Articles | Volume 39, issue 4
https://doi.org/10.5194/angeo-39-571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-571-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evidence of the nonstationarity of the terrestrial bow shock from multi-spacecraft observations: methodology, results, and quantitative comparison with particle-in-cell (PIC) simulations
IRAP, CNRS, University of Toulouse, UPS, CNES, Toulouse, 31400,
France
Bertrand Lembège
LATMOS, CNRS, University of Versailles Saint-Quentin, Guyancourt, 78390,
France
Related authors
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Martin Volwerk, Cyril Simon Wedlund, David Mautner, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Christian Mazelle, Diana Rojas-Castillo, César Bertucci, and Magda Delva
Ann. Geophys., 41, 389–408, https://doi.org/10.5194/angeo-41-389-2023, https://doi.org/10.5194/angeo-41-389-2023, 2023
Short summary
Short summary
Freshly created ions in solar wind start gyrating around the interplanetary magnetic field. When they cross the bow shock, they get an extra kick, and this increases the plasma pressure against the magnetic pressure. This leads to the creation of so-called mirror modes, regions where the magnetic field decreases in strength and the plasma density increases. These structures help in exploring how energy is transferred from the ions to the magnetic field and where around Venus this is happening.
Cyril Simon Wedlund, Martin Volwerk, Christian Mazelle, Sebastián Rojas Mata, Gabriella Stenberg Wieser, Yoshifumi Futaana, Jasper Halekas, Diana Rojas-Castillo, César Bertucci, and Jared Espley
Ann. Geophys., 41, 225–251, https://doi.org/10.5194/angeo-41-225-2023, https://doi.org/10.5194/angeo-41-225-2023, 2023
Short summary
Short summary
Mirror modes are magnetic bottles found in the space plasma environment of planets contributing to the energy exchange with the solar wind. We use magnetic field measurements from the NASA Mars Atmosphere and Volatile EvolutioN mission to detect them around Mars and show how they evolve in time and space. The structures concentrate in two regions: one behind the bow shock and the other closer to the planet. They compete with other wave modes depending on the solar flux and heliocentric distance.
Philippe Savoini and Bertrand Lembège
Ann. Geophys., 38, 1217–1235, https://doi.org/10.5194/angeo-38-1217-2020, https://doi.org/10.5194/angeo-38-1217-2020, 2020
Short summary
Short summary
Numerical simulations have been used to investigate some acceleration mechanisms in order to explain the origin of the energized back-streaming ions observed at the Earth's bow shock. This paper used test particles in two different configurations with self-consistent and fixed shock front profiles. The comparison of these two configurations allows us to analyze, in detail, the impact of the shock front nonstationarity and the role of the built-up electric field in the acceleration process.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Bow shock and foreshock
Short large-amplitude magnetic structures (SLAMS) at Mercury observed by MESSENGER
Fine structure and motion of the bow shock and particle energisation mechanisms inferred from Magnetospheric Multiscale (MMS) observations
Foreshock cavitons and spontaneous hot flow anomalies: a statistical study with a global hybrid-Vlasov simulation
A deep insight into the ion foreshock with the help of test particle two-dimensional simulations
Helium in the Earth's foreshock: a global Vlasiator survey
Non-locality of Earth's quasi-parallel bow shock: injection of thermal protons in a hybrid-Vlasov simulation
Low-frequency magnetic variations at the high-β Earth bow shock
Comment on “Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation” by Blanco-Cano et al. (2018)
Reflection of the strahl within the foot of the Earth's bow shock
Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
Tomas Karlsson, Ferdinand Plaschke, Austin N. Glass, and Jim M. Raines
Ann. Geophys., 42, 117–130, https://doi.org/10.5194/angeo-42-117-2024, https://doi.org/10.5194/angeo-42-117-2024, 2024
Short summary
Short summary
The solar wind interacts with the planets in the solar system and creates a supersonic shock in front of them. The upstream region of this shock contains many complicated phenomena. One such phenomenon is small-scale structures of strong magnetic fields (SLAMS). These SLAMS have been observed at Earth and are important in determining the properties of space around the planet. Until now, SLAMS have not been observed at Mercury, but we show for the first time that SLAMS also exist there.
Krzysztof Stasiewicz and Zbigniew Kłos
Ann. Geophys., 40, 315–325, https://doi.org/10.5194/angeo-40-315-2022, https://doi.org/10.5194/angeo-40-315-2022, 2022
Short summary
Short summary
The acceleration, or energisation, of particles is a common and fundamental process throughout the universe. This study presents new observations of the acceleration of protons by waves at the bow shock upstream of the Earth, where the solar wind first encounters Earth’s magnetic field. The results are important, because they provide insight into acceleration processes that can create high-energy particles both near the Earth and at other astrophysical systems.
