Articles | Volume 36, issue 3
https://doi.org/10.5194/angeo-36-867-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-867-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A statistical study of the spatial distribution and source-region size of chorus waves using Van Allen Probes data
Shangchun Teng
Department of Geophysics and Planetary Sciences, CAS Key Laboratory of Geospace Environment,
University of Science and Technology of China, Hefei, China
Collaborative Innovation Center of Astronautical Science and Technology, China
Xin Tao
CORRESPONDING AUTHOR
Department of Geophysics and Planetary Sciences, CAS Key Laboratory of Geospace Environment,
University of Science and Technology of China, Hefei, China
Collaborative Innovation Center of Astronautical Science and Technology, China
Wen Li
Center for Space Physics, Boston University, Boston, Massachusetts, USA
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, USA
Department of Geophysics and Planetary Sciences, CAS Key Laboratory of Geospace Environment,
University of Science and Technology of China, Hefei, China
Collaborative Innovation Center of Astronautical Science and Technology, China
Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA
Xinliang Gao
Department of Geophysics and Planetary Sciences, CAS Key Laboratory of Geospace Environment,
University of Science and Technology of China, Hefei, China
Collaborative Innovation Center of Astronautical Science and Technology, China
State Key Laboratory of Space Weather, CAS, Beijing, China
Quanming Lu
Department of Geophysics and Planetary Sciences, CAS Key Laboratory of Geospace Environment,
University of Science and Technology of China, Hefei, China
Collaborative Innovation Center of Astronautical Science and Technology, China
Shui Wang
Department of Geophysics and Planetary Sciences, CAS Key Laboratory of Geospace Environment,
University of Science and Technology of China, Hefei, China
Collaborative Innovation Center of Astronautical Science and Technology, China
Related authors
No articles found.
Zhaohai He, Jiyao Xu, Ilan Roth, Chi Wang, and Lei Dai
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2021-4, https://doi.org/10.5194/angeo-2021-4, 2021
Revised manuscript not accepted
Short summary
Short summary
We presented sharp descent in proton fluxes is accompanied by the corresponding depression of SYM-H index, with a one-to-one correspondence, regardless of the storm intensity in our previous work [Xu et al., 2019]. This paper is a further study of the possible mechanisms, and to quantitified evaluate the effect of full adiabatic changes. Inner belt is not very stable as previous announced especially for the out zone of the inner belt. It is necessary to survey characteristics of protons.
Chen Zeng, Suping Duan, Chi Wang, Lei Dai, Stephen Fuselier, James Burch, Roy Torbert, Barbara Giles, and Christopher Russell
Ann. Geophys., 38, 123–135, https://doi.org/10.5194/angeo-38-123-2020, https://doi.org/10.5194/angeo-38-123-2020, 2020
Short summary
Short summary
Oxygen ions are an important element in the mass and energy transport in the magnetospheric dynamic process during intense substorms (AE > 500 nT). We did this work to better understand the O+ at the dusk flank magnetopause varying with solar wind conditions and AE index during intense substorms. The results show the O+ abundance at the duskside magnetopause has a corresponding relation to that in the duskside near-Earth plasma sheet.
Binbin Tang, Wenya Li, Chi Wang, Lei Dai, Yuri Khotyaintsev, Per-Arne Lindqvist, Robert Ergun, Olivier Le Contel, Craig Pollock, Christopher Russell, and James Burch
Ann. Geophys., 36, 879–889, https://doi.org/10.5194/angeo-36-879-2018, https://doi.org/10.5194/angeo-36-879-2018, 2018
Short summary
Short summary
The Kelvin–Helmholtz waves are believed to be an effective way to transport solar wind mass and energy into Earth's magnetosphere. In this study, we show that the ion-scale flux rope generated at the trailing edge of Kelvin–Helmholtz waves by multiple X-line reconnection could be directly related to this transfer process. The lower hybrid drift waves detected at the edges of the flux rope can also contribute to this process and then affect the revolution of the flux rope.
