Articles | Volume 39, issue 1
https://doi.org/10.5194/angeo-39-255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-39-255-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Semi-annual variation of excited hydroxyl emission at mid-latitudes
Mykhaylo Grygalashvyly
CORRESPONDING AUTHOR
Leibniz Institute of Atmospheric Physics, University Rostock, Schloss-Str. 6, 18225 Ostseebad Kühlungsborn, Germany
Alexander I. Pogoreltsev
Department of Meteorological Forecasting, Russian State Hydrometeorological University (RSHU), Saint Petersburg, Russia
Alexey B. Andreyev
Institute of the Ionosphere, National Center for Space Research and Technology, Almaty, Kazakhstan
Sergei P. Smyshlyaev
Department of Meteorological Forecasting, Russian State Hydrometeorological University (RSHU), Saint Petersburg, Russia
Gerd R. Sonnemann
Leibniz Institute of Atmospheric Physics, University Rostock, Schloss-Str. 6, 18225 Ostseebad Kühlungsborn, Germany
Related authors
Ashique Vellalassery, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken
Ann. Geophys., 41, 289–300, https://doi.org/10.5194/angeo-41-289-2023, https://doi.org/10.5194/angeo-41-289-2023, 2023
Short summary
Short summary
The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through photolysis and, at the time and place of NLC formation, indirectly through temperature changes. The H2O–Lyman-α response is modified by NLC formation, resulting in a positive response at the ice formation region (due to the temperature change effect on the ice formation rate) and a negative response at the sublimation zone (due to the photolysis effect).
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
M. Grygalashvyly
Ann. Geophys., 33, 923–930, https://doi.org/10.5194/angeo-33-923-2015, https://doi.org/10.5194/angeo-33-923-2015, 2015
Short summary
Short summary
The expressions that determine the altitude and number density at peak of the OH* layer were derived. OH* number density in the vicinity of the OH* layer is directly proportional to the atomic oxygen concentration and inversely proportional to the power of temperature. The peak of the layer number density is anti-correlated with the height of the peak. Atomic oxygen is responsible for the vertical separation of sub-layers with different vibrational numbers, and for the distance between them.
G. R. Sonnemann and M. Grygalashvyly
Ann. Geophys., 32, 277–283, https://doi.org/10.5194/angeo-32-277-2014, https://doi.org/10.5194/angeo-32-277-2014, 2014
G. R. Sonnemann and M. Grygalashvyly
Ann. Geophys., 31, 1591–1596, https://doi.org/10.5194/angeo-31-1591-2013, https://doi.org/10.5194/angeo-31-1591-2013, 2013
Ashique Vellalassery, Gerd Baumgarten, Mykhaylo Grygalashvyly, and Franz-Josef Lübken
Ann. Geophys., 41, 289–300, https://doi.org/10.5194/angeo-41-289-2023, https://doi.org/10.5194/angeo-41-289-2023, 2023
Short summary
Short summary
The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through photolysis and, at the time and place of NLC formation, indirectly through temperature changes. The H2O–Lyman-α response is modified by NLC formation, resulting in a positive response at the ice formation region (due to the temperature change effect on the ice formation rate) and a negative response at the sublimation zone (due to the photolysis effect).
Andrey V. Koval, Wen Chen, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, Alexander I. Pogoreltsev, Olga N. Toptunova, Ke Wei, Anna N. Yarusova, and Anton S. Zarubin
Ann. Geophys., 39, 357–368, https://doi.org/10.5194/angeo-39-357-2021, https://doi.org/10.5194/angeo-39-357-2021, 2021
Short summary
Short summary
Numerical modelling is used to simulate atmospheric circulation and calculate residual mean meridional circulation (RMC) during sudden stratospheric warming (SSW) events. Calculating the RMC is used to take into account wave effects on the transport of atmospheric quantities and gas species in the meridional plane. The results show that RMC undergoes significant changes at different stages of SSW and contributes to SSW development.
Sergei P. Smyshlyaev, Pavel N. Vargin, Alexander N. Lukyanov, Natalia D. Tsvetkova, and Maxim A. Motsakov
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-11, https://doi.org/10.5194/acp-2021-11, 2021
Revised manuscript not accepted
Short summary
Short summary
The dynamical processes and changes in Arctic ozone during the winter-spring season 2019–2020 were analyzed using ozonesondes, reanalysis data and numerical experiments with chemistry-transport and trajectory models. The results of numerical experiments indicated that dynamical processes predominate in ozone loss, and the chemical ozone depletion is determined not only by heterogeneous processes on the surface of the polar stratospheric clouds, but by the gas-phase destruction as well.