Vertti Tarvus, Lucile Turc, Markus Battarbee, Jonas Suni, Xóchitl Blanco-Cano, Urs Ganse, Yann Pfau-Kempf, Markku Alho, Maxime Dubart, Maxime Grandin, Andreas Johlander, Konstantinos Papadakis, and Minna Palmroth
Ann. Geophys., 39, 911–928, https://doi.org/10.5194/angeo-39-911-2021, https://doi.org/10.5194/angeo-39-911-2021, 2021
Short summary
Short summary
We use simulations of Earth's magnetosphere and study the formation of transient wave structures in the region where the solar wind first interacts with the magnetosphere. These transients move earthward and play a part in the solar wind–magnetosphere interaction. We show that the transients are a common feature and their properties are altered as they move earthward, including an increase in temperature, decrease in solar wind speed and an alteration in their propagation properties.
Philippe Savoini and Bertrand Lembège
Ann. Geophys., 38, 1217–1235, https://doi.org/10.5194/angeo-38-1217-2020, https://doi.org/10.5194/angeo-38-1217-2020, 2020
Short summary
Short summary
Numerical simulations have been used to investigate some acceleration mechanisms in order to explain the origin of the energized back-streaming ions observed at the Earth's bow shock. This paper used test particles in two different configurations with self-consistent and fixed shock front profiles. The comparison of these two configurations allows us to analyze, in detail, the impact of the shock front nonstationarity and the role of the built-up electric field in the acceleration process.
Markus Battarbee, Xóchitl Blanco-Cano, Lucile Turc, Primož Kajdič, Andreas Johlander, Vertti Tarvus, Stephen Fuselier, Karlheinz Trattner, Markku Alho, Thiago Brito, Urs Ganse, Yann Pfau-Kempf, Mojtaba Akhavan-Tafti, Tomas Karlsson, Savvas Raptis, Maxime Dubart, Maxime Grandin, Jonas Suni, and Minna Palmroth
Ann. Geophys., 38, 1081–1099, https://doi.org/10.5194/angeo-38-1081-2020, https://doi.org/10.5194/angeo-38-1081-2020, 2020
Short summary
Short summary
We investigate the dynamics of helium in the foreshock, a part of near-Earth space found upstream of the Earth's bow shock. We show how the second most common ion in interplanetary space reacts strongly to plasma waves found in the foreshock. Spacecraft observations and supercomputer simulations both give us a new understanding of the foreshock edge and how to interpret future observations.
Markus Battarbee, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Maxime Grandin, Tuomas Koskela, and Minna Palmroth
Ann. Geophys., 38, 625–643, https://doi.org/10.5194/angeo-38-625-2020, https://doi.org/10.5194/angeo-38-625-2020, 2020
Short summary
Short summary
The structure and medium-scale dynamics of Earth's bow shock and how charged solar wind particles are reflected by it are studied in order to better understand space weather effects. We use advanced supercomputer simulations to model the shock and reflected ions. We find that the thickness of the shock depends on solar wind conditions but also has small-scale variations. Charged particle reflection is shown to be non-localized. Magnetic fields are important for ion reflection.
Anatoli A. Petrukovich, Olga M. Chugunova, and Pavel I. Shustov
Ann. Geophys., 37, 877–889, https://doi.org/10.5194/angeo-37-877-2019, https://doi.org/10.5194/angeo-37-877-2019, 2019
Short summary
Short summary
Earth's bow shock in solar wind with high thermal and low magnetic pressure is a rare phenomenon. However, such an object is ubiquitous in astrophysical plasmas.
We surveyed statistics of such shock observations since 1995. About 100 crossings were initially identified. In this report 22 crossings from the Cluster project were studied using multipoint analysis, which allowed for the determination of the spatial scales of the shock transition and of the dominant magnetic variations
Gábor Facskó
Ann. Geophys., 37, 763–764, https://doi.org/10.5194/angeo-37-763-2019, https://doi.org/10.5194/angeo-37-763-2019, 2019
Short summary
Short summary
Blanco-Cano et al. (2018) intended to find a type of transient event in the solar wind before the terrestrial bow shock using a special type of simulation. However, the simulation results cannot reproduce the main features of the event. Based on the remarks described below, I am sure that the features in the simulations are not those types of events. The Vlasiator code simulated proto-SHFAs.
