Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-999-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-38-999-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind
Emilia K. J. Kilpua
CORRESPONDING AUTHOR
Department of Physics, University of Helsinki, Helsinki, Finland
Dominique Fontaine
LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, Institut Polytechnique de Paris, PSL Research University, Palaiseau, France
Simon W. Good
Department of Physics, University of Helsinki, Helsinki, Finland
Matti Ala-Lahti
Department of Physics, University of Helsinki, Helsinki, Finland
Adnane Osmane
Department of Physics, University of Helsinki, Helsinki, Finland
Erika Palmerio
Department of Physics, University of Helsinki, Helsinki, Finland
Space Sciences Laboratory, University of California – Berkeley,
Berkeley, CA, USA
Emiliya Yordanova
Swedish Institute of Space Physics, Uppsala, Sweden
Clement Moissard
LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, Institut Polytechnique de Paris, PSL Research University, Palaiseau, France
Lina Z. Hadid
LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris-Saclay, Observatoire de Paris, Institut Polytechnique de Paris, PSL Research University, Palaiseau, France
Swedish Institute of Space Physics, Uppsala, Sweden
ESTEC, European Space Agency, Noordwijk, the Netherlands
Miho Janvier
Institut d'Astrophysique Spatiale, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
Related authors
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Matti M. Ala-Lahti, Emilia K. J. Kilpua, Andrew P. Dimmock, Adnane Osmane, Tuija Pulkkinen, and Jan Souček
Ann. Geophys., 36, 793–808, https://doi.org/10.5194/angeo-36-793-2018, https://doi.org/10.5194/angeo-36-793-2018, 2018
Short summary
Short summary
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME) to deepen our understanding of these geo-effective plasma environments. The results imply that mirror modes are common structures in ICME sheaths and occur almost exclusively as dip-like structures and in mirror stable stable plasma.
Erika Palmerio, Emilia K. J. Kilpua, and Neel P. Savani
Ann. Geophys., 34, 313–322, https://doi.org/10.5194/angeo-34-313-2016, https://doi.org/10.5194/angeo-34-313-2016, 2016
Short summary
Short summary
Coronal Mass Ejections (CMEs) are giant clouds of plasma and magnetic field that erupt from the Sun and travel though the solar wind. They can cause interplanetary shocks in the vicinity of Earth. We show in our paper that the region that follows CME-driven shocks, known as sheath region, can obtain a planar configuration of the magnetic field lines (planar magnetic structure, PMS) due to the compression resulting from the shock itself or from the draping of the magnetic field ahead of the CME.
M. Myllys, E. Kilpua, and T. Pulkkinen
Ann. Geophys., 33, 845–855, https://doi.org/10.5194/angeo-33-845-2015, https://doi.org/10.5194/angeo-33-845-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, D. Fontaine, and L. Turc
Ann. Geophys., 31, 1559–1567, https://doi.org/10.5194/angeo-31-1559-2013, https://doi.org/10.5194/angeo-31-1559-2013, 2013
E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez
Ann. Geophys., 31, 1251–1265, https://doi.org/10.5194/angeo-31-1251-2013, https://doi.org/10.5194/angeo-31-1251-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
K. Andreeova, E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, A. Isavnin, and R. Vainio
Ann. Geophys., 31, 555–562, https://doi.org/10.5194/angeo-31-555-2013, https://doi.org/10.5194/angeo-31-555-2013, 2013
Emilia K. J. Kilpua, Simon Good, Matti Ala-Lahti, Adnane Osmane, and Venla Koikkalainen
Ann. Geophys., 42, 163–177, https://doi.org/10.5194/angeo-42-163-2024, https://doi.org/10.5194/angeo-42-163-2024, 2024
Short summary
Short summary
The solar wind is organised into slow and fast streams, interaction regions, and transient structures originating from solar eruptions. Their internal characteristics are not well understood. A more comprehensive understanding of such features can give insight itno physical processes governing their formation and evolution. Using tools from information theory, we find that the solar wind shows universal turbulent properties on smaller scales, while on larger scales, clear differences arise.
Sanni Hoilijoki, Emilia Kilpua, Adnane Osmane, Lucile Turc, Mikko Savola, Veera Lipsanen, Harriet George, and Milla Kalliokoski
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-3, https://doi.org/10.5194/angeo-2024-3, 2024
Preprint under review for ANGEO
Short summary
Short summary
Structures originating from the Sun, such as coronal mass ejections and high-speed streams, may impact the Earth's magnetosphere differently. The occurrence rate of these structures depends on the phase solar cycle. We use mutual information to study the change in the statistical dependence between solar wind and inner magnetosphere. We find that the non-linearity between solar wind and inner magnetosphere varies over the solar cycle and during different solar wind drivers.
Adnane Osmane, Mikko Savola, Emilia Kilpua, Hannu Koskinen, Joseph E. Borovsky, and Milla Kalliokoski
Ann. Geophys., 40, 37–53, https://doi.org/10.5194/angeo-40-37-2022, https://doi.org/10.5194/angeo-40-37-2022, 2022
Short summary
Short summary
It has long been known that particles get accelerated close to the speed of light in the near-Earth space environment. Research in the last decades has also clarified what processes and waves are responsible for the acceleration of particles. However, it is difficult to quantify the scale of the impact of various processes competing with one another. In this study we present a methodology to quantify the impact waves can have on energetic particles.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Andrei Runov, Maxime Grandin, Minna Palmroth, Markus Battarbee, Urs Ganse, Heli Hietala, Sanni Hoilijoki, Emilia Kilpua, Yann Pfau-Kempf, Sergio Toledo-Redondo, Lucile Turc, and Drew Turner
Ann. Geophys., 39, 599–612, https://doi.org/10.5194/angeo-39-599-2021, https://doi.org/10.5194/angeo-39-599-2021, 2021
Short summary
Short summary
In collisionless systems like space plasma, particle velocity distributions contain fingerprints of ongoing physical processes. However, it is challenging to decode this information from observations. We used hybrid-Vlasov simulations to obtain ion velocity distribution functions at different locations and at different stages of the Earth's magnetosphere dynamics. The obtained distributions provide valuable examples that may be directly compared with observations by satellites in space.