Alexander Kurganskiy, Carsten Ambelas Skjøth, Alexander Baklanov, Mikhail Sofiev, Annika Saarto, Elena Severova, Sergei Smyshlyaev, and Eigil Kaas
Atmos. Chem. Phys., 20, 2099–2121, https://doi.org/10.5194/acp-20-2099-2020, https://doi.org/10.5194/acp-20-2099-2020, 2020
Short summary
Short summary
The aim of the study was to evaluate three birch pollen source maps using a state-of-the-art atmospheric model Enviro-HIRLAM. Enviro-HIRLAM is a so-called online model where both weather and air pollution are calculated at all time steps.
The evaluation has been performed for 12 pollen observation sites located in Denmark, Finland, and Russia.
Boris Strelnikov, Martin Eberhart, Martin Friedrich, Jonas Hedin, Mikhail Khaplanov, Gerd Baumgarten, Bifford P. Williams, Tristan Staszak, Heiner Asmus, Irina Strelnikova, Ralph Latteck, Mykhaylo Grygalashvyly, Franz-Josef Lübken, Josef Höffner, Raimund Wörl, Jörg Gumbel, Stefan Löhle, Stefanos Fasoulas, Markus Rapp, Aroh Barjatya, Michael J. Taylor, and Pierre-Dominique Pautet
Atmos. Chem. Phys., 19, 11443–11460, https://doi.org/10.5194/acp-19-11443-2019, https://doi.org/10.5194/acp-19-11443-2019, 2019
Short summary
Short summary
Sounding rockets are the only means of measuring small-scale structures (i.e., spatial scales of kilometers to centimeters) in the Earth's middle atmosphere (50–120 km). We present and analyze brand-new high-resolution measurements of atomic oxygen (O) concentration together with high-resolution measurements of ionospheric plasma and neutral air parameters. We found a new behavior of the O inside turbulent layers, which might be essential to adequately model weather and climate.
Mykhaylo Grygalashvyly, Martin Eberhart, Jonas Hedin, Boris Strelnikov, Franz-Josef Lübken, Markus Rapp, Stefan Löhle, Stefanos Fasoulas, Mikhail Khaplanov, Jörg Gumbel, and Ekaterina Vorobeva
Atmos. Chem. Phys., 19, 1207–1220, https://doi.org/10.5194/acp-19-1207-2019, https://doi.org/10.5194/acp-19-1207-2019, 2019
Short summary
Short summary
Based on rocket-borne true common volume observations of atomic oxygen, atmospheric band emission (762 nm), and background atmosphere density and temperature, one-step, two-step, and combined mechanisms of
O2(b1Σg+) formation were analyzed. We found new coefficients for the fit function based on self-consistent temperature, atomic oxygen, and volume emission observations. This can be used for atmospheric band volume emission modeling or the estimation of atomic oxygen by known volume emission.
Yury M. Timofeyev, Sergei P. Smyshlyaev, Yana A. Virolainen, Alexander S. Garkusha, Alexander V. Polyakov, Maxim A. Motsakov, and Ole Kirner
Ann. Geophys., 36, 1495–1505, https://doi.org/10.5194/angeo-36-1495-2018, https://doi.org/10.5194/angeo-36-1495-2018, 2018
Short summary
Short summary
Atmospheric ozone plays a vital role, absorbing the ultraviolet solar radiation and heating the air, thus forming the stratosphere itself. If not absorbed, UV radiation would reach Earth's surface in amounts that are harmful to a variety of lifeforms. Climate change may lead to increasing ozone depletion, especially in the Arctic. Observation and prediction of the ozone variability are crucial for the investigation of its nature and the prediction of potential increase in surface UV radiation.
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary
Short summary
There is continuous interest in coupling processes between the lower and middle atmosphere. Here we analyse midlatitude winds measured by radar at 82–97 km and find that especially in February they are positively correlated with El Niño. The signal is strong for the upper altitudes accessible to the radar, but weakens below. The observations can be qualitatively reproduced by numerical experiments using a mechanistic global circulation model.