Run Shi, Wen Li, Qianli Ma, Seth G. Claudepierre, Craig A. Kletzing, William S. Kurth, George B. Hospodarsky, Harlan E. Spence, Geoff D. Reeves, Joseph F. Fennell, J. Bernard Blake, Scott A. Thaller, and John R. Wygant
Ann. Geophys., 36, 781–791, https://doi.org/10.5194/angeo-36-781-2018, https://doi.org/10.5194/angeo-36-781-2018, 2018
L. Dai, C. Wang, V. Angelopoulos, and K.-H. Glassmeier
Ann. Geophys., 33, 1147–1153, https://doi.org/10.5194/angeo-33-1147-2015, https://doi.org/10.5194/angeo-33-1147-2015, 2015
Short summary
Short summary
Magnetic reconnection is a ubiquitous process that drives global-scale dynamics in plasmas. For reconnection to proceed, both ion and electrons must be unfrozen in a localized diffusion region. By analyzing in situ measurements, we show that the non-gyrotropic ion pressure is mainly responsible for breaking the ion frozen-in condition in reconnection. The reported non-gyrotropic ion pressure tensor can specify the reconnection electric field that controls how quickly reconnection proceeds.
R. Wang, R. Nakamura, T. Zhang, A. Du, W. Baumjohann, Q. Lu, and A. N. Fazakerley
Ann. Geophys., 32, 239–248, https://doi.org/10.5194/angeo-32-239-2014, https://doi.org/10.5194/angeo-32-239-2014, 2014
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Plasma waves and instabilities
Revisiting mirror modes in the plasma environment of comet 67P/Churyumov–Gerasimenko
Statistical study and corresponding evolution of plasmaspheric plumes under different levels of geomagnetic storms
Statistical study of linear magnetic hole structures near Earth
Resolution dependence of magnetosheath waves in global hybrid-Vlasov simulations
On the magnetic characteristics of magnetic holes in the solar wind between Mercury and Venus
Excitation of chorus with small wave normal angles due to beam pulse amplifier (BPA) mechanism in density ducts
Ariel Tello Fallau, Charlotte Goetz, Cyril Simon Wedlund, Martin Volwerk, and Anja Moeslinger
Ann. Geophys., 41, 569–587, https://doi.org/10.5194/angeo-41-569-2023, https://doi.org/10.5194/angeo-41-569-2023, 2023
Short summary
Short summary
The plasma environment of comet 67P provides a unique laboratory to study plasma phenomena in the solar system. Previous studies have reported the existence of mirror modes at 67P but no further systematic investigation has so far been done. This study aims to learn more about these waves. We investigate the magnetic field measured by Rosetta and find 565 mirror mode signatures. The detected mirror modes are likely generated upstream of the observation and have been modified by the plasma.
Haimeng Li, Tongxing Fu, Rongxin Tang, Zhigang Yuan, Zhanrong Yang, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 167–177, https://doi.org/10.5194/angeo-40-167-2022, https://doi.org/10.5194/angeo-40-167-2022, 2022
Short summary
Short summary
The plasmaspheric plume is an important region of detached plasma elements and provides an effective coupling channel of energy/mass between the inner magnetospheric plasmasphere and outer magnetosphere. In this study, using Van Allen Probe data, we present a statistical result of plasmaspheric plumes in the inner magnetosphere, which implies that the plumes tend to occur during the recovery phase of geomagnetic storms, and the occurrence rate is larger during stronger geomagnetic activity.
Martin Volwerk, David Mautner, Cyril Simon Wedlund, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Schmid, Diana Rojas-Castillo, Owen W. Roberts, and Ali Varsani
Ann. Geophys., 39, 239–253, https://doi.org/10.5194/angeo-39-239-2021, https://doi.org/10.5194/angeo-39-239-2021, 2021
Short summary
Short summary
The magnetic field in the solar wind is not constant but varies in direction and strength. One of these variations shows a strong local reduction of the magnetic field strength and is called a magnetic hole. These holes are usually an indication that there is, or has been, a temperature difference in the plasma of the solar wind, with the temperature along the magnetic field lower than perpendicular. The MMS spacecraft data have been used to study the characteristics of these holes near Earth.