Minna Palmroth, Savvas Raptis, Jonas Suni, Tomas Karlsson, Lucile Turc, Andreas Johlander, Urs Ganse, Yann Pfau-Kempf, Xochitl Blanco-Cano, Mojtaba Akhavan-Tafti, Markus Battarbee, Maxime Dubart, Maxime Grandin, Vertti Tarvus, and Adnane Osmane
Ann. Geophys., 39, 289–308, https://doi.org/10.5194/angeo-39-289-2021, https://doi.org/10.5194/angeo-39-289-2021, 2021
Short summary
Short summary
Magnetosheath jets are high-velocity features within the Earth's turbulent magnetosheath, separating the Earth's magnetic domain from the solar wind. The characteristics of the jets are difficult to assess statistically as a function of their lifetime because normally spacecraft observe them only at one position within the magnetosheath. This study first confirms the accuracy of the model used, Vlasiator, by comparing it to MMS spacecraft, and then carries out the first jet lifetime statistics.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Harriet George, Emilia Kilpua, Adnane Osmane, Timo Asikainen, Milla M. H. Kalliokoski, Craig J. Rodger, Stepan Dubyagin, and Minna Palmroth
Ann. Geophys., 38, 931–951, https://doi.org/10.5194/angeo-38-931-2020, https://doi.org/10.5194/angeo-38-931-2020, 2020
Short summary
Short summary
We compared trapped outer radiation belt electron fluxes to high-latitude precipitating electron fluxes during two interplanetary coronal mass ejections (ICMEs) with opposite magnetic cloud rotation. The electron response had many similarities and differences between the two events, indicating that different acceleration mechanisms acted. Van Allen Probe data were used for trapped electron flux measurements, and Polar Operational Environmental Satellites were used for precipitating flux data.
Milla M. H. Kalliokoski, Emilia K. J. Kilpua, Adnane Osmane, Drew L. Turner, Allison N. Jaynes, Lucile Turc, Harriet George, and Minna Palmroth
Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, https://doi.org/10.5194/angeo-38-683-2020, 2020
Short summary
Short summary
We present a comprehensive statistical study of the response of the Earth's space environment in sheath regions prior to interplanetary coronal mass ejections. The inner magnetospheric wave activity is enhanced in sheath regions, and the sheaths cause significant changes to the outer radiation belt electron fluxes over short timescales. We also show that non-geoeffective sheaths can result in a significant response.
Emilia Kilpua, Liisa Juusola, Maxime Grandin, Antti Kero, Stepan Dubyagin, Noora Partamies, Adnane Osmane, Harriet George, Milla Kalliokoski, Tero Raita, Timo Asikainen, and Minna Palmroth
Ann. Geophys., 38, 557–574, https://doi.org/10.5194/angeo-38-557-2020, https://doi.org/10.5194/angeo-38-557-2020, 2020
Short summary
Short summary
Coronal mass ejection sheaths and ejecta are key drivers of significant space weather storms, and they cause dramatic changes in radiation belt electron fluxes. Differences in precipitation of high-energy electrons from the belts to the upper atmosphere are thus expected. We investigate here differences in sheath- and ejecta-induced precipitation using the Finnish riometer (relative ionospheric opacity meter) chain.
Gautier Nguyen, Nicolas Aunai, Bayane Michotte de Welle, Alexis Jeandet, and Dominique Fontaine
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2019-149, https://doi.org/10.5194/angeo-2019-149, 2019
Revised manuscript not accepted
Short summary
Short summary
The near-Earth environment can be divided into three main regions: the magnetosphere, the magnetosheath and the solar wind. The boundaries between the three regions being called the magnetopause and the bow shock.
The manual detection of these boundaries in the data of spacecraft orbiting the Earth is ambiguous and time consuming.
We elaborated an automatic detection method of the two bondaries. Which provides a considerable gain of time in the analysis of spacraft in-situ data.
Maxime Grandin, Markus Battarbee, Adnane Osmane, Urs Ganse, Yann Pfau-Kempf, Lucile Turc, Thiago Brito, Tuomas Koskela, Maxime Dubart, and Minna Palmroth
Ann. Geophys., 37, 791–806, https://doi.org/10.5194/angeo-37-791-2019, https://doi.org/10.5194/angeo-37-791-2019, 2019
Short summary
Short summary
When the terrestrial magnetic field is disturbed, particles from the near-Earth space can precipitate into the upper atmosphere. This work presents, for the first time, numerical simulations of proton precipitation in the energy range associated with the production of aurora (∼1–30 keV) using a global kinetic model of the near-Earth space: Vlasiator. We find that nightside proton precipitation can be regulated by the transition region between stretched and dipolar geomagnetic field lines.
Antti Lakka, Tuija I. Pulkkinen, Andrew P. Dimmock, Emilia Kilpua, Matti Ala-Lahti, Ilja Honkonen, Minna Palmroth, and Osku Raukunen
Ann. Geophys., 37, 561–579, https://doi.org/10.5194/angeo-37-561-2019, https://doi.org/10.5194/angeo-37-561-2019, 2019
Short summary
Short summary
We study how the Earth's space environment responds to two different amplitude interplanetary coronal mass ejection (ICME) events that occurred in 2012 and 2014 by using the GUMICS-4 global MHD model. We examine local and large-scale dynamics of the Earth's space environment and compare simulation results to in situ data. It is shown that during moderate driving simulation agrees well with the measurements; however, GMHD results should be interpreted cautiously during strong driving.