Mikhail Y. Kulikov, Mikhail V. Belikovich, Mykhaylo Grygalashvyly, Gerd R. Sonnemann, Tatiana S. Ermakova, Anton A. Nechaev, and Alexander M. Feigin
Ann. Geophys., 35, 677–682, https://doi.org/10.5194/angeo-35-677-2017, https://doi.org/10.5194/angeo-35-677-2017, 2017
M. Grygalashvyly
Ann. Geophys., 33, 923–930, https://doi.org/10.5194/angeo-33-923-2015, https://doi.org/10.5194/angeo-33-923-2015, 2015
Short summary
Short summary
The expressions that determine the altitude and number density at peak of the OH* layer were derived. OH* number density in the vicinity of the OH* layer is directly proportional to the atomic oxygen concentration and inversely proportional to the power of temperature. The peak of the layer number density is anti-correlated with the height of the peak. Atomic oxygen is responsible for the vertical separation of sub-layers with different vibrational numbers, and for the distance between them.
A. V. Koval, N. M. Gavrilov, A. I. Pogoreltsev, and E. N. Savenkova
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-5643-2015, https://doi.org/10.5194/gmdd-8-5643-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We implemented improved parameterizations of orographic gravity wave dynamical and thermal effects and QBO flows into a general circulation model and study the sensitivity of meridional circulation and vertical velocity to the parameterizations at altitudes up to 100km. Stationary OGW effects gives changes up to 40% in the meridional velocity and associated ozone fluxes in the stratosphere. Transitions from the easterly to westerly QBO phase may alter meridional and vertical velocities by 60%.
G. R. Sonnemann and M. Grygalashvyly
Ann. Geophys., 32, 277–283, https://doi.org/10.5194/angeo-32-277-2014, https://doi.org/10.5194/angeo-32-277-2014, 2014
G. R. Sonnemann and M. Grygalashvyly
Ann. Geophys., 31, 1591–1596, https://doi.org/10.5194/angeo-31-1591-2013, https://doi.org/10.5194/angeo-31-1591-2013, 2013
Related subject area
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Airglow
Terrestrial exospheric dayside H-density profile at 3–15 RE from UVIS/HDAC and TWINS Lyman-α data combined
Sporadic auroras near the geomagnetic equator: in the Philippines, on 27 October 1856
Jochen H. Zoennchen, Hyunju K. Connor, Jaewoong Jung, Uwe Nass, and Hans J. Fahr
Ann. Geophys., 40, 271–279, https://doi.org/10.5194/angeo-40-271-2022, https://doi.org/10.5194/angeo-40-271-2022, 2022
Short summary
Short summary
Exospheric Ly-α observations of UVIS/HDAC at CASSINI on its Earth swing-by and TWINS are combined to derive the exospheric H-density profile of the ecliptic dayside between 3–15 RE. At 10 RE nH=35 cm−3 is found in the vicinity of the subsolar point for quiet space weather conditions. Also a faster radial fall of the dayside H density above 8 RE (r−3) compared to lower distances of 3–7 RE (r−2.37) is found and possibly indicates enhanced loss of H atoms near the magnetopause and beyond.
Hisashi Hayakawa, José M. Vaquero, and Yusuke Ebihara
Ann. Geophys., 36, 1153–1160, https://doi.org/10.5194/angeo-36-1153-2018, https://doi.org/10.5194/angeo-36-1153-2018, 2018
Short summary
Short summary
A record has been found of an "aurora" observed on 27 October 1856 in the Philippines, practically at the magnetic equator. An analysis of this report indicates that it could belong to a "sporadic aurora" because of low magnetic activity at that time. We provide a possible physical mechanism that could explain the appearance of this sporadic, low-latitude aurora, according to the analyses on the observational report and magnetic observations at that time.
Cited articles
Abreu, V. J. and Yee, J. H.:
Diurnal and seasonal variation of the nighttime OH (8-3) emission at low latitudes,
J. Geophys. Res.,
94, 11949–11957, https://doi.org/10.1029/89JA00619, 1989.
Adler-Golden, S.:
Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements,
J. Geophys. Res.,
102, 19969–19976, https://doi.org/10.1029/97JA01622, 1997.
Aushev, V. M., Pogoreltsev, A. I., Vodyannikov, V. V., Wiens, R. H., and Shepherd, G. G.:
Results of the airglow and temperature observations by MORTI at the Almaty site (43.05N, 76.97E),
Phys. Chem. Earth,
25, 409–415, https://doi.org/10.1016/S1464-1909(00)00035-6, 2000.
Belikovich, M. V., Kulikov, M. Y., Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.:
Ozone chemical equilibrium in the extended mesopause under the nighttime conditions,
Adv. Space Res.,
61, 426–432, https://doi.org/10.1016/j.asr.2017.10.010, 2018a.