Maxime Dubart, Urs Ganse, Adnane Osmane, Andreas Johlander, Markus Battarbee, Maxime Grandin, Yann Pfau-Kempf, Lucile Turc, and Minna Palmroth
Ann. Geophys., 38, 1283–1298, https://doi.org/10.5194/angeo-38-1283-2020, https://doi.org/10.5194/angeo-38-1283-2020, 2020
Short summary
Short summary
Plasma waves are ubiquitous in the Earth's magnetosphere. They are responsible for many energetic processes happening in Earth's atmosphere, such as auroras. In order to understand these processes, thorough investigations of these waves are needed. We use a state-of-the-art numerical model to do so. Here we investigate the impact of different spatial resolutions in the model on these waves in order to improve in the future the model without wasting computational resources.
Martin Volwerk, Charlotte Goetz, Ferdinand Plaschke, Tomas Karlsson, Daniel Heyner, and Brian Anderson
Ann. Geophys., 38, 51–60, https://doi.org/10.5194/angeo-38-51-2020, https://doi.org/10.5194/angeo-38-51-2020, 2020
Short summary
Short summary
The magnetic field that is carried by the solar wind slowly decreases in strength as it moves further from the Sun. However, there are sometimes localized decreases in the magnetic field strength, called magnetic holes. These are small structures where the magnetic field strength decreases to less than 50 % of the surroundings and the plasma density increases. This paper presents a statistical study of the behaviour of these holes between Mercury and Venus using MESSENGER data.
Peter A. Bespalov and Olga N. Savina
Ann. Geophys., 37, 819–824, https://doi.org/10.5194/angeo-37-819-2019, https://doi.org/10.5194/angeo-37-819-2019, 2019
Short summary
Short summary
The paper discusses a problem concerned with the excitation of chorus with small wave normal angles along the external magnetic field in the magnetosphere. We examine the realisation of the beam pulse amplifier mechanism of chorus excitation without strong anisotropy of the plasma particle distribution function in the density ducts with refractive reflection. It is shown that in the ducts, discrete spectral elements of chorus can be excited at close to half of the electron cyclotron frequency.
Cited articles
Agapitov, O., Krasnoselskikh, V., Dudok de Wit, T., Khotyaintsev, Y.,
Pickett, J. S., Santolík, O., and Rolland, G.: Multispacecraft observations of
chorus emissions as a tool for the plasma density fluctuations' remote
sensing, J. Geophys. Res.-Space, 116, A09222,
https://doi.org/10.1029/2011JA016540, 2011a. a
Agapitov, O., Krasnoselskikh, V., Khotyaintsev, Y. V., and Rolland, G.: A
statistical study of the propagation characteristics of whistler waves
observed by Cluster, Geophys. Res. Lett., 38, L20103,
https://doi.org/10.1029/2011GL049597, 2011b. a
Agapitov, O., Krasnoselskikh, V., Khotyaintsev, Y. V., and Rolland, G.:
Correction to “A statistical study of the propagation characteristics of
whistler waves observed by Cluster”, Geophys. Res. Lett., 39, L24102,
https://doi.org/10.1029/2012GL054320, 2012. a
Agapitov, O., Blum, L., Mozer, F., Bonnell, J., and Wygant, J.: Chorus
whistler wave source scales as determined from multipoint Van Allen Probe
measurements, Geophys. Res. Lett., 44, 2634–2642,
https://doi.org/10.1002/2017GL072701, 2017. a
Albert, J. M.: Nonlinear interaction of outer zone electrons with VLF
waves, Geophys. Res. Lett., 29, 1275, https://doi.org/10.1029/2001GL013941, 2002. a
Albert, J. M. and Young, S. L.: Multidimensional quasi-linear diffusion of
radiation belt electrons, Geophys. Res. Lett., 32, L14110,
https://doi.org/10.1029/2005GL023191, 2005. a
Bortnik, J., Thorne, R. M., and Inan, U. S.: Nonlinear interaction of
energetic electrons with large amplitude chorus, Geophys. Res. Lett., 35, L21102,
https://doi.org/10.1029/2008GL035500, 2008. a
Breneman, A. W., Kletzing, C. A., Pickett, J., Chum, J., and Santoík, O.:
Statistics of multispacecraft observations of chorus dispersion and source
location, J. Geophys. Res., 114, A06202, https://doi.org/10.1029/2008JA013549, 2009. a
Burtis, W. and Helliwell, R.: Banded chorus-A new type of VLF radiation
observed in the magnetosphere by OGO 1 and OGO 3, J. Geophys.
