. a
Zhang, T. L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell,
C. T., Barabash, S., Balikhin, M., Berghofer, G., Biernat, H. K., Lammer, H.,
Lichtenegger, H., Magnes, W., Nakamura, R., Penz, T., Schwingenschuh, K.,
Vörös, Z., Zambelli, W., Fornacon, K.-H., Glassmeier, K.-H., Richter,
I., Carr, C., Kudela, K., Shi, J. K., Zhao, H., Motschmann, U., and Lebreton,
J.-P.: Magnetic field investigation of the Venus plasma environment: Expected
new results, Planet. Space Sci., 54, 1336–1343,
https://doi.org/10.1016/j.pss.2006.04.018, 2006. a
Zhang, T. L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C. T., Barabash,
S., Balikin, M., Pope, S., Glassmeier, K.-H., Wang, C., and Kudela, K.:
Initial Venus Express magnetic field observations of the magnetic barrier
at solar minimum, Planet. Space Sci., 56, 790–795,
https://doi.org/10.1016/j.pss.2007.10.013, 2008a. a
Zhang, T. L., Delva, M., Baumjohann, W., Volwerk, M., Russell, C. T., Wei,
H. Y., Wang, C., Balikhin, M., barabash, S., Auster, H.-U., and Kudela, K.:
Induced magnetosphere and its outer boundary at Venus, J. Gephys. Res.,
113, E00B20, https://doi.org/10.1029/2008JE003215, 2008b. a, b, c
Zhang, T. L., Lu, Q., Baumjohann, W., Russell, C. T., Fedorov, A., Barabash,
S., Coates, A. J., Du, A. M., Cao, J. B., Nakamura, R., Teh, W. L., Wang,
R. S., Dou, X. K., Wang, X., Glassmeier, K. H., Auster, H. U., and Balikin,
M.: Magnetic reconnection in the near Venusian magnetotail, Science, 336,
567–570, https://doi.org/10.1126/science.1217013, 2010. a
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach...