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Abstract. Ground-based observations show a phase shift in
semi-annual variation of excited hydroxyl (OH∗) emissions
at mid-latitudes (43◦ N) compared to those at low latitudes.
This differs from the annual cycle at high latitudes. We ex-
amine this behaviour by utilising an OH∗ airglow model
which was incorporated into a 3D chemistry–transport model
(CTM). Through this modelling, we study the morphology
of the excited hydroxyl emission layer at mid-latitudes (30–
50◦ N), and we assess the impact of the main drivers of its
semi-annual variation: temperature, atomic oxygen, and air
density. We found that this shift in the semi-annual cycle is
determined mainly by the superposition of annual variations
of temperature and atomic oxygen concentration. Hence, the
winter peak for emission is determined exclusively by atomic
oxygen concentration, whereas the summer peak is the su-
perposition of all impacts, with temperature taking a leading
role.

1 Introduction

Since the second half of the 20th century, emissions of ex-
cited hydroxyl have been used for three main purposes:
(1) to infer information about temperature and its long-term
change; (2) to obtain distributions of minor chemical con-
stituents (O3, H, and O) at the altitudes of the mesopause;
and (3) to investigate dynamic processes such as tides, grav-
ity, and planetary waves (GWs and PWs, respectively); sud-

den stratospheric warmings (SSWs); and the quasi-biennial
oscillation (QBO).

Hence, a number of authors have studied temperatures in
the mesopause region using airglow emission ground-based
observations focusing on long-term trends (e.g. Bittner et al.,
2002; Holmen et al., 2014; Dalin et al., 2020, and references
therein) with attention to seasonal variations (e.g. Reid et al.,
2017, and references therein) and the solar-cycle effect (e.g.
Kalicinsky et al., 2016, and references therein).

Minor chemical constituents as well as chemical heat
have also been retrieved by OH∗ emission observations.
Ever since atomic oxygen concentration was determined by
the rocket-borne detection of OH∗ airglow (Good, 1976),
this method has come into wide use for obtaining informa-
tion about distributions of minor chemical constituents in
the mesopause region, namely, atomic oxygen concentration
(e.g. Russell et al., 2005; Mlynczak et al., 2013a, and refer-
ences therein), ozone concentration (e.g. Smith et al., 2009,
and references therein), atomic hydrogen concentration (e.g.
Mlynczak et al., 2014, and references therein), and exother-
mic chemical heat (e.g. Mlynczak et al., 2013b, and ref-
erences therein). In future, excited hydroxyl airglow could
be used for measurements of hydroperoxy radicals and wa-
ter vapour concentrations (Kulikov et al., 2009, 2018b; Be-
likovich et al., 2018b).

Numerous studies using airglow observations, have been
devoted to dynamic processes, e.g. to study mesopause vari-
abilities in time of SSWs (Damiani et al., 2010; Shepherd
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et al., 2010). Gao et al. (2011) studied the temporal evolu-
tion of nightglow brightness and height during SSW events.
A year earlier, they found a QBO signal in the excited hy-
droxyl emission (Gao et al., 2010). The climatology of PWs
was investigated in studies by Takahashi et al. (1999), Buriti
et al. (2005), and Reisin et al. (2014). Tides were studied by
Xu et al. (2010) and Lopez-Gonzalez et al. (2005). GW pa-
rameters based on the airglow technique were investigated,
e.g. by Taylor et al. (1991) and Wachter et al. (2015). A more
complete description of studies in which hydroxyl emissions
were used to study dynamic processes can be found in a re-
view by Shepherd et al. (2012).

The morphology of the OH∗ layer is an essential compo-
nent in the interpretation of observations and in understand-
ing the processes involved in layer variability. Annual vari-
ations in the OH∗ layer have been identified at all latitudes
(Marsh et al., 2006). Equatorial and low-latitude semi-annual
variations have been observed by satellites (e.g. Abreu and
Yee, 1989; Liu et al., 2008, and references therein), as well
as by ground-based instruments (Takahashi et al., 1995),
and they have been modelled by several research teams
(Le Texier et al., 1987; Marsh et al., 2006, and references
therein). The maxima of emissions were found to occur
near equinoxes. In spite of the large number of studies on
this subject, there are still knowledge gaps. Recently, un-
expected behaviour in the semi-annual cycle of excited hy-
droxyl emission has been found by ground-based observa-
tions, with a shift of the peaks from equinoxes to summer
and winter at middle latitudes (Popov et al., 2018, 2020);
this was also found by modelling (Grygalashvyly et al., 2014;
Fig. 3). Similar variations in OH∗ emissions with peaks near
equinoxes have been observed at middle latitudes (34.6◦ N)
in the Southern Hemisphere (Reid et al., 2014). These results
were provided without explanations; in our short paper, we
offer a preliminary explanation.