Christopher A. Gurgiolo, Melvyn L. Goldstein, and Adolfo Viñas
Ann. Geophys., 37, 243–261, https://doi.org/10.5194/angeo-37-243-2019, https://doi.org/10.5194/angeo-37-243-2019, 2019
Short summary
Short summary
The reflection of solar wind electrons at the bow shock helps define the physical properties of the foreshock, the region where the interplanetary magnetic field directly connects to the bow shock. We report that the strahl, the field-aligned component of the electron solar wind distribution, appears to be nearly fully reflected at the bow shock and that the reflection occurs in the foot of the shock, implying that mirroring is not the primary cause of the electron reflection.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Cited articles
Bale, S. D., Mozer, F. S., and Horbury, T. S.: Density-transition scale at
quasiperpendicular collisionless shocks, Phys. Rev. Lett., 91, 265004,
https://doi.org/10.1103/PhysRevLett.91.265004, 2003.
Bale, S. D., Balikhin, M. A., Horbury, T. S., Krasnoselskikh, V. V., Kucharek, H., Mobius, E., Walker, S. N., Balogh, A., Burgess, D., Lembège, B., Lucek, E. A., Scholer, M., Schwartz, S. J., and Thomsen, M. F.: Quasi-perpendicular Shock Structure and Processes, Space Sci. Rev., 118, 161–203, 2005.
Balikhin, M., Krasnosselskikh, V. V., and Gedalin, M.: The Scales in
Quasi-perpendicular Shocks, Adv. Space Res., 15, 247–260, https://doi.org/10.1029/JA080i004p00502, 1995.
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K.-H., Georgescu, E., Glassmeier, K.-H., Harris, J., Musmann, G., Oddy, T., and Schwingenschuh, K.: The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, https://doi.org/10.5194/angeo-19-1207-2001, 2001.
Biskamp, B. and Welter, H.: Numerical Studies of Magnetosonic Collisionless
Shock Waves, Nucl. Fusion, 12, 663–666, 1972.
Burgess, D., Wilkinson, W. P., and Schwartz, S. J.: Ion distributions and
thermalization at perpendicular and quasi-perpendicular supercritical
collisionless shocks, J. Geophys. Res., 94, 8783–8792, 1999.
Burgess, D., Hellinger, P., Gingell, I., and Trávnícek, P. M.:
Microstructure in two- and three-dimensional hybrid simulations of
perpendicular collisionless shocks, J. Plasma Phys., 82, 905820401,
https://doi.org/10.1017/S0022377816000660, 2016.
Burlaga, L. F.: On the nature and origin of directional discontinuities, J.
Geophys. Res., 76, 4360–4365, https://doi.org/10.1029/JA076i019p04360, 1971.
Chapman, S. C., Lee, R. E., and Dendy, R. O.: Perpendicular shock reformation
and ion acceleration, Space Sci. Rev., 121, 5–19,
https://doi.org/10.1007/s11214-006-4481-x, 2005.
Comişel, H., Scholer, M., Soucek, J., and Matsukiyo, S.: Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations, Ann. Geophys., 29, 263–274, https://doi.org/10.5194/angeo-29-263-2011, 2011.
Dimmock, A. P., Russell, C. T., Sagdeev, R. Z., Krasnoselskikh, V. V., Walker, S. N., Carr, C., Dandouras, I. S., Escoubet, C. P., Ganushkina, N., Gedalin, M., Khotyaintsev, Y. V., Aryan, H., Pulkkinen, T. I., and Balikhin, M.: Direct evidence of nonstationary collisionless shocks in space plasmas, Science Advances, 5, eaau9926, https://doi.org/10.1126/sciadv.aau9926, 2019.
Escoubet, C. P., Masson, A., Laakso, H., and Goldstein, M. L.: Recent highlights from Cluster, the first 3-D magnetospheric mission, Ann. Geophys., 33, 1221–1235, https://doi.org/10.5194/angeo-33-1221-2015, 2015.
Forslund, D. W., Quest, K. B., Brackbill, J. U., and Lee, K.: Collisionless
dissipation in quasi-perpendicular shocks, J. Geophys. Res., 89, 2142–2150, https://doi.org/10.1029/JA089iA04p02142, 1984.
Galeev, A. A., Krasnoselskikh, V. V., and Lobzin, V.: Fine structure of a
quasi-perpendicular supercritical shock wave, Soviet J. Plasma Phys.,
15, 697, 1999.
Gosling, J. T. and Robson, A. E.: Ion reflection, gyration and dissipation at
supercritical shocks, in: Collisionless Shocks in the Heliosphere: Reviews of
Current Research, edited by: Tsurutani, B. T. and Stone, R. G., 1985.
Gosling, J. T. and Thomsen, M. F.: Specularly reflected ions, shock foot
thicknesses, and shock velocity determinations, J. Geophys. Res., 90,
9893–9896, 1985.