Belikovich, M. V., Kulikov, M. Y., Nechaev, A. A., Feigin, A. M.:
Evaluation of the Atmospheric Minor Species Measurements: a Priori Statistical Constraints Based on Photochemical Modeling,
Radiophys. Quantum El.,
61, 574–588, https://doi.org/10.1007/s11141-019-09918-5, 2018b.
Berger, U.:
Modeling of the middle atmosphere dynamics with LIMA,
J. Atmos. Terr. Phys.,
70, 1170–1200, https://doi.org/10.1016/j.jastp.2008.02.004, 2008.
Bittner, M., Offermann, D., Graef, H.-H., Donner, M., and Hamilton, K.:
An 18 year time series of OH rotational temperatures and middle atmosphere decadal variations,
J. Atmos. Sol.-Terr. Phy.,
64, 1147–1166, https://doi.org/10.1016/S1364-6826(02)00065-2, 2002.
Buriti, R. A., Takahashi, H., Lima, L. M., and Medeiros, A. F.:
Equatorial planetary waves in the mesosphere observed by airglow periodic oscillations,
Adv. Space Res.,
35, 2031–2036, https://doi.org/10.1016/j.asr.2005.07.012, 2005.
Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Wilmouth, D. M., and Wine, P. H.:
Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 18, JPL Publication 15–10,
Jet Propulsion Laboratory, Pasadena,
available at: http://jpldataeval.jpl.nasa.gov, last access: 31 October 2015.
Caridade, P. J. S. B., Horta, J.-Z. J., and Varandas, A. J. C.:
Implications of the O + OH reaction in hydroxyl nightglow modeling,
Atmos. Chem. Phys.,
13, 1–13, https://doi.org/10.5194/acp-13-1-2013, 2013.
Dalin, P., Perminov, V., Pertsev, N., and Romejko, V.:
Updated long-term trends in mesopause temperature, airglow emissions, and noctilucent clouds,
J. Geophys. Res.-Atmos.,
125, e2019JD030814, https://doi.org/10.1029/2019JD030814, 2020.
Damiani, A., Storini, M., Santee, M. L., and Wang, S.:
Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology,
Atmos. Chem. Phys.,
10, 10291–10303, https://doi.org/10.5194/acp-10-10291-2010, 2010.
Gao, H., Xu, J., and Wu, Q.:
Seasonal and QBO variations in the OH nightglow emission observed by TIMED/SABER,
J. Geophys. Res.,
115, A06313, https://doi.org/10.1029/2009JA014641, 2010.
Gao, H., Xu, J., Ward, W., and Smith, A. K.:
Temporal evolution of nightglow emission responses to SSW events observed by TIMED/SABER,
J. Geophys. Res.,
116, D19110, https://doi.org/10.1029/2011JD015936, 2011.
Good, R. E.:
Determination of atomic oxygen density from rocket borne measurements of hydroxyl airglow,
Planet. Space Sci.,
24, 389–395, https://doi.org/10.1016/0032-0633(76)90052-0, 1976.
Grygalashvyly, M.:
Several notes on the OH∗layer,
Ann. Geophys.,
33, 923–930, https://doi.org/10.5194/angeo-33-923-2015, 2015.
Grygalashvyly, M.: Grygalashvyly_et_al_ANGEO_2020, available at: http://ra.rshu.ru/files/Grygalashvyly_et_al_ANGEO_2020, last access: 27 November 2020.
Grygalashvyly, M. and Sonnemann, G. R.:
Note on Consistency between Kalogerakis–Sharma Mechanism (KSM) and Two-Step Mechanism of Atmospheric Band Emission,
Earth Planets Space,
72, 187, https://doi.org/10.1186/s40623-020-01321-z, 2020.
Grygalashvyly, M., Sonnemann, G. R., Lübken, F.-J., Hartogh, P., and Berger, U.:
Hydroxyl layer: Mean state and trends at midlatitudes,
J. Geophys. Res.,
119, 12391–12419, https://doi.org/10.1002/2014JD022094, 2014.
Hartogh, P., Sonnemann, G. R., Grygalashvyly, M., Li, S., Berger, U., and Lübken, F.-J.:
Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA,
J. Geophys. Res.,
114, D00I17, https://doi.org/10.1029/2009JD012364, 2010.
Hartogh, P., Jarchow, C., Sonnemann, G. R., and Grygalashvyly, M.:
Ozone distribution in the middle latitude mesosphere as derived from microwave measurements at Lindau (51.66∘ N, 10.13∘ E),
J. Geophys. Res.,
116, D04305, https://doi.org/10.1029/2010JD014393, 2011.