The second section of our article describes the observa-
tional technique and model that were applied; in the third
section, we present results and an analysis of observations
and modelling; conclusions are provided in the fourth sec-
tion.

2 Observational technique and model

2.1 Observational technique

The spectral airglow temperature imager (SATI), which
measures nightglow intensity for vibrational transitions
of OH∗v=6→OH∗v=2 and temperature using vibrational-
rotational transitions, was assembled at the Institute of Iono-
sphere (43◦ N, 77◦ E) in Almaty, Kazakhstan. It represents a
Fabry–Perot spectrometer with a CCD (charge-coupled de-
vice) camera as a detector and a narrowband interference fil-
ter as the etalon. Following Lopez-Gonzalez et al. (2007), we
use an interference filter with the centre at 836.813 nm and a

bandwidth of 0.182 nm. This corresponds to the spectral re-
gion of the OH∗v=6→OH∗v=2 band. In order to infer the tem-
perature, the calculated spectra for different vibro-rotational
transitions are compared with those from observations. The
SATI operates at a 60 s exposure that provides correspond-
ing time resolution. The method of temperature retrieval is
well-described by Lopez-Gonzalez et al. (2004). The obser-
vations of temperature were validated using satellite SABER
measurements (Lopez-Gonzalez et al., 2007; Pertsev et al.,
2013). Additional details about this instrument are presented
in many papers (Wies et al., 1997; Aushev et al., 2000;
Lopez-Gonzalez et al., 2004, 2005, 2007, 2009). The anal-
ysis presented in this paper uses data averaged over the years
2010–2017.

2.2 Model and numerical experiment

The model of excited hydroxyl (MEH) calculates the OH∗

number densities at each vibrational level v as the production
divided by losses (excited hydroxyl is assumed in the photo-
chemical equilibrium), which include the chemical sources
as well as collisional and emissive removal:
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The first term in the numerator of Eq. (1) is the reaction
O3+H→ OHv+O, where a1 is the reaction rate, and ςv
represents the branching ratios (Adler-Golden, 1997). The
second term is the O+HO2→ OHv+O2 reaction, where
a2 and ψv are the reaction rate and nascent distribution, re-
spectively (Kaye, 1988, after Takahashi and Batista, 1981).
The other three summands represent the populations result-
ing from collisional relaxation from higher v levels, where
B, C, and D are the collisional deactivation coefficients for
O2 (Adler-Golden, 1997), N2 (Makhlouf et al., 1995), and
O (Caridade et al., 2013), respectively. The last summand
is the multi-quantum population by spontaneous emissions,
whereEv′v is the spontaneous emission coefficient (Xu et al.,
2012). The losses occur, additionally, through the chemical
removal of the excited hydroxyl by atomic oxygen, where
a3(v) is the vibrationally dependent reaction rate (Varan-
das, 2004). The calculations in Eq. (1) are incorporated into
the chemistry–transport model (CTM). We calculate volume
emission for transition OH∗v=6→OH∗v=2 as the product of the
Einstein coefficient for given transition by concentration of
excited hydroxyl at corresponding vibrational number, i.e.
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Table 1. List of reactions with corresponding reaction rates (for three-body reactions [cm6 molecule−2 s−1] and for two-body reactions
[cm3 molecule−1 s−1]), branching ratios, quenching coefficients, and spontaneous emission coefficients (s−1) used in the paper.