Greenstadt, E. W., Hedgecock, P. C., and Russell, C. T.: Large-Scale
Coherence and High velocities of the Earth's bow shock on 12 February 1969,
J. Geophys. Res., 22, 1116–1122, https://doi.org/10.1029/JA077i007p01116, 1972.
Greenstadt, E. W., Formisano, V., Russell, C. T., Scarf, F. L., and
Neugebauer, M.: Structure of the quasiperpendicular laminar bow shock, J.
Geophys. Res., 80, 502–514, https://doi.org/10.1029/JA080i004p00502, 1975.
Hada, T., Oonishi, M., Lembège, B., and Savoini, P.: Shock front
nonstationarity of supercritical perpendicular shocks, J. Geophys. Res.-Space, 108, 1233, https://doi.org/10.1029/2002JA009339, 2003.
Hanson, E. L. M., Agapitov, O. V., Mozer, F. S., Krasnoselskikh, V. V.,
Bale, S. D., Avanov, L., Khotyaintsev, Y., and Giles, B.: Cross-shock
potential in rippled versus planar quasi-perpendicular shocks observed by
MMS, Geophys. Res. Lett., 46, 2381–2389, https://doi.org/10.1029/2018GL080240, 2019.
Hellinger, P., Travnicek, P., and Matsumoto, H. H.: Reformation of perpendicular shocks: Hybrid simulations, Geophys. Res. Lett., 29, 87-1–87-4,
https://doi.org/10.1029/2002gl015915, 2002.
Hellinger, P., Travnicek, P., Lembège, B., and Savoini, P.: Emission of
nonlinear whistler waves at the front of perpendicular supercritical shocks:
Hybrid versus full particle simulations, Geophys. Res. Lett., 34,
L14109, https://doi.org/10.1029/2007gl030239, 2007.
Heppner, J. P., Sugiura, M., Skillman, T. L., Ledley, B. G., and Campbell,
M.: OGO-A magnetic field observations, J. Geophys. Res., 72, 5417–5471, https://doi.org/10.1029/JZ072i021p05417, 1967.
Hobara, Y., Balikhin, M., Krasnoselskikh, V. V., Gedalin, M., and Yamagishi, H.: Statistical study of the quasi-perpendicular shock ramp widths, J. Geophys. Res.-Space, 115, A11106, https://doi.org/10.1029/2010JA015659, 2010.
Holzer, R. E., McLeod, M. G., and Smith, E. J.: Preliminary results from
OGO-1 Search Coil Magnetometer: Boundary Positions and Magnetic Noise
Spectra, J. Geophys. Res., 71, 1481–1486, 1966.
Horbury, T. S., Cargill, P. J., Lucek, E. A., Balogh, A., Dunlop, M. W., Oddy, T. M., Carr, C., Brown, P., Szabo, A., and Fornaçon, K.-H.: Cluster magnetic field observations of the bowshock: Orientation, motion and structure, Ann. Geophys., 19, 1399–1409, https://doi.org/10.5194/angeo-19-1399-2001, 2001.
Horbury, T. S., Cargill, P. J., Lucek, E. A., Eastwood, J., Balogh, A.,
Dunlop, M. W., Fornacon, K.-H., and Georgescu, E.: Four spacecraft
measurements of the quasiperpendicular terrestrial bow shock: Orientation
and motion, J. Geophys. Res.-Space, 107, 1208, https://doi.org/10.1029/2001ja000273, 2002.
Johlander, A., Schwartz, S. J., Vaivads, A., Khotyaintsev, Y. V., Gingell,
I., Peng, I. B., Markidis, S., Lindqvist, P.-A., Ergun, R. E., Marklund,
G. T., Plaschke, F., Magnes, W., Strangeway, R. J., Russell, C. T., Wei,
H., Torbert, R. B., Paterson, W. R., Gershman, D. J., Dorelli, J. C., Avanov,
L. A., Lavraud, B., Saito, Y., Giles, B. L., Pollock, C. J., and Burch, J. L.: Rippled quasiperpendicular shock observed by the Magnetospheric Multiscale spacecraft, Phys. Rev. Lett., 117, 165101, https://doi.org/10.1103/PhysRevLett.117.165101, 2016.
Kaufmann, R. L.: Shock observation with the explorer 12 Magnetometer,
J. Geophys. Res., 72, 2323–2342, 1967.
Kennel, C. F., Edminston, J. P., and Hada, T.:
A Quarter Century of Collisionless Shock Research, AGU Monograph, 34,
edited by: Stone, R. G. and Tsurutani, B. T., 1–36, https://doi.org/10.1029/GM034p0001, 1985.
Krasnoselskikh, V. V., Lembège, B., Savoini, P., and Lobzin, V. V.:
Nonstationarity of Strong Collisionless Quasi-Perpendicular Shocks: Theory
Versus Full Particle Numerical Simulations, Phys. Plasmas, 9, 1192–1209, https://doi.org/10.1063/1.1457465, 2002.