Holmen, S. E., Dyrland, M. E., and Sigernes, F.:
Long-term trends and the effect of solar cycle variations on mesospheric winter temperatures over Longyearbyen, Svalbard (78∘ N),
J. Geophys. Res.-Atmos.,
119, 6596–6608, https://doi.org/10.1002/2013JD021195, 2014.
Kalicinsky, C., Knieling, P., Koppmann, R., Offermann, D., Steinbrecht, W., and Wintel, J.:
Long-term dynamics of OH∗ temperatures over central Europe: trends and solar correlations,
Atmos. Chem. Phys.,
16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016, 2016.
Kaye, J. A.:
On the possible role of the reaction O + HO2 → OH + O2 in OH airglow,
J. Geophys. Res.,
93, 285–288, https://doi.org/10.1029/JA093iA01p00285, 1988.
Kremp, C., Berger, U., Hoffmann, P., Keuer, D., and Sonnemann, G. R.:
Seasonal variation of middle latitude wind fields of the mesopause region – a comparison between observation and model calculation,
Geophys. Res. Lett.,
26, 1279–1282, https://doi.org/10.1029/1999GL900218, 1999.
Kulikov, M. Y., Feigin, A. M., and Sonnemann, G. R.:
Retrieval of water vapor profile in the mesosphere from satellite ozone and hydroxyl measurements by the basic dynamic model of mesospheric photochemical system,
Atmos. Chem. Phys.,
9, 8199–8210, https://doi.org/10.5194/acp-9-8199-2009, 2009.
Kulikov, M. Y., Belikovich, M. V., Grygalashvyly, M., Sonnemann, G. R., Ermakova, T. S., Nechaev, A. A., and Feigin, A. M.:
Nighttime ozone chemical equilibrium in the mesopause region,
J. Geophys. Res.,
123, 3228–3242, https://doi.org/10.1002/2017JD026717, 2018a.
Kulikov, M. Y., Nechaev, A. A., Belikovich, M. V., Ermakova, T. S., and Feigin, A. M.:
Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption – a statistical approach,
Atmos. Chem. Phys.,
18, 7453–7471, https://doi.org/10.5194/acp-18-7453-2018, 2018b.
Kulikov, M. Y., Nechaev, A. A. , Belikovich, M. V., Vorobeva, E. V., Grygalashvyly, M., Sonnemann, G. R., and Feigin, A. M.:
Boundary of Nighttime Ozone Chemical Equilibrium in the Mesopause Region from SABER Data: Implications for Derivation of Atomic Oxygen and Atomic Hydrogen,
Geophys. Res. Lett.,
46, 997–1004, https://doi.org/10.1029/2018GL080364, 2019.
Le Texier, H., Solomon, S., and Garcia, R. R.:
Seasonal variability of the OH Meinel bands,
Planet. Space Sci.,
35, 977–989, https://doi.org/10.1016/0032-0633(87)90002-X, 1987.
Limpasuvan, V., Richter, J. H., Orsolini, Y. J., Stordal, F., and Kvissel, O.-K.:
The roles of planetary and gravity waves during a major stratospheric sudden warming as characterized by WACCM,
J. Atmos. Sol.-Terr. Phy.,
78–79, 84–98, https://doi.org/10.1016/j.jastp.2011.03.004, 2012.
Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.:
On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause,
J. Geophys. Res.-Atmos.,
121, 4518–4537, https://doi.org/10.1002/2015JD024401, 2016.
Liu, G., Shepherd, G. G., and Roble, R. G.:
Seasonal variations of the nighttime O(1S) and OH airglow emission rates at mid-to-high latitudes in the context of the large-scale circulation,
J. Geophys. Res.,
113, A06302, https://doi.org/10.1029/2007JA012854, 2008.
López-González, M. J., Rodríguez, E., Wiens, R. H., Shepherd, G. G., Sargoytchev, S., Brown, S., Shepherd, M. G., Aushev, V. M., López-Moreno, J. J., Rodrigo, R., and Cho, Y.-M.: Seasonal variations of O2 atmospheric and OH(6–2) airglowand temperature at mid-latitudes from SATI observations,
Ann. Geophys.,
22, 819–828, https://doi.org/10.5194/angeo-22-819-2004, 2004.