Liisa Juusola, Sanni Hoilijoki, Yann Pfau-Kempf, Urs Ganse, Riku Jarvinen, Markus Battarbee, Emilia Kilpua, Lucile Turc, and Minna Palmroth
Ann. Geophys., 36, 1183–1199, https://doi.org/10.5194/angeo-36-1183-2018, https://doi.org/10.5194/angeo-36-1183-2018, 2018
Short summary
Short summary
The solar wind interacts with the Earth’s magnetic field, forming a magnetosphere. On the night side solar wind stretches the magnetosphere into a long tail. A process called magnetic reconnection opens the magnetic field lines and reconnects them, accelerating particles to high energies. We study this in the magnetotail using a numerical simulation model of the Earth’s magnetosphere. We study the motion of the points where field lines reconnect and the fast flows driven by this process.
Xochitl Blanco-Cano, Markus Battarbee, Lucile Turc, Andrew P. Dimmock, Emilia K. J. Kilpua, Sanni Hoilijoki, Urs Ganse, David G. Sibeck, Paul A. Cassak, Robert C. Fear, Riku Jarvinen, Liisa Juusola, Yann Pfau-Kempf, Rami Vainio, and Minna Palmroth
Ann. Geophys., 36, 1081–1097, https://doi.org/10.5194/angeo-36-1081-2018, https://doi.org/10.5194/angeo-36-1081-2018, 2018
Short summary
Short summary
We use the Vlasiator code to study the characteristics of transient structures that exist in the Earth's foreshock, i.e. upstream of the bow shock. The structures are cavitons and spontaneous hot flow anomalies (SHFAs). These transients can interact with the bow shock. We study the changes the shock suffers via this interaction. We also investigate ion distributions associated with the cavitons and SHFAs. A very important result is that the arrival of multiple SHFAs results in shock erosion.
Matti M. Ala-Lahti, Emilia K. J. Kilpua, Andrew P. Dimmock, Adnane Osmane, Tuija Pulkkinen, and Jan Souček
Ann. Geophys., 36, 793–808, https://doi.org/10.5194/angeo-36-793-2018, https://doi.org/10.5194/angeo-36-793-2018, 2018
Short summary
Short summary
We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME) to deepen our understanding of these geo-effective plasma environments. The results imply that mirror modes are common structures in ICME sheaths and occur almost exclusively as dip-like structures and in mirror stable stable plasma.
Víctor Muñoz, Macarena Domínguez, Juan Alejandro Valdivia, Simon Good, Giuseppina Nigro, and Vincenzo Carbone
Nonlin. Processes Geophys., 25, 207–216, https://doi.org/10.5194/npg-25-207-2018, https://doi.org/10.5194/npg-25-207-2018, 2018
Short summary
Short summary
Fractals are self-similar objects (which look the same at all scales), whose dimensions can be noninteger. They are mathematical concepts, useful to describe various physical systems, as the fractal dimension is a measure of their complexity. In this paper we study how these concepts can be applied to some problems in space plasmas, such as the activity of the Earth's magnetosphere, simulations of plasma turbulence, or identification of magnetic structures ejected from the Sun.
Erika Palmerio, Emilia K. J. Kilpua, and Neel P. Savani
Ann. Geophys., 34, 313–322, https://doi.org/10.5194/angeo-34-313-2016, https://doi.org/10.5194/angeo-34-313-2016, 2016
Short summary
Short summary
Coronal Mass Ejections (CMEs) are giant clouds of plasma and magnetic field that erupt from the Sun and travel though the solar wind. They can cause interplanetary shocks in the vicinity of Earth. We show in our paper that the region that follows CME-driven shocks, known as sheath region, can obtain a planar configuration of the magnetic field lines (planar magnetic structure, PMS) due to the compression resulting from the shock itself or from the draping of the magnetic field ahead of the CME.