Lefebvre, B., Seki, Y., Schwartz, S. J., Mazelle, C., and Lucek, E. A.:
Reformation of an oblique shock observed by Cluster, J. Geophys. Res.-Space, 114, A11107, https://doi.org/10.1029/2009ja014268, 2009.
Lembège, B.: 2D_shock, LATMOS laboratory [code], available at: http://lembege.projet.latmos.ipsl.fr/doc3/2D_shock/, last access: 21 June 2021a.
Lembège, B.: Data_s040116_Btz, LATMOS laboratory [data set], available at: http://lembege.projet.latmos.ipsl.fr/doc3/Data_s040116_Btz/, last access: 21 June 2021b.
Lembège, B. and Dawson, J. M.: Self-consistent study of a perpendicular
collisionless and nonresistive shock, Phys. Fluids, 30, 1767, https://doi.org/10.1063/1.866191, 1987.
Lembège, B. and Savoini, P.: Nonstationarity of a two-dimensional
quasiperpendicular supercritical collisionless shock by self-reformation,
Phys. Fluids, 4, 3533–3548, https://doi.org/10.1063/1.860361, 1992.
Lembège, B. and Savoini, P.: Formation of reflected electron bursts by
the nonstationarity and nonuniformity of a collisionless shock front, J.
Geophys. Res.-Space, 107, SMP X-1–SMP X-18, https://doi.org/10.1029/2001ja900128, 2002.
Lembège, B., Walker, S. N., Savoini, P., and Krasnoselskikh, V. V.: The
spatial sizes of electric and magnetic field gradients in a simulated shock,
Adv. Space Rev., 24, 109-12, 1999.
Lembège, B., Giacalone, J., Scholer, M., Hada, T., Hoshino, M.,
Krasnoselskikh, V. V., Kucharek, H., Savoini, P., and Terasawa, T.: Selected
problems in collisionless shocks Physics (review), Space Sci. Rev., 110,
161–226, 2004.
Lembège, B., Huang, Z., Martel, P., and Cai, D. S.: Analysis of
Collisionless Shock Turbulence by Using Virtual Satellites in 2-D Full
Particle-in-Cell Simulations, IEEE T. Plasma Sci., 36, 1172–1173, 2008.
Lembège, B., Savoini, P., Hellinger, P., and Travnicek, P. M.:
Nonstationarity of a two-dimensional perpendicular shock: Competing
mechanisms, J. Geophys. Res.-Space, 114, A03217, https://doi.org/10.1029/2008ja013618,
2009.
Lembège, B., Yang, Z. W., and Lu, Q.: Variability of the shock front of a
perpendicular supercritical shock when approaching realistic conditions:
impact on the self-reformation process, in: EGU2013 Meeting, Vienna, Austria, 7–12 April 2013, ST1.3-7294, 2013a.
Lembège, B., Yang, Z. W., and Lu, Q.: Impact of the plasma realistic
conditions approach on the macroscopic fields features at a perpendicular
supercritical shock front, in: AGU2013 Fall Meeting, San Fransisco, USA, 9–13 December 2013, SM31A-2112, 2013b.
Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S., and Papadopoulos, K.:
The structure of perpendicular bow shocks, J. Geophys. Res., 87, 5081–5094, 1982.
Livesey, W. A., Kennel, C. F., and Russell, C. T.: ISEE-1 and -2 observations
of magnetic field strength overshoots in quasi-perpendicular bow shocks,
Geophys. Res. Lett., 9, 1037–1040, 1982.
Livesey, W. A., Russell, C. T., and Kennel, C. F.: A comparison of specularly
reflected gyrating ion orbits with observed shock foot thicknesses, J.
Geophys. Res., 89, 6824–6828, 1984.
Lobzin, V. V., Krasnoselskikh, V. V., Bosqued, J.-M., Pincon, J.-L., Schwartz, S. J., and Dunlop, M.: Nonstationarity and reformation of high-Mach number Shocks: Cluster observations, Geophys. Res. Lett., 34, L05107, https://doi.org/10.1029/2006GL029095, 2007.
Lobzin, V. V., Krasnoselskikh, V. V., Musatenko, K., and Dudok de Wit, T.: On nonstationarity and rippling of the quasiperpendicular zone of the Earth bow shock: Cluster observations, Ann. Geophys., 26, 2899–2910, https://doi.org/10.5194/angeo-26-2899-2008, 2008.
Marcowith, A., Bret, A., Bykov, A., Dieckman, M. E., Drury, L. O. C.,
Lembège, B., Lemone, M., Morlino, G., Murphy, G., Pelletier, G.,
Plotnikov, I., Revillle, B., Riquelme, M., Sironi, L., and Stockem Novo, A.:
The microphysics of collisionless shock waves, Rep. Prog. Phys., 79, 046901, https://doi.org/10.1088/0034-4885/79/4/046901, 2016.
