Articles | Volume 38, issue 5
https://doi.org/10.5194/angeo-38-969-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/angeo-38-969-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The very low-frequency transmitter radio wave anomalies related to the 2010 Ms 7.1 Yushu earthquake observed by the DEMETER satellite and the possible mechanism
Shufan Zhao
CORRESPONDING AUTHOR
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
XuHui Shen
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
Zeren Zhima
National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
Chen Zhou
Electronic Information School, Wuhan University, Wuhan, 430072,
China
Related authors
Xuan Dong, Shufan Zhao, Li Liao, Wei Xu, Ruilin Lin, Xiaojing Sun, Shengyang Huang, Yatong Cui, Jinlei Li, Hengxin Lu, and Xuhui Shen
Atmos. Chem. Phys., 25, 9183–9198, https://doi.org/10.5194/acp-25-9183-2025, https://doi.org/10.5194/acp-25-9183-2025, 2025
Short summary
Short summary
Energetic electron precipitation (EEP) from the magnetosphere into the Earth's atmosphere can significantly alter the electron density in the D-region ionosphere, impacting its reflective properties and the effectiveness of low-frequency radio wave transmission. A comprehensive understanding of the influence of EEP on the D-region ionosphere can enhance predictive models of ionospheric behavior and mitigate the impacts of space weather.
Xuan Dong, Shufan Zhao, Li Liao, Wei Xu, Ruilin Lin, Xiaojing Sun, Shengyang Huang, Yatong Cui, Jinlei Li, Hengxin Lu, and Xuhui Shen
Atmos. Chem. Phys., 25, 9183–9198, https://doi.org/10.5194/acp-25-9183-2025, https://doi.org/10.5194/acp-25-9183-2025, 2025
Short summary
Short summary
Energetic electron precipitation (EEP) from the magnetosphere into the Earth's atmosphere can significantly alter the electron density in the D-region ionosphere, impacting its reflective properties and the effectiveness of low-frequency radio wave transmission. A comprehensive understanding of the influence of EEP on the D-region ionosphere can enhance predictive models of ionospheric behavior and mitigate the impacts of space weather.
Mei Li, Zhuangkai Wang, Chen Zhou, Handong Tan, and Meng Cao
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-94, https://doi.org/10.5194/nhess-2024-94, 2024
Preprint withdrawn
Short summary
Short summary
In order to check the relationship between ground-based electromagnetic anomaly and ionospheric effect before the famous Wenchuan MS 8.0 earthquake, three physical models have been established to simulate the communication process of electromagnetic energy from the Wenchuan hypocenter to the Earth’s surface, via the atmosphere to the ionosphere to cause ionospheric variations.
Qiong Tang, Chen Zhou, Huixin Liu, Yi Liu, Jiaqi Zhao, Zhibin Yu, Zhengyu Zhao, and Xueshang Feng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-534, https://doi.org/10.5194/acp-2022-534, 2022
Preprint withdrawn
Short summary
Short summary
The geomagnetic and solar effect on Es is studied. The negative correlation between Es and geomagnetic activity at mid-latitude is related to the decreased meteor rate during storm period. The increased Es occurrence in high latitude relates to the changing electric field. The positive correlation between Es and solar activity at high latitude is due to the enhanced IMF in solar maximum. The negative correlation in mid and low latitudes relates to the decreased meteor rate during solar activity.
Cited articles
Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch,
B., and Huang, X.: International Reference Ionosphere 2016: From ionospheric
climate to real-time weather predictions, Space Weather, 15, 418–429, 2017.
Budden, K.: The Propagation Of Radio Waves: The Theory Of Radio Waves
Of Low Power In The Ionosphere And Magnetosphere, Cambridge University
Press, Cambridge, United Kingdom, 669 pp., 1985.
Clilverd, M. A., Rodger, C. J., Gamble, R., Meredith, N. P., Parrot, M.,
Berthelier, J. J., and Thomson, N. R.: Ground-based transmitter signals
observed from space: Ducted or nonducted?, J. Geophys. Res.-Atmos., 113, A04211, https://doi.org/10.1029/2007JA012602, 2008.
Cohen, M. B. and Inan, U. S.: Terrestrial VLF transmitter injection into
the magnetosphere, J. Geophys. Res.-Space, 117, https://doi.org/10.1029/2012JA017992, 2012.
Dobrovolsky, I. P., Zubkov, S. I., and Miachkin, V. I.: Estimation of the
size of earthquake preparation zones, Pure Appl. Geophys., 117, 1025–1044,
1979.