M. Myllys, E. Kilpua, and T. Pulkkinen
Ann. Geophys., 33, 845–855, https://doi.org/10.5194/angeo-33-845-2015, https://doi.org/10.5194/angeo-33-845-2015, 2015
K. Andréeová, L. Juusola, E. K. J. Kilpua, and H. E. J. Koskinen
Ann. Geophys., 32, 1293–1302, https://doi.org/10.5194/angeo-32-1293-2014, https://doi.org/10.5194/angeo-32-1293-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 1247–1261, https://doi.org/10.5194/angeo-32-1247-2014, https://doi.org/10.5194/angeo-32-1247-2014, 2014
L. Turc, D. Fontaine, P. Savoini, and E. K. J. Kilpua
Ann. Geophys., 32, 157–173, https://doi.org/10.5194/angeo-32-157-2014, https://doi.org/10.5194/angeo-32-157-2014, 2014
E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, D. Fontaine, and L. Turc
Ann. Geophys., 31, 1559–1567, https://doi.org/10.5194/angeo-31-1559-2013, https://doi.org/10.5194/angeo-31-1559-2013, 2013
E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez
Ann. Geophys., 31, 1251–1265, https://doi.org/10.5194/angeo-31-1251-2013, https://doi.org/10.5194/angeo-31-1251-2013, 2013
L. Turc, D. Fontaine, P. Savoini, H. Hietala, and E. K. J. Kilpua
Ann. Geophys., 31, 1011–1019, https://doi.org/10.5194/angeo-31-1011-2013, https://doi.org/10.5194/angeo-31-1011-2013, 2013
K. Andreeova, E. K. J. Kilpua, H. Hietala, H. E. J. Koskinen, A. Isavnin, and R. Vainio
Ann. Geophys., 31, 555–562, https://doi.org/10.5194/angeo-31-555-2013, https://doi.org/10.5194/angeo-31-555-2013, 2013
Cited articles
Ala-Lahti, M., Kilpua, E. K. J., Souček, J., Pulkkinen, T. I.,
and Dimmock, A. P.: Alfvén Ion Cyclotron Waves in Sheath Regions
Driven by Interplanetary Coronal Mass Ejections, J. Geophys. Res.-Space,
124, 3893–3909, https://doi.org/10.1029/2019JA026579, 2019. a, b
Ala-Lahti, M. M., Kilpua, E. K. J., Dimmock, A. P., Osmane, A., Pulkkinen, T., and Souček, J.: Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection, Ann. Geophys., 36, 793–808, https://doi.org/10.5194/angeo-36-793-2018, 2018. a, b
Alexandrova, O., Lacombe, C., and Mangeney, A.: Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations, Ann. Geophys., 26, 3585–3596, https://doi.org/10.5194/angeo-26-3585-2008, 2008. a
Alexandrova, O., Chen, C. H. K., Sorriso-Valvo, L., Horbury, T. S., and
Bale, S. D.: Solar Wind Turbulence and the Role of Ion Instabilities,
Space Sci. Rev., 178, 101–139, https://doi.org/10.1007/s11214-013-0004-8, 2013. a, b
Alves, L. R., Da Silva, L. A., Souza, V. M., Sibeck, D. G., Jauer,
P. R., Vieira, L. E. A., Walsh, B. M., Silveira, M. V. D., Marchezi,
J. P., Rockenbach, M., Lago, A. D., Mendes, O., Tsurutani, B. T.,
Koga, D., Kanekal, S. G., Baker, D. N., Wygant, J. R., and
Kletzing, C. A.: Outer radiation belt dropout dynamics following the
arrival of two interplanetary coronal mass ejections, Geophys. Res. Lett.,
43, 978–987, https://doi.org/10.1002/2015GL067066, 2016. a
Bale, S. D., Balikhin, M. A., Horbury, T. S., Krasnoselskikh, V. V.,
Kucharek, H., Möbius, E., Walker, S. N., Balogh, A., Burgess,
D., Lembège, B., Lucek, E. A., Scholer, M., Schwartz, S. J.,
and Thomsen, M. F.: Quasi-perpendicular Shock Structure and Processes,
Space Sci. Rev., 118, 161–203, https://doi.org/10.1007/s11214-005-3827-0,
2005a. a
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S., and Reme,
H.: Measurement of the Electric Fluctuation Spectrum of Magnetohydrodynamic
Turbulence, Phys. Rev. Lett., 94, 215002,
https://doi.org/10.1103/PhysRevLett.94.215002, 2005b. a
Bavassano, B., Dobrowolny, M., Mariani, F., and Ness, N. F.: Radial
evolution of power spectra of interplantary Alfvénic turbulence, J.
Geophys. Res.-Space, 87, 3617–3622, https://doi.org/10.1029/JA087iA05p03617, 1982. a, b, c
Borovsky, J. E.: The velocity and magnetic field fluctuations of the solar
wind at 1 AU: Statistical analysis of Fourier spectra and correlations with
plasma properties, J. Geophys. Res.-Space, 117, A05104,
https://doi.org/10.1029/2011JA017499, 2012. a, b
Bruno, R.: Intermittency in Solar Wind Turbulence From Fluid to Kinetic
Scales, Earth Space Sci., 6, 656–672, https://doi.org/10.1029/2018EA000535, 2019. a, b, c, d
Bruno, R. and Carbone, V.: The Solar Wind as a Turbulence Laboratory,
Living Rev. Sol. Phys., 10, 2, https://doi.org/10.12942/lrsp-2013-2, 2013. a, b, c
Bruno, R., Telloni, D., DeIure, D., and Pietropaolo, E.: Solar wind
magnetic field background spectrum from fluid to kinetic scales, Mon. Not.
R. Astron. Soc., 472, 1052–1059, https://doi.org/10.1093/mnras/stx2008, 2017. a, b
Bruno, R., Telloni, D., Sorriso-Valvo, L., Marino, R., De Marco, R.,
and D'Amicis, R.: The low-frequency break observed in the slow solar wind
magnetic spectra, Astron. Astrophys., 627, A96,
https://doi.org/10.1051/0004-6361/201935841, 2019. a
Burgess, D., Lucek, E. A., Scholer, M., Bale, S. D., Balikhin, M. A.,
Balogh, A., Horbury, T. S., Krasnoselskikh, V. V., Kucharek, H.,
Lembège, B., Möbius, E., Schwartz, S. J., Thomsen, M. F., and
Walker, S. N.: Quasi-parallel Shock Structure and Processes, Space Sci.
Rev., 118, 205–222, https://doi.org/10.1007/s11214-005-3832-3, 2005. a
Burlaga, L. F.: Intermittent turbulence in the solar wind, J. Geophys.