Matsukyio, T. and Scholer, M.: Modified two-stream instability in the
foot of high Mach number quasi-perpendicular shocks, J. Geophys. Res.-Space, 108, 1459, https://doi.org/10.1029/2003ja010080, 2003.
Mazelle, C., Lembège, B., Morgenthaler, A., Meziane, K., Horbury, T., Luce, E. A., and Dandouras, I.: Evidence of quasi perpendicular shock front
nonstationarity from Cluster data: comparative approach with numerical
simulation results, in: Eos Trans. AGU, Fall Meet. Suppl., San
Fransisco, USA, 14–20 December 2007, SM11A-0309, 2007.
Mazelle, C., Lembège, B., Morgenthaler, A., Meziane, K., Horbury, T.,
Lucek, E. A., and Dandouras, I.: Nonstationarity of quasi-perpendicular shock
front: comparative approach from Cluster data with numerical simulation
results, in: EGU General Assembly, Vienna, Austria, 14–18 April 2008, EGU2008-A-09809, 2008a.
Mazelle, C., Lembège, B., Meziane, K., Rauch, J., Trotignon, J., Lucek,
E. A., and Dandouras, I.: Evidence of the self-reformation of the
quasi-perpendicular terrestrial shock front from Cluster data, in: Eos Trans.
AGU, Fall Meet. Suppl., San Fransisco, USA, 15–19 December 2008, SM51A-1618, 2008b.
Mazelle, C., Lembège, B., Morgenthaler, A., Meziane, K., Horbury, T. S.,
Genot, V., Lucek, E. A., and Dandouras, I.: Self-reformation of the
quasi-perpendicular shock: Cluster observations, in: Twelfth International
Solar Wind Conference, edited by: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Monsuquet, M., and Pantellini, F., Saint-Malo (France), 22 June 2009, 471–474, https://doi.org/10.1063/1.3395905, 2010a.
Mazelle, C., Lembège, B., Morgenthaler, A., and Meziane, K.: Nonstationarity of quasi-perpendicular shocks: magnetic structure, ion properties and microturbulence, SM01. SPA-Magnetospheric Physics, in: AGU Fall Meeting, Eos Trans. AGU, Fall Meet. Suppl., San Fransisco, USA, 13–17 December 2010, SM51B-1792, 2010b.
Mazelle, C., Lembège, B., and Morgenthaler, A.: Evidence of
Micro-turbulence and nonstationarity at Quasi-Perpendicular Shocks: Cluster
results, SM14 Revelations from Multipoint Measurement: Space Plasma
Processes and Dynamics, in: AGU Fall meeting, Eos Trans. AGU, Fall Meet.
Suppl., San Fransisco, USA, 5–9 December 2011, SM51B-2075, 2011.
Mazelle, C., Lembège, B., and Meziane, K.: Nonstationary dynamics of
collisionless shock front: Influence on particle reflection and
acceleration, in: AGU Fall Meeting, San Fransisco, USA, 3–7 December 2012, SH32B-03, 2012.
Mellott, M. M. and Livesey, W. A.: Shock Overshoots, J. Geophys. Res., 92, 13661–13665, 1987.
Meziane, K., Alrefay, T. Y., and Hamza, A. M.: On the shape and motion of the
Earth's bow shock, Planet. Space Sci., 93–94, 1–9,
https://doi.org/10.1016/j.pss.2014.01.006, 2014.
Meziane, K., Hamza, A. M., Maksimovic, M., and Alrefay, T. Y.: The Earth's bow shock velocity distribution function, J. Geophys. Res.-Space, 120, 1229–1237, https://doi.org/10.1002/2014JA020772, 2015.
Morse, D. L., Destler, W. W., and Auer, P. L.: Nonstationary Behavior of
Collisionless Shocks, Phys. Rev. Lett., 28, 13–16, 1972.
Moses, S. L., Coroniti, F. V., Kennel, C. F., Scarf, F. L., Greenstadt, E. W., Kurth, W. S., and Lepping, R. P.: High time resolution plasma wave and
magnetic field observations of the Jovian bow shock, Geophys. Res. Lett., 12, 183–186, https://doi.org/10.1029/GL012i004p00183, 1985.
Moullard, O., Burgess, D., Horbury, T. S., and Lucek, E. A.: Ripples
observed on the surface of the Earth's quasi-perpendicular bow shock, J.
Geophys. Res.-Space, 111, A09113, https://doi.org/10.1029/2005ja011594, 2006.