López-González, M. J., Rodríguez, E., Shepherd, G. G., Sargoytchev, S., Shepherd, M. G., Aushev, V. M., Brown, S., García-Comas, M., and Wiens, R. H.:
Tidal variations of O2 Atmospheric and OH(6–2) airglow and temperature at mid-latitudes from SATI observations,
Ann. Geophys.,
23, 3579–3590, https://doi.org/10.5194/angeo-23-3579-2005, 2005.
Lopez-Gonzalez, M. J., Garcia-Comas, M., Rodriguez, E., Lopez-Puertas, M., Shepherd, M. G., Shepherd, G. G., Sargoytchev, S., Aushev, V. M., Smith, S. M., Mlynczak, M. G., Russell, J. M., Brown, S., Cho, Y.-M., and Wiens, R. H.:
Ground-based mesospheric temperatures at mid-latitude derived from O2 and OH airglow SATI data: Comparison with SABER measurements,
J. Atmos. Sol.-Terr. Phy.,
69, 2379–2390 https://doi.org/10.1016/j.jastp.2007.07.004, 2007.
López-González, M. J., Rodríguez, E., García-Comas, M., Costa, V., Shepherd, M. G., Shepherd, G. G., Aushev, V. M., and Sargoytchev, S.:
Climatology of planetary wave type oscillations with periods of 2–20 days derived from O2 atmospheric and OH(6-2) airglow observations at mid-latitude with SATI,
Ann. Geophys.,
27, 3645–3662, https://doi.org/10.5194/angeo-27-3645-2009, 2009.
Lübken, F.-J., Berger, U., and Baumgarten, G.:
Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds,
J. Geophys. Res.,
114, D00106, https://doi.org/10.1029/2009JD012377, 2009.
Lübken, F.-J., Berger, U., and Baumgarten, G.:
Temperature trends in the midlatitude summer mesosphere,
J. Geophys. Res.,
118, 13347–13360, https://doi.org/10.1002/2013JD020576, 2013.
Makhlouf, U. B., Picard, R. H., and Winick, J. R.:
Photochemical-dynamical modeling of the measured response of airglow to gravity waves. 1. Basic model for OH airglow,
J. Geophys. Res.,
100, 11289–11311, https://doi.org/10.1029/94JD03327, 1995.
Marsh, D. R., Smith, A. K., Mlynczak, M. G., and Russell III, J. M.:
SABER observations of the OH Meinel airglow variability near the mesopause,
J. Geophys. Res.,
111, A10S05, https://doi.org/10.1029/2005JA011451, 2006.
Mlynczak, M. G., Hunt, L. A., Mast, J. C., Marshall, B. T., Russell III, J. M., Smith, A. K., Siskind, D. E., Yee, J.-H., Mertens, C. J., Martin-Torres, F. J., Thompson, R. E., Drob, D. P., and Gordley, L. L.:
Atomic oxygen in the mesosphere and lower thermosphere derived from SABER: Algorithm theoretical basis and measurement uncertainty,
J. Geophys. Res.-Atmos.,
118, 5724–5735, https://doi.org/10.1002/jgrd.50401, 2013a.
Mlynczak, M. G., Hunt, L. A., Mertens, C. J., Marshall, B. T., Russell III, J. M., Lopez-Puertas, M., Smith, A. K., Siskind, D. E., Mast, J. C., Thompson, R. E., and Gordley, L. L.:
Radiative and energetic constraints on the global annual mean atomic oxygen concentration in the mesopause region,
J. Geophys. Res.-Atmos.,
118, 5796–5802, https://doi.org/10.1002/jgrd.50400, 2013b.
Mlynczak, M. G., Hunt, L. A., Marshall, B. T., Mertens, C. J., Marsh, D. R., Smith, A. K., Russell, J. M., Siskind, D. E., and Gordley, L. L.:
Atomic hydrogen in the mesopause region derived from SABER: Algorithm theoretical basis, measurement uncertainty, and results,
J. Geophys. Res.,
119, 3516–3526, https://doi.org/10.1002/2013JD021263, 2014.
Morton, K. W. and D. F. Mayers, D. F.:
Numerical Solution of Partial Differential Equations,
Cambridge University Press, Cambridge, UK, 1994.
Pertsev N. N., Andreyev A. B., Merzlyakov E. G., and Perminov V. I.:
Mesosphere-thermosphere manifestations of strato-spheric warmings: joint use of satellite and ground-based measurements,
Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa,
10, 93–100,
available at: http://jr.rse.cosmos.ru/article.aspx?id=1154&lang=eng (last access: 31 December 2013), 2013.