Reaction Coefficient or branching ratios Reference

1 H+O3
ςva1
−→ OHv=5,...,9+O2 a1 = 1.4× 10−10 exp

(
−470
T

)
ςv=9,...,5 =
0.47, 0.34, 0.15, 0.03, 0.01

Burkholder et al. (2015), Adler-Golden
(1997)

2 O+HO2
ψva2
−→ OHv=5,...,9+O2 a2 = 3.0× 10−11 exp

(
200
T

)
ψv=3,...,1 = 0.1, 0.13, 0.34

Burkholder et al. (2015), Kaye (1988),
Takahashi and Batista (1981)

3 O+OHv=1,...,9→ O2+H a3 (v = 9, . . .,5)= (5.07,
4.52, 3.87, 3.93, 3.22, 3.68,
3.05, 3.19, 3.42)× 10−11

Varandas (2004), Caridade et al. (2013)

4 O+O2+M→ O3+M a4 = 6× 10−34(300/T )2.4 Burkholder et al. (2015)

5 O+O3→ 2O2 a5 = 8× 10−12 exp
(
−2060
T

)
Burkholder et al. (2015)

6 OHv+O2,O,N2→ OHv′<v+
O2,O,N2

Bvv′ , Dvv′ , Cvv′ Adler-Golden (1997), Caridade et al.
(2013), Makhlouf et al. (1995)

7 OHv→ OHv′<v+hv Evv′ Xu et al. (2012)

V62 = E62
[
OH∗6

]
. All reactions used in Eq. (1) and in the ap-

pendix – together with corresponding reaction rates, branch-
ing ratios, quenching rates, and spontaneous emission coeffi-
cients, besides those for multi-quantum processes – are col-
lected in Table 1.

Here, we enumerate only the main features of the CTM as
one can find extended descriptions in many studies (Sonne-
mann and Grygalashvyly, 2020; Grygalashvyly et al., 2014;
and references therein). The CTM consists of four blocks:
chemical, transport, radiative, and diffusive. The chemical
block accounts for 19 constituents and 63 photodissociations
and chemical reactions (Burkholder et al., 2015). The chem-
ical code utilises a family approach with the odd oxygen
(O(1D), O, O3), odd hydrogen (H, OH, HO2, H2O2), and
odd nitrogen (N(2D), N(4S), NO, NO2) families (Shimazaki,
1985). In the radiative part, the dissociation rates are taken
from a precalculated table depending on zenith angle and al-
titude (Kremp et al., 1999). The transport block calculates ad-
vection in three directions following Walcek (2000). The dif-
fusive part accounts for only vertical molecular plus turbulent
diffusion (Morton and Mayers, 1994). This model has been
validated against observations of ozone, which plays a role
in the formation of OH∗ (e.g. Hartogh et al., 2011; Sonne-
mann et al., 2007; and references therein) and water vapour,
which is the principal source of odd hydrogens and, particu-
larly, of atomic hydrogen (e.g. Hartogh et al., 2010; Sonne-
mann et al., 2008; and references therein). Our current analy-
sis used the run for year 2009 (the choice of this year does not
affect our conclusions, because calculations for other years
show similar semi-annual variations), which was published
and described in a number of studies (Grygalashvyly et al.,

2014, Sect. 4; Sonnemann et al., 2015). This run is based on
the dynamics and temperature of the LIMA (Leibniz Insti-
tute Middle Atmosphere) model for the so-called “realistic
case”, in which carbon dioxide, ozone, and Lyman-α flux are
taken from observations, and the horizontal winds and tem-
perature of ECMWF (European Centre for Medium-Range
Weather Forecasts) are assimilated below ∼ 35 km (Berger,
2008; Lübken et al., 2009, 2013).

Here we assume that the structures in the longitudinal
direction are equivalent to local time (LT) behaviour, with
24:00 LT related to midnight at 0◦ longitude. The local
times of successive longitudes are used to analyse our cal-
culations. Hence, in the following figures related to the
model results, longitude is used as the so-called “pseudo
time”. The night-time averaged values account for the pe-
riod from 21:45 to 02:15 LT. For the purposes of our discus-
sion, we use “pressure-altitude” (or in other words “pseudo-
altitude”) Z∗ = −H ln(P/P0), where P represents pressure,
P0= 1013 mbar is the surface pressure, and H = 7 km is the
scale height.

3 Results and discussion

Figure 1a illustrates the nightly mean monthly averaged val-
ues of the observed annual variability of intensity at 43◦ N
(red line) and the modelled annual variability of volume
emission at the peak of the OH∗ layer at 43.75◦ N (black
line), both for transition OH∗v=6→OH∗v=2. The error bar
shows monthly SD, because we display monthly mean val-
ues, and SDs commonly exceed the errors of measurements.
By the observations as well as by modelling, we can clearly
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Figure 1. Observed at 43◦ N (red line) and modelled at 43.75◦ N (black line), annual variability of intensity and volume emission (a),
temperature (b), atomic oxygen concentration (c), and height at the peak of the OH∗v=6 layer.

see semi-annual variations of emissions with peaks in win-
ter and summer. Note that the observed intensity is directly
proportional to the vertical integral of the volume emissions;
hence, they reveal similar variations and dependencies on
surrounding conditions near the peak of the excited hydroxyl
layer.

Grygalashvyly et al. (2014), Sonnemann et al. (2015), and
Grygalashvyly (2015) have derived and confirmed through
modelling that the concentration of excited hydroxyl (hence,
volume emission and intensity) at peak is directly propor-
tional to the product of the surrounding pressure (hence, it
depends on altitude), atomic oxygen number density, and
the negative power of temperature (Eq. A2 in the appendix).
Thus, in order to infer the reasons for this semi-annual vari-
ation, one should consider three drivers of OH∗ variability:
temperature, atomic oxygen concentration, and height of the
layer.

Figure 1b shows the monthly mean nightly averaged val-
ues of the observed annual variability of temperature at 43◦ N
(red line) and the modelled annual variability of temperature
at the OH∗v=6 peak at 43.75◦ N (black line). Both the observa-
tions and the modelling show minima in summer and max-
ima in winter. Hence, the temperature decline can be one of
the reasons for the summer intensity (and volume emission)
peak.

Figure 1c and d depicts modelled monthly mean nightly
averaged values of atomic oxygen at OH∗v=6 peak and
the height of the excited hydroxyl peak, respectively, at

43.75◦ N. The modelling shows the peaks of atomic oxy-
gen concentration in July and December–January, with the
largest values in winter. The variation of height through the
year occurs from∼ 90 to 94 km. This is an essential variabil-
ity and provides input to the variability of the concentration
of the surrounding air.

In order to study the morphology of this semi-annual vari-
ation and assess the impacts of temperature, atomic oxy-
gen concentration, and height (concentration of air) vari-
ability, we calculate 1-month sliding averaged values based
on the model results. Figure 2 illustrates the modelled an-
nual variability at the OH∗v=6 peak: (a) volume emission
(OH∗v=6→OH∗v=2), (b) temperature, (c) atomic oxygen con-
centration, and (d) height of the peak.

The summer maximum of volume emission (Fig. 2a)
shows the strongest values in July and is extended from∼ 30
to ∼ 50◦ N. The summer maximum is stronger than that in
winter. The winter maximum has its strongest values in Jan-
uary and a positive gradient into the winter pole direction; at
latitudes 30–50◦ N, it represents the part of the annual varia-
tion at high latitudes that occurs because of the annual varia-
tion in general mean circulation and fluxes of atomic oxy-
gen which correspond to this variability (Liu et al., 2008;
Marsh et al., 2006). Similar behaviour of the emissions for
transition OH∗v=8→OH∗v=3 was captured by WINDII (Wind
Imaging Interferometer) and modelled by the Thermosphere-
Ionosphere-Mesosphere Electrodynamics general circulation
model at 84–88 km (Liu et al., 2008; Figs. 5 and 6).
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Figure 2. Nightly mean 1-month sliding average volume emission (a), temperature (b), atomic oxygen at peak of OH∗v=6 (c), and height of
peak of OH∗v=6.

The temperature (Fig. 2b) shows a clear annual varia-
tion from the middle to the high latitudes, with a minimum
∼ 150 K at middle latitudes in July. The summer minimum at
the middle latitudes is the echo of the one at high latitudes.
The atomic oxygen concentrations (Fig. 2c) reveal the annual
cycle. The concentrations have a maximum in winter and a
minimum in summer at high and middle latitudes, as has al-
ready been observed (Smith et al., 2010). However, in the
region from∼ 30 to∼ 50◦ N in summer, atomic oxygen con-
centrations show one additional peak in June–July. Forma-
tion of this summer peak can be explained by the transformed
Eulerian mean (TEM) circulation (Limpasuvan et al., 2012;
Fig. 7; Limpasuvan et al., 2016; Fig. 5), which brings into
the summer hemisphere the air reached by atomic oxygen
from the region of its production at high latitudes above 100
to ∼ 90 km at ∼ 30–50◦ N. The peak altitude of the OH∗v=6
peak (Fig. 2d) shows complex annual variability. There is a
secondary maximum OH∗ peak at ∼ 30–50◦ N in summer.