Muschietti, L. and Lembège, B.: Electron cyclotron microinstability in
the foot of a perpendicular shock: A self-consistent PIC simulation, Adv.
Space Res., 37, 483–493, https://doi.org/10.1016/j.asr.2005.03.077, 2006.
Muschietti, L. and Lembège, B.: Microturbulence in the electron
cyclotron frequency range at perpendicular supercritical shocks,
J. Geophys. Res.-Space, 118, 2267–2285, https://doi.org/10.1002/jgra.50224, 2013.
Muschietti, L. and Lembège, B.: Two-stream instabilities from the lower-hybrid frequency to the electron cyclotron frequency: application to the front of quasi-perpendicular shocks, Ann. Geophys., 35, 1093–1112, https://doi.org/10.5194/angeo-35-1093-2017, 2017.
Newbury, J. A. and Russell, C. T.: Observations of a very thin collisionless
shock, Geophys. Res. Lett., 23, 781–784, 1996.
Newbury, J. A., Russell, C. T., and Gedalin, M.: The ramp widths of high Mach
number, quasi-perpendicular collisionless shocks, J. Geophys. Res., 103,
29581–29593, https://doi.org/10.1029/1998JA900024, 1998.
Nishimura, K., Matsumoto, H., Kojima, H., and Gary, S. P.: Particle
simulation of re-formation at collisionless perpendicular shocks: Coherent
behavior of reflected ions, J. Geophys. Res.-Space, 108, 1182, https://doi.org/10.1029/2002JA009671, 2003.
Paschmann, G., Sckopke, N., Bame, S. J., and Gosling, J. T.: Observations of
gyrating ions in the foot of nearly pependicular shock, Geophys. Res. Lett.,
9, 881–884, https://doi.org/10.1029/GL009i008p00881, 1982.
Paul, J. W. M., Holmes, L. S., Parkinson, M. J., and Sheffield, J.:
Experimental observations on structure of collisionless shock waves in a
magnetized plasma, Nature, 208, 133–135, 1965.
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, Th., Coeur-Joly, O., Cros, A., Cuvilo, J., Ducay, F., Garbarowitz, Y., Medale, J. L., Penou, E., Perrier, H., Romefort, D., Rouzaud, J., Vallat, C., Alcaydé, D., Jacquey, C., Mazelle, C., d’Uston, C., Möbius, E., Kistler, L. M., Crocker, K., Granoff, M., Mouikis, C., Popecki, M., Vosbury, M., Klecker, B., Hovestadt, D., Kucharek, H., Kuenneth, E., Paschmann, G., Scholer, M., Sckopke, N., Seidenschwang, E., Carlson, C. W., Curtis, D. W., Ingraham, C., Lin, R. P., McFadden, J. P., Parks, G. K., Phan, T., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Bruno, R., Chionchio, G., Di Lellis, A., Marcucci, M. F., Pallocchia, G., Korth, A., Daly, P. W., Graeve, B., Rosenbauer, H., Vasyliunas, V., McCarthy, M., Wilber, M., Eliasson, L., Lundin, R., Olsen, S., Shelley, E. G., Fuselier, S., Ghielmetti, A. G., Lennartsson, W., Escoubet, C. P., Balsiger, H., Friedel, R., Cao, J.-B., Kovrazhkin, R. A., Papamastorakis, I., Pellat, R., Scudder, J., and Sonnerup, B.: First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, https://doi.org/10.5194/angeo-19-1303-2001, 2001.
Russell, C. T. and Greenstadt, E. W.: Initial ISEE magnetometer results:
shock observations, Space Sci. Rev., 23, 3–37
https://doi.org/10.1007/bf00174109, 1979.
Russell, C. T., Hoppe, M. M., Livesey, W. A., Gosling, J. T., and Bame, S.
J.: ISEE 1 and 2 observations of laminar bow shocks' Velocity and thickness,
Geophys. Res. Lett., 9, 1171–1174, https://doi.org/10.1029/GL009i010p01171, 1982.
Scholer, M. and Matsukiyo, S.: Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio, Ann. Geophys., 22, 2345–2353, https://doi.org/10.5194/angeo-22-2345-2004, 2004.
Scholer, M., Shinohara, I., and Matsukiyo, S.: Quasi-perpendicular
shocks: Length scale of the cross-shock potential, shock reformation, and
implication for shock surfing, J. Geophys. Res., 108, 1014, https://doi.org/10.1029/2002JA009515, 2003.
Schmitz, H., Chapman, S. C., and Dendy, R. O.: The influence of electron
temperature and magnetic field strength on cosmic-ray injection in high Mach
number shocks, Astrophys. J., 570, 637–646, 2002.