Popov, A. A., Gavrilov, N. M., Andreev, A. B., and Pogoreltsev, A. I.:
Interannual dynamics in intensity of mesoscale hydroxyl nightglow variations over Almaty,
Solar-Terr. Phys.,
4, 63–68, https://doi.org/10.12737/stp-42201810, 2018.
Popov, A. A., Gavrilov, N. M., Perminov, V. I., Pertsev, N. N., and Medvedeva, I. V.:
Multi-year observations of mesoscale variances of hydroxyl nightglow near the mesopause at Tory and Zvenigorod,
J. Atmos. Sol-Terr. Phy.,
205, 1–8, https://doi.org/10.1016/j.jastp.2020.105311, 2020.
Reid, I. M., Spargo, A. J., and Woithe, J. M.:
Seasonal variations of the nighttime O(1S) and OH (8-3) airglow intensity at Adelaide, Australia,
J. Geophys. Res.-Atmos.,
119, 6991–7013, https://doi.org/10.1002/2013JD020906, 2014.
Reid, I. M., Spargo, A. J., Woithe, J. M., Klekociuk, A. R., Younger, J. P., and Sivjee, G. G.:
Seasonal MLT-region nightglow intensities, temperatures, and emission heights at a Southern Hemisphere midlatitude site,
Ann. Geophys.,
35, 567–582, https://doi.org/10.5194/angeo-35-567-2017, 2017.
Reisin, E., Scheer, J., Dyrland, M. E., Sigernes, F., Deehr, C. S., Schmidt, C., Höppner, K., Bittner, M., Ammosov, P. P., Gavrilyeva, G. A., Stegman, J., Perminov, V. I., Semenov, A. I., Knlieling, P., Koomann, R., Shiokawa, K., Lowe, R. P., Lopez-Gonzalez, M. J., Rodriguez, E., Zhao, Y., Taylor, M. J., Buriti, R. A., Espy, P. E., French, W. J., Eichmann, K.-U., Burrows, J. P., and von Savigny, C.:
Traveling planetary wave activity from mesopause region airglow temperatures determined by the Network for the Detection of Mesospheric Change (NDMC),
J. Atmos. Sol.-Terr. Phy.,
119, 71–82, https://doi.org/10.1016/j.jastp.2014.07.002, 2014.
Russell, J. P., Ward, W. E., Lowe, R. P., Roble, R. G., Shepherd, G. G., and B. Solheim, B.:
Atomic oxygen profiles (80 to 115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: Local time–latitude dependence,
J. Geophys. Res.,
110, D15305, https://doi.org/10.1029/2004JD005570, 2005.
Shepherd, G. G., Thuillier, G., Cho, Y.-M., Duboin, M.-L., Evans, W. F. J., Gault, W. A., Hersom, C., Kendall, D. J. W., Lathuillère, C., Lowe, R. P., McDade, I. C., Rochon, Y. J., Shepherd, M. G., Solheim, B. H., Wang, D.-Y., and Ward, W. E.:
The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 year perspective,
Rev. Geophys.,
50, RG2007, https://doi.org/10.1029/2012RG000390, 2012.
Shepherd, M. G., Cho, Y.-M., Shepherd, G. G., Ward, W., and Drummond, J. R.:
Mesospheric temperature and atomic oxygen response during the January 2009 major stratospheric warming,
J. Geophys. Res.,
115, A07318, https://doi.org/10.1029/2009JA015172, 2010.
Shimazaki, T.:
Minor constituents in the middle atmosphere,
D. Reidel Publishing Company, Dordrecht, Holland, 1985.
Smith, A. K., Marsh, D. R., Russell III, J. M., Mlynczak, M. G., Martin-Torres, F. J., and Kyrölä, E.:
Satellite observations of high nighttime ozone at the equatorial mesopause,
J. Geophys. Res.,
113, D17312, https://doi.org/10.1029/2008JD010066, 2008.
Smith, A. K., Lopez-Puertas, M., Garcia-Comas, M., and Tukiainen, S.:
SABER observations of mesospheric ozone during NH late winter 2002–2009,
Geophys. Res. Lett.,
36, L23804, https://doi.org/10.1029/2009GL040942, 2009.
Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C.:
Temporal variation of atomic oxygen in the upper mesosphere from SABER,
J. Geophys. Res.,
115, D18309, https://doi.org/10.1029/2009JD013434, 2010.
Sonnemann G. and Grygalashvyly, M.:
The slow-down effect in the nighttime mesospheric chemistry of hydrogen radicals,
Adv. Space Res.,
65, 2800–2807, https://doi.org/10.1016/j.asr.2020.03.025, 2020.