Finlay, C. C., Maus, S., Beggan, C. D., Bondar, T. N., Chambodut, A.,
Chernova, T. A., Chulliat, A., Golovkov, V. P., Hamilton, B., Hamoudi, M.,
Holme, R., Hulot, G., Kuang, W., Langlais, B., Lesur, V., Lowes, F. J.,
Luhr, H., Macmillan, S., Mandea, M., McLean, S., Manoj, C., Menvielle, M.,
Michaelis, I., N., O., Rauberg, J., Rother, M., Sabaka, T. J., Tangborn, A.,
L., T.-C., Thebault, E., Thomson, A. W. P., Wardinski, I., Wei, Z., and
Zvereva, T. I.: International Geomagnetic Reference Field: the eleventh
generation, Geophys. J. Int., 183, 1216–1230, 2010.
GFZ German Research Centre for Geosciences: Kp index FTP, available at: ftp://ftp.gfz-potsdam.de/pub/home/obs/kp-ap/wdc/yearly/, last access:
27 August 2020.
Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B.,
and Georgieva, K.: Satellite monitoring of anomalous effects in the
ionosphere probably related to strong earthquakes, Adv. Space
Res., 37, 660–665, 2006.
Gousheva, M., Glavcheva, R., Danov, D., Hristov, P., Kirov, B. B., and
Georgieva, K.: Electric field and ion density anomalies in the mid latitude
ionosphere: Possible connection with earthquakes?, Adv. Space Res.,
42, 206–212, 2008.
Hayakawa, M.: VLF/LF Radio Sounding of Ionospheric Perturbations Associated
with Earthquakes, Sensors, 7, 1141–1158, 2007.
He, Y., Yang, D., Chen, H., Qian, J., Zhu, R., and Parrot, M.: SNR changes
of VLF radio signals detected onboard the DEMETER satellite and their
possible relationship to the Wenchuan earthquake, Science in China Series
D-Earth Sciences, 39, 403–412, 2009,
Inan, U. S., Golkowski, M., Casey, M. K., Moore, R. C., Peter, W. B.,
Kulkarni, P., Kossey, P., Kennedy, E., Meth, S., and Smit, P.:
Subionospheric VLF observations of transmitter-induced precipitation of
inner radiation belt electrons, Geophys. Res. Lett., 34, L02106, https://doi.org/10.1029/2006GL028494, 2007.
Inan, U. S. and Helliwell, R. A.: DE-1 observations of VLF transmitter
signals and wave-particle interactions in the magnetosphere, Geophys. Res.
Lett., 9, 917–920, 1982.
Kong, J., Yao, Y., Zhou, C., Liu, Y., Zhai, C., Wang, Z., and Liu, L.:
Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance
around the time of 2015 Nepal earthquake, J. Geodesy, 92, 1255–1266,
2018.
Kuo, C. L., Huba, J. D., Joyce, G., and Lee, L. C.: Ionosphere plasma
bubbles and density variations induced by pre-earthquake rock currents and
associated surface charges, J. Geophys. Res.-Space, 116, https://doi.org/10.1029/2011JA016628, 2011.
Lehtinen, N. G. and Inan, U. S.: Radiation of ELF/VLF waves by harmonically
varying currents into a stratified ionosphere with application to radiation
by a modulated electrojet, J. Geophys. Res., 113, https://doi.org/10.1029/2007JA012911, 2008.
Lehtinen, N. G. and Inan, U. S.: Full-wave modeling of transionospheric
propagation of VLF waves, Geophys. Res. Lett., 36, https://doi.org/10.1029/2008GL036535, 2009.
Li, Y., Zhang, L., Zhang, K., and Jin, X.: Research on the Atmospheric
Electric Field Abnormality near the Ground Surface before 5, 12 Wenchuan
Earthquake, Plateau and Mountain Meteorology Research, 37, 49–53, 2017.
Liao, L., Zhao, S., and Zhang, X.: Advances in the study of transionospheric
propagation of VLF waves, Chinese Journal of Space Science, 37,
277–283, 2017.