Res.-Space, 96, 5847–5851, https://doi.org/10.1029/91JA00087, 1991. a
Carbone, V.: Cascade model for intermittency in fully developed
magnetohydrodynamic turbulence, Phys. Rev. Lett., 71, 1546–1548,
https://doi.org/10.1103/PhysRevLett.71.1546, 1993. a
Coleman, P. J.: Turbulence, Viscosity, and Dissipation in the
Solar-Wind Plasma, Astrophys. J., 153, 371, https://doi.org/10.1086/149674, 1968. a
Echer, E., Gonzalez, W. D., and Tsurutani, B. T.: Interplanetary
conditions leading to superintense geomagnetic storms (Dst nT)
during solar cycle 23, Geophys. Res. Lett., 35, L06S03,
https://doi.org/10.1029/2007GL031755, 2008. a
Feng, H. and Wang, J.: Magnetic-reconnection exhausts in the sheath of
magnetic clouds, Astron. Astrophys., 559, A92,
https://doi.org/10.1051/0004-6361/201322522, 2013. a
Feynman, J. and Ruzmaikin, A.: Distribution of the interplanetary magnetic
field revisited, J. Geophys. Res.-Space, 99, 17645–17652,
https://doi.org/10.1029/94JA01098, 1994. a
Fox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A.,
Howard, R. A., Kasper, J. C., Kinnison, J., Kusterer, M., Lario,
D., Lockwood, M. K., McComas, D. J., Raouafi, N. E., and Szabo, A.:
The Solar Probe Plus Mission: Humanity's First Visit to Our Star, Space
Sci. Rev., 204, 7–48, https://doi.org/10.1007/s11214-015-0211-6, 2016. a
Frisch, U., Sulem, P. L., and Nelkin, M.: A simple dynamical model of
intermittent fully developed turbulence, J. Fluid Mech., 87, 719–736,
https://doi.org/10.1017/S0022112078001846, 1978. a
Gosling, J. T. and McComas, D. J.: Field line draping about fast coronal
mass ejecta – A source of strong out-of-the-ecliptic interplanetary magnetic
fields, Geophys. Res. Lett., 14, 355–358, https://doi.org/10.1029/GL014i004p00355,
1987. a, b, c
Greco, A., Chuychai, P., Matthaeus, W. H., Servidio, S., and Dmitruk,
P.: Intermittent MHD structures and classical discontinuities, Geophys.
Res. Lett., 35, L19111, https://doi.org/10.1029/2008GL035454, 2008. a
Greco, A., Matthaeus, W. H., Perri, S., Osman, K. T., Servidio, S.,
Wan, M., and Dmitruk, P.: Partial Variance of Increments Method in Solar
Wind Observations and Plasma Simulations, Space Sci. Rev., 214, 1,
https://doi.org/10.1007/s11214-017-0435-8, 2018. a
Hietala, H., Kilpua, E. K. J., Turner, D. L., and Angelopoulos, V.:
Depleting effects of ICME-driven sheath regions on the outer electron
radiation belt, Geophys. Res. Lett., 41, 2258–2265,
https://doi.org/10.1002/2014GL059551, 2014. a
Horbury, T. S. and Balogh, A.: Structure function measurements of the intermittent MHD turbulent cascade, Nonlin. Processes Geophys., 4, 185–199, https://doi.org/10.5194/npg-4-185-1997, 1997. a, b, c
Horbury, T. S. and Balogh, A.: Evolution of magnetic field fluctuations in
high-speed solar wind streams: Ulysses and Helios observations, J. Geophys.
Res.-Space, 106, 15929–15940, https://doi.org/10.1029/2000JA000108, 2001. a
Horbury, T. S., Balogh, A., Forsyth, R. J., and Smith, E. J.: ULYSSES
observations of intermittent heliospheric turbulence, Adv. Space Res., 19,
847–850, https://doi.org/10.1016/S0273-1177(97)00290-1, 1997. a
Horbury, T. S., Forman, M. A., and Oughton, S.: Spacecraft observations
of solar wind turbulence: an overview, Plasma Phys. Contr. F., 47,
B703–B717, https://doi.org/10.1088/0741-3335/47/12B/S52, 2005. a
Howes, G. G., Klein, K. G., and TenBarge, J. M.: Validity of the Taylor
Hypothesis for Linear Kinetic Waves in the Weakly Collisional Solar Wind,
Astrophys. J., 789, 106, https://doi.org/10.1088/0004-637X/789/2/106, 2014. a
Huang, S. Y., Hadid, L. Z., Sahraoui, F., Yuan, Z. G., and Deng,
X. H.: On the Existence of the Kolmogorov Inertial Range in the Terrestrial
Magnetosheath Turbulence, Astrophys. J. Lett., 836, L10,
https://doi.org/10.3847/2041-8213/836/1/L10, 2017. a, b, c
Huttunen, K. E. J. and Koskinen, H. E. J.: Importance of post-shock streams and sheath region as drivers of intense magnetospheric storms and high-latitude activity, Ann. Geophys., 22, 1729–1738, https://doi.org/10.5194/angeo-22-1729-2004, 2004. a
Huttunen, K. E. J., Koskinen, H. E. J., and Schwenn, R.: Variability of
magnetospheric storms driven by different solar wind perturbations, J.
Geophys. Res.-Space, 107, 1121, https://doi.org/10.1029/2001JA900171, 2002. a
Iroshnikov, P. S.: Turbulence of a Conducting Fluid in a Strong Magnetic
Field, Soviet Astron., 7, 566–571, 1964. a
Jones, G. H. and Balogh, A.: Context and heliographic dependence of
heliospheric planar magnetic structures, J. Geophys. Res.-Space, 105,
12713–12724, https://doi.org/10.1029/2000JA900003, 2000. a
Kalliokoski, M. M. H., Kilpua, E. K. J., Osmane, A., Turner, D. L., Jaynes, A. N., Turc, L., George, H., and Palmroth, M.: Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: a statistical analysis, Ann. Geophys., 38, 683–701, https://doi.org/10.5194/angeo-38-683-2020, 2020. a
Kataoka, R., Watari, S., Shimada, N., Shimazu, H., and Marubashi, K.:
Downstream structures of interplanetary fast shocks associated with coronal
mass ejections, Geophys. Res. Lett., 32, L12103, https://doi.org/10.1029/2005GL022777,
2005. a, b, c, d
Kilpua, E. K. J., Hietala, H., Koskinen, H. E. J., Fontaine, D., and
Turc, L.: Magnetic field and dynamic pressure ULF fluctuations in
coronal-mass-ejection-driven sheath regions, Ann. Geophys., 31, 1559–1567,
https://doi.org/10.5194/angeo-31-1559-2013, 2013. a, b, c, d
Kilpua, E. K. J., Hietala, H., Turner, D. L., Koskinen, H. E. J.,
Pulkkinen, T. I., Rodriguez, J. V., Reeves, G. D., Claudepierre,
S. G., and Spence, H. E.: Unraveling the drivers of the storm time
radiation belt response, Geophys. Res. Lett., 42, 3076–3084,
https://doi.org/10.1002/2015GL063542, 2015. a
Kilpua, E., Koskinen, H. E. J., and Pulkkinen, T. I.: Coronal mass
ejections and their sheath regions in interplanetary space, Living Rev. Sol.