In order to assess the input into annual variability from
different sources, we calculate relative to annually averaged
variations of volume emissions due to atomic oxygen, tem-

perature, and air density:

RD′O = 100% ·
V ′O

V
= 100% ·

[O]′

[O]
,

RD′T = 100% ·
V ′T

V
= 100% · −2.4

T ′

T
,

RD′M = 100% ·
V ′M

V
= 100% ·

[M]′

[M]
, (2)

where overbar denotes annually averaged values, and prime
denotes difference of actual (modelled or observed) values
from annually averaged values (in our case this is the dif-
ference between nightly mean 1-month sliding averaged val-
ues (Fig. 2) and nightly mean annually averaged values). The
derivation of these parameters is presented in the appendix.
A similar approach can be useful for analysing emission vari-
ations due to GWs, PWs, and tides.

Figure 3a shows relative variations of emissions due to im-
pacts of atomic oxygen (black line), temperature (red line),
and air density (green line) at 43.75◦ N. The strongest emis-
sion variation occurs because of changes in atomic oxygen
concentration: the amplitude of its relative deviation amounts
to∼ 50 %. The amplitudes of relative deviations of emissions
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Figure 3. (a) Relative to annually averaged variations of volume
emission (Eq. 2) due to atomic oxygen (black line), temperature (red
line), and height (green line) at 43.75◦ N. (b) Relative variations
of volume emissions due to second momentum [O]′M ′

[O]M
(blue line),

T ′M ′

TM
(cyan line), and [O]′T ′

[O]T
(magenta line) at 43.75◦ N.

due to temperature and air density amount to ∼ 15 % and
∼ 20 %, respectively. The atomic oxygen variation gives the
most essential input into the winter maximum of emission
(black line). Because of the downward transport of atomic
oxygen in winter, the volume emission rises by ∼ 50 % of
annual average. The summer maximum is determined by the
superposition of all three factors. After the spring reduction
of emissions due to the decline of atomic oxygen concen-
tration (∼−40 % of annually averaged values), the emis-
sions rise again to approximately the annual average values
in June–July. This is synchronised with the growth of volume
emissions by ∼ 20 % over the annual average values due to
summer temperature declines (red line) and with the growth
of volume emissions by ∼ 15 % over the annual average due
to the decline of peak altitude in April–September and the
corresponding rise of air density (green line).

Figure 3b illustrates relative variations of emissions due
to second momenta (Eq. A7 in the appendix). The second
momenta do not provide essential input to annual variation.
The strongest among them, [O]′M ′

[O]M
(blue line), gives emission

variability with an amplitude of ∼ 6 % of annually averaged
values.

In the context of our short paper, the ultimate question re-
garding the role of tides and GWs on semi-annual variations
of OH∗ emissions at middle latitudes has not been answered.
Undoubtedly, the simultaneous analysis of observations of
excited hydroxyl emissions from several stations is desirable
to explore this question.

4 Summary and conclusions

Based on observations and numerical simulation, we con-
firmed the existence of a semi-annual cycle of excited hy-
droxyl emission at middle latitudes with maxima in sum-
mer (June–July) and winter (December–January). The an-
nual variation in general mean circulation and atomic oxygen
concentration corresponding to the excited hydroxyl emis-
sion cycle was found to be the leading cause of the winter
maximum of this cycle, whereas the summer maximum rep-
resents the superposition of three different processes: atomic
oxygen meridional transport due to residual circulation from
the summer pole to the Equator; temperature decline, which
represents the rest of the mesopause cooling at summer high
latitudes; and air concentration growth at the peak of the ex-
cited hydroxyl emission layer due to hydroxyl layer descent
at middle latitudes in April–September.
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Appendix A