Liu, J. Y., Chen, Y. I., Chen, C. H., Liu, C. Y., Chen, C. Y., Nishihashi,
M., Li, J. Z., Xia, Y. Q., Oyama, K. I., Hattori, K., and Lin, C. H.:
Seismoionospheric GPS total electron content anomalies observed before the
12 May 2008 Mw7.9 Wenchuan earthquake, J. Geophys. Res.-Space, 114, https://doi.org/10.1029/2008JA013698, 2009.
Liu, J. Y., Chen, Y. I., Chuo, Y. J., and Tsai, H. F.: Variations of
ionospheric total electron content during the Chi-Chi earthquake,
Geophys. Res. Lett., 28, 1383–1386, 2001.
Liu, J. Y., Tsai, Y. B., Chen, S. W., Lee, C. P., Chen, Y. C., Yen, H. Y.,
Chang, W. Y., and Liu, C.: Giant ionospheric disturbances excited by the
M9.3 Sumatra earthquake of 26 December 2004, Geophys. Res. Lett., 33, https://doi.org/10.1029/2005GL023963, 2006.
Marshall, R. A., Inan, U. S., and Glukhov, V. S.: Elves and associated
electron density changes due to cloud-to-ground and in-cloud lightning
discharges, J. Geophys. Res.-Space, 115, https://doi.org/10.1029/2009JA014469, 2010.
Maurya, A. K., Venkatesham, K., Tiwari, P., Vijaykumar, K., Singh, R.,
Singh, A. K., and Ramesh, D. S.: The 25 April 2015 Nepal Earthquake:
Investigation of precursor in VLF subionospheric signal, J. Geophys. Res.-Space
121, 10403–10416, 2016.
Molchanov, O., Rozhnoi, A., Solovieva, M., Akentieva, O., Berthelier, J. J., Parrot, M., Lefeuvre, F., Biagi, P. F., Castellana, L., and Hayakawa, M.: Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite, Nat. Hazards Earth Syst. Sci., 6, 745–753, https://doi.org/10.5194/nhess-6-745-2006, 2006.
Namgaladze, A. A., Zolotov, O. V., and Prokhorov, B. E.: Numerical
Simulation of the Variations in the Total Electron Content of the Ionosphere
Observed before the Haiti Earthquake of January 12, 2010, Geomagn.
Aeronomy, 53, 522–528, 2013.
Parrot, M., Benoist, D., Berthelier, J. J., Błęcki, J., Chapuis, Y.,
Colin, F., Elie, F., Fergeau, P., Lagoutte, D., and Lefeuvre, F.: The
magnetic field experiment IMSC and its data processing onboard DEMETER:
Scientific objectives, description and first results, Planet. Space
Sci., 54, 441–455, 2006.
Parrot, M., Sauvaud, J., Berthelier, J., and Lebreton, J.: First in-situ
observations of strong ionospheric perturbations generated by a powerful VLF
ground-based transmitter, Geophys. Res. Lett., 34, https://doi.org/10.1029/2007GL029368, 2007.
Peter, W. B., Chevalier, M. W., and Inan, U. S.: Perturbations of
midlatitude subionospheric VLF signals associated with lower ionospheric
disturbances during major geomagnetic storms, J. Geophys. Res.-Space, 111, https://doi.org/10.1029/2005JA011346, 2006.
Píša, D., Němec, F., Santolík, O., Parrot, M., and
Rycroft, M.: Additional attenuation of natural VLF electromagnetic waves
observed by the DEMETER spacecraft resulting from preseismic activity,
J. Geophys. Res.-Space, 118, 5286–5295, 2013.
Pokhotelov, D., Mitchell, C. N., Spencer, P. S. J., Hairston, M. R., and
Heelis, R. A.: Ionospheric storm time dynamics as seen by GPS tomography and
in situ spacecraft observations, J. Geophys. Res.-Space, 113, https://doi.org/10.1029/2008JA013109, 2008.
Pulinets, S. A.: Physical mechanism of the vertical electric field
generation over active tectonic faults, Adv. Space Res., 44,
767–773, 2009.
Pulinets, S. A., Boyarchuk, K. A., Hegai, V. V., Kim, V. P., and Lomonosov,
A. M.: Quasielectrostatic model of atmosphere-thermosphere-ionosphere
coupling, Adv. Space Res., 26, 1209–1218, 2000.
Shao, X., Eliasson, B., Sharma, A., Milikh, G., and Papadopoulos, K.:
Attenuation of whistler waves through conversion to lower hybrid waves in
the low-altitude ionosphere, J. Geophys. Res.-Space, 117, https://doi.org/10.1029/2011JA017339, 2012.
Shen, X., Zhima, Z., Zhao, S., Qian, G., Ye, Q., and Ruzhin, Y.: VLF radio
wave anomalies associated with the 2010 Ms 7.1 Yushu earthquake, Adv.