Phys., 14, 5, https://doi.org/10.1007/s41116-017-0009-6, 2017a. a
Kilpua, E. K. J., Balogh, A., von Steiger, R., and Liu, Y. D.:
Geoeffective Properties of Solar Transients and Stream Interaction Regions,
Space Sci. Rev., 212, 1271–1314, https://doi.org/10.1007/s11214-017-0411-3,
2017b. a
Kilpua, E. K. J., Fontaine, D., Moissard, C., Ala-Lahti, M.,
Palmerio, E., Yordanova, E., Good, S. W., Kalliokoski, M. M. H.,
Lumme, E., Osmane, A., Palmroth, M., and Turc, L.: Solar Wind
Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath
Regions: Variation and Driver Dependence, Space Weather, 17, 1257–1280,
https://doi.org/10.1029/2019SW002217, 2019a. a
Kilpua, E. K. J., Turner, D. L., Jaynes, A. N., Hietala, H.,
Koskinen, H. E. J., Osmane, A., Palmroth, M., Pulkkinen, T. I.,
Vainio, R., Baker, D., and Claudepierre, S. G.: Outer Van Allen
Radiation Belt Response to Interacting Interplanetary Coronal Mass
Ejections, J. Geophys. Res.-Space, 124, 1927–1947,
https://doi.org/10.1029/2018JA026238, 2019b. a, b, c
Kolmogorov, A.: The Local Structure of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds' Numbers, Akademiia Nauk SSSR Doklady, 30,
301–305, 1941. a
Kraichnan, R. H.: Inertial-Range Spectrum of Hydromagnetic Turbulence,
Phys. Fluids, 8, 1385–1387, https://doi.org/10.1063/1.1761412, 1965. a
Krommes, J. A.: Fundamental statistical descriptions of plasma turbulence in
magnetic fields, Phys. Rep., 360, 1–352,
https://doi.org/10.1016/S0370-1573(01)00066-7, 2002. a
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., and Wong,
H. K.: Observational constraints on the dynamics of the interplanetary
magnetic field dissipation range, J. Geophys. Res.-Space, 103, 4775–4788,
https://doi.org/10.1029/97JA03394, 1998. a
Lepping, R. P., Acũna, M. H., Burlaga, L. F., Farrell, W. M.,
Slavin, J. A., Schatten, K. H., Mariani, F., Ness, N. F., Neubauer,
F. M., Whang, Y. C., Byrnes, J. B., Kennon, R. S., Panetta, P. V.,
Scheifele, J., and Worley, E. M.: The Wind Magnetic Field
Investigation, Space Sci. Rev., 71, 207–229, https://doi.org/10.1007/BF00751330,
1995. a
Li, G., Qin, G., Hu, Q., and Miao, B.: Effect of current sheets on the
power spectrum of the solar wind magnetic field using a cell model, Adv. Space Res., 49, 1327–1332, https://doi.org/10.1016/j.asr.2012.02.008, 2012. a, b
Lugaz, N., Farrugia, C. J., Huang, C.-L., and Spence, H. E.: Extreme
geomagnetic disturbances due to shocks within CMEs, Geophys. Res. Lett., 42,
4694–4701, https://doi.org/10.1002/2015GL064530, 2015. a
Marsch, E. and Tu, C. Y.: Non-Gaussian probability distributions of solar wind fluctuations, Ann. Geophys., 12, 1127–1138, https://doi.org/10.1007/s00585-994-1127-8, 1994. a
Marsch, E. and Tu, C.-Y.: Intermittency, non-Gaussian statistics and fractal scaling of MHD fluctuations in the solar wind, Nonlin. Processes Geophys., 4, 101–124, https://doi.org/10.5194/npg-4-101-1997, 1997. a, b
Matthaeus, W. H. and Goldstein, M. L.: Measurement of the rugged
invariants of magnetohydrodynamic turbulence in the solar wind, J. Geophys.