Schwartz, S.: Shock and discontinuity normals, mach numbers, and related
parameters, ISSI Scientific Reports Series 1, 249–270, available at:
http://www.issibern.ch/PDF-Files/analysis_methods_1_1a.pdf (last access: 12 June 2021), 1998.
Schwartz, S., Thomsen, M., and Gosling, J. T.: Ions Upstream of the Earth's
Bow Shock: A theoretical comparison of alternative source populations, J.
Geophys. Res., 88, 2039–2047, https://doi.org/10.1029/JA088iA03p02039, 1983.
Schwartz, S., Henley, E., and Mitchell, J.: Electron Temperature Gradient
Scale at Collisionless Shocks, Phys. Rev. Lett., 107, 215002, https://doi.org/10.1103/PhysRevLett.107.215002, 2011.
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T., and Russell, C. T.:
Evolution of ion distribution across the nearly perpendicular bow shock,
Specularly and non-specularly reflected-gyrating ions, J. Geophys. Res., 88,
6121–6136, https://doi.org/10.1029/JA088iA08p06121, 1983.
Scudder, J. D., Mangeney, A., Lacombe, C., Harvey, C. C., Aggson, T. L.,
Anderson, R. R., Gosling, J. T., Paschman, G., and Russell, C. T.: The
resolved layer of a collisionless high supercritical, quasiperpendicular
shock wave, 1. Rankine-Hugoniot geometry, currents, and stationarity, J.
Geophys. Res., 91, 11019–11052, https://doi.org/10.1029/JA091iA10p11019, 1986.
Shinohara, I., Fujimoto, M., Takaki,R., and Inari, T.: A Three-Dimensional Particle-in-Cell Simulation of Quasi-Perpendicular Shock on Fujitsu FX1 Cluster, IEEE Transactions on Plasma Science, 39, 1173–1179, https://doi.org/10.1109/TPS.2011.2106515, 2011.
Walker, S. N., Balikhin, M. A., and Nozdrachev, M. N.: Ramp nonstationarity
and the generation of whistler waves upstream of a strong
quasi-perpendicular shock, Geophys. Res. Lett., 26, 1357–1360, https://doi.org/10.1029/1999GL900210, 1999.
Walker, S. N., Alleyne, H. St. C. K., Balikhin, M. A., André, M., and Horbury, T. S.: Electric field scales at quasi-perpendicular shocks, Ann. Geophys., 22, 2291–2300, https://doi.org/10.5194/angeo-22-2291-2004, 2004.
Winske, D. and Quest, K. B.: Magnetic field and density fluctuations at
perpendicular supercritical collisionless shocks, J. Geophys. Res., 93,
9681–9693, https://doi.org/10.1029/JA093iA09p09681, 1988.
Woods, L.: On the structure of collisionless magneto-plasma shock
waves at supercritical Afvén mach numbers, J. Plasma Phys., 3, 435–447, 1969.
Woods, L.: On double-structured, perpendicular, magneto-plasma shock waves,
Plasma Physics, 13, 289, https://doi.org/10.1088/0032-1028/13/4/302, 1971.
Yang, Z. W., Lu, Q. M., Lembège, B., and Wang, S.: Shock front
nonstationarity and ion acceleration in supercritical perpendicular shocks,
J. Geophys. Res.-Space, 114, A03111, https://doi.org/10.1029/2008ja013785, 2009.
Yang, Z. W., Lembège, B., and Lu, Q. M.: Acceleration of heavy ions by
perpendicular collisionless shocks: impact of the shock front
nonstationarity, J. Geophys. Res.-Space, 116, A10202, https://doi.org/10.1029/2011JA016605, 2011.
Yang, Z. W., Liu, Y. D., Johlander, A., Parks, G. K., Lavraud, B., Lee, E., Baumjohann, W., Rui Wang, R., and Burch, J. L.: MMS Direct Observations of Kinetic-scale Shock Self-reformation, Astrophys. J. Lett., 901, L6, https://doi.org/10.3847/2041-8213/abb3ff, 2020.
Yuan, X., Cairns, I. H., Trichtchenko, L., Rankin, R., and Danskin, D. W.:
Confirmation of quasi-perpendicular shock reformation in two-dimensional
hybrid simulations, Geophys. Res. Lett., 36, L05103,
https://doi.org/10.1029/2008gl036675, 2009.
Short summary
Nonstationarity of the quasi-perpendicular terrestrial bow shock is analyzed from magnetic field measurements, comparison with 2D particle-in-cell (PIC) simulations, and a careful and accurate methodology in the data processing. The results show evidence of a strong variability of the microstructures of the shock front (foot and ramp), confirming the importance of dissipative effects. These results indicate that these features can be signatures of the shock front self-reformation.
Nonstationarity of the quasi-perpendicular terrestrial bow shock is analyzed from magnetic field...