Space Res., 59, 2636–2644, 2017.
Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J.
P., Zhu, X. H., Piergiorgio, P., and Dai, J. P.: The state-of-the-art of the
China Seismo-Electromagnetic Satellite mission, Sci China Technol. Sc., 61,
634–642, 2018.
Stangl, G., Boudjada, M. Y., Biagi, P. F., Krauss, S., Maier, A., Schwingenschuh, K., Al-Haddad, E., Parrot, M., and Voller, W.: Investigation of TEC and VLF space measurements associated to L'Aquila (Italy) earthquakes, Nat. Hazards Earth Syst. Sci., 11, 1019–1024, https://doi.org/10.5194/nhess-11-1019-2011, 2011.
Starks, M. J., Quinn, R. A., Ginet, G. P., Albert, J. M., Sales, G. S.,
Reinisch, B. W., and Song, P.: Illumination of the plasmasphere by
terrestrial very low frequency transmitters: Model validation, J. Geophys.
Res.-Space, 113, https://doi.org/10.1029/2008JA013112, 2008.
Tao, X., Bortnik, J., and Friedrich, M.: Variance of transionospheric VLF
wave power absorption, J. Geophys. Res.-Space, 115, https://doi.org/10.1029/2009JA015115, 2010.
University Corporation for Atmospheric Research: COSMIC Data Analysis and Archive Center Home Page, available at: https://cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=ionPrf, last access: 27 August 2020.
World Data Center: Geomagnetic Equatorial Dst index Home Page, available at: http://wdc.kugi.kyoto-u.ac.jp/dst_final/index.html, last access: 27 August 2020.
Xu, T., Hu, Y. L., Wu, J. A., Wu, Z. S., Li, C. B., Xu, Z. W., and Suo, Y.
C.: Anomalous enhancement of electric field derived from ionosonde data
before the great Wenchuan earthquake, Adv. Space Res., 47,
1001–1005, 2011.
Yao, L., Chen, H., and He, Y.: The signal to noise ratio disturbance of
ionospheric VLF radio signal before the 2010 Yushu Ms7.1 earthquake, Acta
Seismol. Sin., 35, 390–399, 2013.
Yeh, K. C. and Liu, C. H.: Theory of Ionospheric Waves, Academic
Press, New York, 464 pp., 1972.
Zhao, B. Q., Wang, M., Yu, T., Wan, W. X., Lei, J. H., Liu, L. B., and Ning,
B. Q.: Is an unusual large enhancement of ionospheric electron density
linked with the 2008 great Wenchuan earthquake?, J. Geophys. Res.-Space, 113, https://doi.org/10.1029/2008JA013613,
2008.
Zhao, S., Liao, L., and Zhang, X.: Trans-ionospheric VLF wave power
absorption of terrestrial VLF signal, Chinese Journal of Geophysics, 60, 3004–3014, 2017.
Zhao, S., Zhang, X., Zhao, Z., Shen, X., and Chen, Z.: Temporal variations
of electromagnetic responses in the ionosphere excited by the NWC
communication station, Chinese Journal of Geophysics-Chinese Edition, 58,
2263–2273, 2015.
Zhao, S., Zhou, C., Shen, X., and Zhima, Z.: Investigation of VLF
transmitter signals in the ionosphere by ZH-1 observations and full-wave
simulation, J. Geophys. Res.-Space, 124, 4697–4709,
2019.
Zhou, C., Liu, Y., Zhao, S. F., Liu, J., Zhang, X. M., Huang, J. P., Shen,
X. H., Ni, B. B., and Zhao, Z. Y.: An electric field penetration model for
seismo-ionospheric research, Adv. Space Res., 60, 2217–2232, 2017.
Zigman, V., Grubor, D., and Sulic, D.: D-region electron density evaluated
from VLF amplitude time delay during X-ray solar flares, J. Atmos. Sol.-Terr.
Phy., 69, 775–792, 2007.
Short summary
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu earthquake by analyzing the signal-to-noise ratio (SNR) and using the full-wave model to illustrate a possible mechanism for how the anomalies occurred. The results show that very low-frequency (VLF) radio wave SNR in the ionosphere decreased before the Yushu earthquake. The full-wave simulation results confirm that electron density variation in the lower ionosphere will affect VLF radio signal SNR.
We use satellite data to analyze precursory anomalies of the western China Ms 7.1 Yushu...
Special issue