Res.-Space, 87, 6011–6028, https://doi.org/10.1029/JA087iA08p06011, 1982. a
McComas, D. J., Gosling, J. T., Winterhalter, D., and Smith, E. J.:
Interplanetary magnetic field draping about fast coronal mass ejecta in the
outer heliosphere, J. Geophys. Res.-Space, 93, 2519–2526,
https://doi.org/10.1029/JA093iA04p02519, 1988. a
Meneveau, C. and Sreenivasan, K. R.: Simple multifractal cascade model for
fully developed turbulence, Phys. Rev. Lett., 59, 1424–1427,
https://doi.org/10.1103/PhysRevLett.59.1424, 1987. a
Moissard, C., Fontaine, D., and Savoini, P.: A Study of Fluctuations in
Magnetic Cloud-Driven Sheaths, J. Geophys. Res.-Space, 124, 8208–8226,
https://doi.org/10.1029/2019JA026952, 2019. a, b, c
Müller, D., Marsden, R. G., St. Cyr, O. C., and Gilbert, H. R.:
Solar Orbiter. Exploring the Sun-Heliosphere Connection, Sol. Phys., 285,
25–70, https://doi.org/10.1007/s11207-012-0085-7, 2013. a
Nakagawa, T., Nishida, A., and Saito, T.: Planar magnetic structures in
the solar wind, J. Geophys. Res.-Space, 94, 11761–11775,
https://doi.org/10.1029/JA094iA09p11761, 1989. a
NASA: Coordinated Data Analysis Web (CDAWeb), available at: https://cdaweb.sci.gsfc.nasa.gov/index.html/, last access: 18 August 2020. a
Neugebauer, M., Clay, D. R., and Gosling, J. T.: The origins of planar
magnetic structures in the solar wind, J. Geophys. Res.-Space, 98,
9383–9390, https://doi.org/10.1029/93JA00216, 1993. a, b
Nikolaeva, N. S., Yermolaev, Y. I., and Lodkina, I. G.: Dependence of
geomagnetic activity during magnetic storms on the solar wind parameters for
different types of streams, Geomagn. Aeronomy+, 51, 49–65,
https://doi.org/10.1134/S0016793211010099, 2011. a
Ogilvie, K. W. and Desch, M. D.: The wind spacecraft and its early
scientific results, Adv. Space Res., 20, 559–568,
https://doi.org/10.1016/S0273-1177(97)00439-0, 1997. a
Ogilvie, K. W., Chornay, D. J., Fritzenreiter, R. J., Hunsaker, F.,
Keller, J., Lobell, J., Miller, G., Scudder, J. D., Sittler, E. C.,
J., Torbert, R. B., Bodet, D., Needell, G., Lazarus, A. J.,
Steinberg, J. T., Tappan, J. H., Mavretic, A., and Gergin, E.: SWE,
A Comprehensive Plasma Instrument for the Wind Spacecraft, Space Sci. Rev.,
71, 55–77, https://doi.org/10.1007/BF00751326, 1995. a
Osmane, A., Dimmock, A. P., and Pulkkinen, T. I.: Universal properties
of mirror mode turbulence in the Earth's magnetosheath, Geophys. Res. Lett.,
42, 3085–3092, https://doi.org/10.1002/2015GL063771, 2015. a
Pagel, C. and Balogh, A.: A study of magnetic fluctuations and their anomalous scaling in the solar wind: the Ulysses fast-latitude scan, Nonlin. Processes Geophys., 8, 313–330, https://doi.org/10.5194/npg-8-313-2001, 2001. a, b
Pagel, C. and Balogh, A.: Intermittency in the solar wind: A comparison
between solar minimum and maximum using Ulysses data, J. Geophys.
Res.-Space, 107, 1178, https://doi.org/10.1029/2002JA009331, 2002. a, b
Paladin, G. and Vulpiani, A.: Anomalous scaling laws in multifractal
objects, Phys. Rep., 156, 147–225, https://doi.org/10.1016/0370-1573(87)90110-4,
1987. a
Palmerio, E., Kilpua, E. K. J., and Savani, N. P.: Planar magnetic structures in coronal mass ejection-driven sheath regions, Ann. Geophys., 34, 313–322, https://doi.org/10.5194/angeo-34-313-2016, 2016. a, b, c
Pei, Z., He, J., Wang, X., Tu, C., Marsch, E., Wang, L., and Yan,
L.: Influence of intermittency on the anisotropy of magnetic structure
functions of solar wind turbulence, J. Geophys. Res.-Space, 121, 911–924,
https://doi.org/10.1002/2015JA021057, 2016. a
Podesta, J. J.: On the energy cascade rate of solar wind turbulence in high
cross helicity flows, J. Geophys. Res.-Space, 116, A05101,
https://doi.org/10.1029/2010JA016306, 2011. a
Riazantseva, M. O., Rakhmanova, L. S., Zastenker, G. N., Yermolaev,
Y. I., and Lodkina, I. G.: Features of the Spectral Characteristics of
Plasma Fluctuations in Different Large-Scale Streams of the Solar Wind,
Geomagn. Aeronomy+, 59, 127–135, https://doi.org/10.1134/S0016793219020117, 2019. a
Richardson, I. G.: Solar wind stream interaction regions throughout the
heliosphere, Living Rev. Sol. Phys., 15, 1, https://doi.org/10.1007/s41116-017-0011-z,
2018. a
Richardson, I. G. and Cane, H. V.: Near-Earth Interplanetary Coronal
Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of
Properties, Sol. Phys., 264, 189–237, https://doi.org/10.1007/s11207-010-9568-6,
2010. a
Sahraoui, F., Goldstein, M. L., Robert, P., and Khotyaintsev, Y. V.:
Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the
Electron Gyroscale, Phys. Rev. Lett., 102, 231102,
https://doi.org/10.1103/PhysRevLett.102.231102, 2009. a, b, c
Sahraoui, F., Goldstein, M. L., Belmont, G., Canu, P., and Rezeau,
L.: Three Dimensional Anisotropic k Spectra of Turbulence at Subproton
Scales in the Solar Wind, Phys. Rev. Lett., 105, 131101,
https://doi.org/10.1103/PhysRevLett.105.131101, 2010. a
She, Z.-S. and Leveque, E.: Universal scaling laws in fully developed
turbulence, Phys. Rev. Lett., 72, 336–339,
https://doi.org/10.1103/PhysRevLett.72.336, 1994. a
Siscoe, G. and Odstrcil, D.: Ways in which ICME sheaths differ from
magnetosheaths, J. Geophys. Res.-Space, 113, A00B07,
https://doi.org/10.1029/2008JA013142, 2008. a
Siscoe, G., MacNeice, P. J., and Odstrcil, D.: East-west asymmetry in
coronal mass ejection geoeffectiveness, Space Weather, 5, S04002,
https://doi.org/10.1029/2006SW000286, 2007. a
Smith, C. W., Hamilton, K., Vasquez, B. J., and Leamon, R. J.:
Dependence of the Dissipation Range Spectrum of Interplanetary Magnetic
Fluctuationson the Rate of Energy Cascade, Astrophys. J. Lett., 645,
L85–L88, https://doi.org/10.1086/506151, 2006. a, b
Sorriso-Valvo, L., Carbone, V., Giuliani, P., Veltri, P., Bruno, R.,
Antoni, V., and Martines, E.: Intermittency in plasma turbulence,
Planet. Space Sci., 49, 1193–1200, https://doi.org/10.1016/S0032-0633(01)00060-5,
2001. a
Sorriso-Valvo, L., Carbone, V., and Bruno, R.: On the Origin of the
Strong Intermittent Nature of Interplanetary Magnetic Field, Space Sci.
