Articles | Volume 39, issue 3
https://doi.org/10.5194/angeo-39-427-2021
https://doi.org/10.5194/angeo-39-427-2021
Regular paper
 | 
12 May 2021
Regular paper |  | 12 May 2021

Planetary radar science case for EISCAT 3D

Torbjørn Tveito, Juha Vierinen, Björn Gustavsson, and Viswanathan Lakshmi Narayanan

Related authors

Plasma Density Estimation from Ionograms and Geophysical Parameters with Deep Learning
Kian Sartipzadeh, Andreas Kvammen, Björn Gustavsson, Njål Gulbrandsen, Magnar Gullikstad Johnsen, Devin Huyghebaert, and Juha Vierinen
EGUsphere, https://doi.org/10.5194/egusphere-2025-3070,https://doi.org/10.5194/egusphere-2025-3070, 2025
Short summary
Monitoring of Lower Thermospheric Neutral Density Variations Using Meteor Head Echoes
Devin Huyghebaert, Juha Vierinen, Björn Gustavsson, Ralph Latteck, Toralf Renkwitz, Marius Zecha, Claudia C. Stephan, J. Federico Conte, Daniel Kastinen, Johan Kero, and Jorge L. Chau
EGUsphere, https://doi.org/10.5194/egusphere-2025-2323,https://doi.org/10.5194/egusphere-2025-2323, 2025
Short summary
Effect of Ionospheric Variability on the Electron Energy Spectrum estimated from Incoherent Scatter Radar Measurements
Oliver Stalder, Björn Gustavsson, and Ilkka Virtanen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2340,https://doi.org/10.5194/egusphere-2025-2340, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Time-dependent modeling of Alfvénic precipitation observed in the ionosphere
Etienne Gavazzi, Andres Spicher, Björn Gustavsson, James Clemmons, Robert Pfaff, and Douglas Rowland
EGUsphere, https://doi.org/10.5194/egusphere-2025-2098,https://doi.org/10.5194/egusphere-2025-2098, 2025
Short summary
Toolkit for incoherent scatter radar experiment design and applications to EISCAT_3D
Spencer Mark Hatch, Ilkka Virtanen, Karl Magnus Laundal, Habtamu Wubie Tesfaw, Juha Vierinen, Devin Ray Huyghebaert, Andres Spicher, and Jens Christian Hessen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1768,https://doi.org/10.5194/egusphere-2025-1768, 2025
Short summary

Cited articles

Bilitza, D.: International reference ionosphere 2000, Radio Sci., 36, 261–275, 2001. a
Bolmgren, K., Mitchell, C., Bruno, J., and Bust, G.: Tomographic Imaging of Traveling Ionospheric Disturbances Using GNSS and Geostationary Satellite Observations, J. Geophys. Res.-Space, 125, e2019JA027, https://doi.org/10.1029/2019JA027551, 2020. a
Brekke, A.: Physics of the upper polar atmosphere, Springer Science & Business Media, Heidelberg, 2012. a
Busch, M. W., Kulkarni, S. R., Brisken, W., Ostro, S. J., Benner, L. A., Giorgini, J. D., and Nolan, M. C.: Determining asteroid spin states using radar speckles, Icarus, 209, 535–541, 2010. a
Campbell, B. A.: Radar remote sensing of planetary surfaces, Cambridge University Press, Cambridge, 2002. a
Short summary
This work explores the role of EISCAT 3D as a tool for planetary mapping. Due to the challenges inherent in detecting the signals reflected from faraway bodies, we have concluded that only the Moon is a viable mapping target. We estimate the impact of the ionosphere on lunar mapping, concluding that its distorting effects should be easily manageable. EISCAT 3D will be useful for mapping the lunar nearside due to its previously unused frequency (233 MHz) and its interferometric capabilities.
Share