Sonnemann, G. R., Hartogh, P., Jarchow., C., Grygalashvyly, M., and Berger, U.:
On the winter anomaly of the night-to-day ratio of ozone in the middle to upper mesosphere in middle to high latitudes,
Adv. Space Res.,
40, 846–854, https://doi.org/10.1016/j.asr.2007.01.039, 2007.
Sonnemann, G. R., Hartogh, P., Grygalashvyly, M., Li, S., and Berger, U.:
The quasi 5-day signal in the mesospheric water vapor concentration in high latitudes in 2003 – a comparison between observations at ALOMAR and calculations,
J. Geophys. Res.,
113, D04101, https://doi.org/10.1029/2007JD008875, 2008.
Sonnemann, G. R., Hartogh, P., Berger, U., and Grygalashvyly, M.:
Hydroxyl layer: trend of number density and intra-annual variability,
Ann. Geophys.,
33, 749–767, https://doi.org/10.5194/angeo-33-749-2015, 2015.
Takahashi, H. and Batista, P. P.:
Simultaneous measurements of OH (9,4), (8,3), (7,2), 6,2), and (5,1) bands in the airglow,
J. Geophys. Res.,
86, 5632–5642, https://doi.org/10.1029/JA086iA07p05632, 1981.
Takahashi, H., Clemesha, B. R., and Batista, P. P.:
Predominant semi-annual oscillation of the upper mesospheric airglow intensities and temperatures in the equatorial region,
J. Atmos. Terr. Phys.,
57, 407–414, https://doi.org/10.1016/0021-9169(94)E0006-9, 1995.
Takahashi, H., Batista, P. P., Buriti, R. A, Gobbi, D., Nakamura, T., Tsuda, T., and Fukao, S.:
Response of the airglow OH emission, temperature and mesopause wind to the atmospheric wave propagation over Shigaraki, Japan,
Earth Planets Space,
51, 863–875, https://doi.org/10.1186/BF03353245, 1999.
Taylor, M. J., Espy, P. J., Baker, D. J., Sica, R. J., Neal, P. C., and Pendleton Jr., W. R.:
Simultaneous intensity, temperature and imaging measurements of short period wave structure in the OH nightglow emission,
Planet. Space Sci.,
39, 1171–1188, https://doi.org/10.1016/0032-0633(91)90169-B, 1991.
Varandas, A. J. C.:
Reactive and non-reactive vibrational quenching in O + OH collisions,
Chem. Phys. Lett.,
396, 182–190, https://doi.org/10.1016/j.cplett.2004.08.023, 2004.
Wachter, P., Schmidt, C., Wüst, S., and Bittner, M.:
Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series,
J. Atmos. Sol.-Terr. Phy.,
135, 192–201, https://doi.org/10.1016/j.jastp.2015.11.008, 2015.
Walcek, C. J.:
Minor flux adjustment near mixing ratio extremes for simplified yet highly accurate monotonic calculation of tracer advection,
J. Geophys. Res.,
105, 9335–9348, https://doi.org/10.1029/1999JD901142, 2000.
Wiens, R. H., Moise, A., Brown, S., Sargoytchev, S., Peterson, R. N., Shepherd, G. G., Lopez-Gonzalez, M. J., Lopez-Moreno J. J., and Rodrigo R.:
SATI: A spectral airglow tempera-ture imager,
Adv. Space Res.,
19, 677–680, https://doi.org/10.1016/S0273-1177(97)00162-2, 1997.
Xu, J., Smith, A. K., Jiang, G., Gao, H., Wei, Y., Mlynczak, M. G., and Russell III, J. M.:
Strong longitudinal variations in the OH nightglow,
Geophys. Res. Lett.,
37, L21801, https://doi.org/10.1029/2010GL043972, 2010.
Xu, J., Gao, H., Smith, A. K., and Zhu, Y.:
Using TIMED/SABER nightglow observations to investigate hydroxyl emission mechanisms in the mesopause region,
J. Geophys. Res.,
117, D02301, https://doi.org/10.1029/2011JD016342, 2012.
Short summary
Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl emissions at mid-latitudes compared to those at low latitudes. This differs from the annual cycle at high latitudes. We found that this shift in the semi-annual cycle is determined mainly by the superposition of annual variations of T and O concentration. The winter peak for emission is determined exclusively by atomic oxygen concentration, whereas the summer peak is the superposition of all impacts.
Ground-based observations show a phase shift in semi-annual variation of excited hydroxyl...