Rev., 121, 49–53, https://doi.org/10.1007/s11214-006-5559-1, 2005. a
Taylor, G. I.: Production and Dissipation of Vorticity in a Turbulent
Fluid, Proc. R. Soc. Lon. Ser.-A, 164, 15–23, https://doi.org/10.1098/rspa.1938.0002,
1938. a
Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S. I., and
Smith, E. J.: Origin of interplanetary southward magnetic fields
responsible for major magnetic storms near solar maximum (1978–1979), J.
Geophys. Res.-Space, 93, 8519–8531, https://doi.org/10.1029/JA093iA08p08519, 1988. a
Tsurutani, B. T., Lakhina, G. S., Sen, A., Hellinger, P., Glassmeier,
K.-H., and Mannucci, A. J.: A Review of Alfvénic Turbulence in
High-Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence, J.
Geophys. Res.-Space, 123, 2458–2492, https://doi.org/10.1002/2017JA024203, 2018. a
Tu, C.-Y., Marsch, E., and Rosenbauer, H.: An extended structure-function model and its application to the analysis of solar wind intermittency properties, Ann. Geophys., 14, 270–285, https://doi.org/10.1007/s00585-996-0270-9, 1996. a, b, c
Turner, D. L., Kilpua, E. K. J., Hietala, H., Claudepierre, S. G.,
O'Brien, T. P., Fennell, J. F., Blake, J. B., Jaynes, A. N.,
Kanekal, S., Baker, D. N., Spence, H. E., Ripoll, J.-F., and
Reeves, G. D.: The Response of Earth's Electron Radiation Belts to
Geomagnetic Storms: Statistics From the Van Allen Probes Era Including
Effects From Different Storm Drivers, J. Geophys. Res.-Space, 124,
1013–1034, https://doi.org/10.1029/2018JA026066, 2019.
a
Verscharen, D., Klein, K. G., and Maruca, B. A.: The multi-scale nature
of the solar wind, Living Rev. Sol. Phys., 16, 5,
https://doi.org/10.1007/s41116-019-0021-0, 2019. a, b
Wawrzaszek, A., Echim, M., Macek, W. M., and Bruno, R.: Evolution of
Intermittency in the Slow and Fast Solar Wind beyond the Ecliptic Plane,
Astrophys. J. Lett., 814, L19, https://doi.org/10.1088/2041-8205/814/2/L19, 2015. a
Yermolaev, Yu. I., Nikolaeva, N. S., Lodkina, I. G., and Yermolaev, M. Yu.: Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177–2186, https://doi.org/10.5194/angeo-28-2177-2010, 2010. a
Yordanova, E., Grzesiak, M., Wernik, A. W., Popielawska, B., and Stasiewicz, K.: Multifractal structure of turbulence in the magnetospheric cusp, Ann. Geophys., 22, 2431–2440, https://doi.org/10.5194/angeo-22-2431-2004, 2004. a, b
Yordanova, E., Vaivads, A., André, M., Buchert, S. C., and
Vörös, Z.: Magnetosheath Plasma Turbulence and Its Spatiotemporal
Evolution as Observed by the Cluster Spacecraft, Phys. Rev. Lett., 100,
205003, https://doi.org/10.1103/PhysRevLett.100.205003, 2008. a
Yordanova, E., Balogh, A., Noullez, A., and von Steiger, R.:
Turbulence and intermittency in the heliospheric magnetic field in fast and
slow solar wind, J. Geophys. Res.-Space, 114, A08101,
https://doi.org/10.1029/2009JA014067, 2009. a
Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Huttunen,
E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thompson, B. J.,
Wu, C.-C., Yashiro, S., and Zhukov, A. N.: Solar and interplanetary
sources of major geomagnetic storms (Dst nT) during 1996–2005, J.
Geophys. Res.-Space, 112, A10102, https://doi.org/10.1029/2007JA012321, 2007. a
Zhou, Z., Zuo, P., Feng, X., Wang, Y., Jiang, C., and Song, X.:
Intermittencies and Local Heating in Magnetic Cloud Boundary Layers, Sol.
Phys., 294, 149, https://doi.org/10.1007/s11207-019-1537-0, 2019. a, b
Short summary
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of interplanetary coronal mass ejections (ICMEs) in the near-Earth solar wind. Our results show that fluctuation properties vary significantly in different parts of the sheath when compared to solar wind ahead. Turbulence in sheaths resembles that of the slow solar wind in the terrestrial magnetosheath, e.g. regarding compressibility and intermittency, and it often lacks Kolmogorov's spectral indices.
This paper studies magnetic field fluctuations in three turbulent sheath regions ahead of...