To obtain the derivation of Eq. (2), we start with a sim-
plified equation for excited hydroxyl concentration. Taking
into account that the ozone is in photochemical equilibrium
in the vicinity of the [OHv] layer and above during night-
time (Kulikov et al., 2018a, 2019; Belikovich et al., 2018a);
utilising the equation for ozone balance during night-time
(a5 [O3] [O]+ a1 [H][O3]= a4 [O][O2] [M]), where a4 and
a5 are the coefficients for the corresponding reactions; omit-
ting the reaction of atomic oxygen with ozone as relatively
slow (Smith et al., 2008); substituting the reduced ozone bal-
ance equation for the excited hydroxyl balance equation (first
term in the numerator of Eq. 1); assuming that the most effec-
tive production of excited hydroxyl occurs due to the reaction
of ozone with atomic hydrogen and that the most effective
losses are due to quenching with molecular oxygen; we ob-
tain from Eq. (1) a simplified expression in which excited hy-
droxyl concentration is represented in terms of atomic oxy-
gen concentration, temperature (in a4), and concentration of
the surrounding air:

[OHv]≈ µva4 [O][M] . (A1)

Here µv =
ςv+

∑v′=9
v′=v+1µv′Bv′v∑v′′=v−1
v′′=0 Bvv′′

, (ςv>9 = 0) represents the

coefficients representing the arithmetic combination of
branching ratios ςv and quenching coefficients Bv′v . More
comprehensive derivations of Eq. (A1) can be found in
a number of papers (Grygalashvyly et al., 2014; Gry-
galashvyly, 2015; Grygalashvyly and Sonnemann, 2020). Al-
though the accuracy of the Eq. (A1) estimate is insufficient
for model calculations, it is useful for obtaining information
about impacts and for assessing variabilities.

By multiplying Eq. (A1) by the Einstein coefficient Evv′′
for a given transition, writing the reaction rate explicitly
a4 = 6×10−34(300/T )2.4 (Burkholder et al., 2015), and col-
lecting all constants in χvv′′ , we obtain an expression for vol-
ume emission in terms of atomic oxygen concentration, tem-
perature, and air number density:

V ≈ χvv′′T
−2.4 [O][M] , (A2)

where χvv′′ = µvEvv′′ · 6× 10−34
· 3002.4.

Next, we apply Reynolds decomposition by averaged parts
and variable parts to the temperature, atomic oxygen concen-
tration, and concentration of air in Eq. (A2):

V ≈ χvv′′
(
T + T ′

)−2.4 ([O]+ [O]′
)(

[M]+ [M]′
)
, (A3)

where T , [O], and [M] are average parts, and T ′, [O]′, and
[M]′ are the corresponding varying parts.

After decomposing the term with temperature in the Taylor
expansion and cross-multiplying all terms of Eq. (A3), we

obtain

V ≈ χvv′′T
−2.4[O] · [M]+χvv′′T

−2.4[O][M]′

+χvv′′T
−2.4[O]′[M]− 2.4χvv′′T ′T

−3.4[O] · [M]

+χvv′′T
−2.4[O]′[M]′− 2.4χvv′′T ′T

−3.4[O][M]′

− 2.4χvv′′T ′T
−3.4[O]′[M]− 2.4χvv′′T ′T

−3.4[O]′[M]′. (A4)

The volume emission for a given transition can be repre-
sented as follows:

V ≈ V +V ′M +V
′

O+V
′

T +V
′′

OM +V
′′

TM +V
′′

TO

+ higher momenta, (A5)

where V = χvv′′T
−2.4[O] · [M], V ′M = χvv′′T

−2.4[O][M]′,

V ′O = χvv′′T
−2.4[O]′[M], V ′T =−2.4χvv′′T ′T

−3.4[O] · [M],

V ′′OM = χvv′′T
−2.4[O]′[M]′, V ′′TM =−2.4χvv′′T ′T

−3.4

[O][M]′, and V ′′TO =−2.4χvv′′T ′T
−3.4[O]′[M].

Hence, relative deviations (RDs) of emissions due to vari-
ations in atomic oxygen, temperature, and concentration of
air are

RD′O = 100% ·
V ′O

V
= 100% ·

[O]′

[O]
,

RD′T = 100% ·
V ′T

V
= 100% · −2.4

T ′

T
,

RD′M = 100% ·
V ′M

V
= 100% ·

[M]′

[M]
. (A6)

The relative deviations (RDs) of emissions due to second
momenta are

RD′′OM = 100% ·
V ′′OM

V
= 100% ·

[O]′[M]′

[O][M]
,

RD′′TM = 100% ·
V ′′TM

V
= 100% · −2.4

T ′[M]′

T [M]
,

RD′′TO = 100% ·
V ′′TO

V
= 100% · −2.4

T ′[O]′

T [O]
. (A7)
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