Res., 74, 3002–3010, https://doi.org/10.1029/JA074i011p03002, 1969. a
Burtis, W. J. and Helliwell, R. A.: Magnetospheric chorus: Occurrence
patterns and normalized frequency, Planet. Space Sci., 24, 1007–1010,
https://doi.org/10.1016/0032-0633(76)90119-7, 1976. a
Burton, R. K. and Holzer, R. E.: The origin and propagation of chorus in the
outer magnetosphere, J. Geophys. Res., 79, 1014–1023,
https://doi.org/10.1029/JA079i007p01014, 1974. a
Cornilleau-Wehrlin, N., Etcheto, J., and Burton, R.: Detailed analysis of
magnetospheric ELF chorus: Preliminary results, J. Atmos. Sol.-Terr. Phy., 38,
1201–1210, https://doi.org/10.1016/0021-9169(76)90052-0, 1976. a
Gao, X., Li, W., Thorne, R. M., Bortnik, J., Angelopoulos, V., Lu, Q., Tao,
X., and Wang, S.: Statistical results describing the bandwidth and coherence
coefficient of whistler mode waves using THEMIS waveform data, J. Geophys.
Res.-Space, 119, 8992–9003, https://doi.org/10.1002/2014JA020158, 2014. a, b
Gary, S.: Theory of Space Plasma Microinstabilities, Cambridge University Press,
New York, 1993. a
Gary, S. P. and Wang, J.: Whistler instability: Electron anisotropy upper
bound, J. Geophys. Res., 101, 10749–10754, https://doi.org/10.1029/96JA00323, 1996. a
Helliwell, R. A.: Whistlers and Related Ionospheric Phenomena, Stanford
University Press, Stanford, California, 1965. a
Hikishima, M., Omura, Y., and Summers, D.: Microburst precipitation of
energetic electrons associated with chorus wave generation, Geophys. Res.
Lett., 37, L07103, https://doi.org/10.1029/2010GL042678, 2010. a
Horne, R. B. and Thorne, R. M.: Potential waves for relativistic electron
scattering and stochastic acceleration during magnetic storms, Geophys. Res.
Lett., 25, 3011–3014, https://doi.org/10.1029/98GL01002, 1998. a
Horne, R. B., Thorne, R. M., Glauert, S. A., Albert, J. M., Meredith, N. P.,
and Anderson, R. R.: Timescale for radiation belt electron acceleration by
whistler mode chorus waves, J. Geophys. Res., 110, A03225,
https://doi.org/10.1029/2004JA010811, 2005a. a
Horne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A.,
Smith, A. J., Kanekal, S. G., Baker, D. N., Engebretson, M. J., Posch, J. L.,
Spasojevic, M., Inan, U. S., Pickett, J. S., and Decreau, P. M. E.: Wave
acceleration of electrons in the Van Allen radiation belts, Nature,
437, 227 pp.,
https://doi.org/10.1038/nature03939, 2005b. a
Hospodarsky, G. B., Averkamp, T. F., Kurth, W. S., Gurnett, D. A., Menietti,
J. D., Santoík, O., and Dougherty, M. K.: Observations of chorus at
Saturn using the Cassini Radio and Plasma Wave Science
instrument, J. Geophys. Res., 113, A12206, https://doi.org/10.1029/2008JA013237, 2008. a
Inan, U. S., Platino, M., Bell, T. F., Gurnett, D. A., and Pickett, J. S.:
Cluster measurements of rapidly moving sources of ELF/VLF chorus,
J. Geophys. Res., 109, A05214, https://doi.org/10.1029/2003JA010289, 2004. a
Katoh, Y. and Omura, Y.: Computer simulation of chorus wave generation in the
Earth's inner magnetosphere, Geophys. Res. Lett., 34, L03102,
https://doi.org/10.1029/2006GL028594, 2007. a
Katoh, Y. and Omura, Y.: Effect of the background magnetic field
inhomogeneity on generation processes of whistler-mode chorus and broadband hiss-like
emissions, J. Geophys. Res., 118, 4189–4198, https://doi.org/10.1002/jgra.50395, 2013. a
Keika, K., Spasojevic, M., Li, W., Bortnik, J., Miyoshi, Y., and
Angelopoulos, V.: PENGUIn/AGO and THEMIS conjugate observations of whistler mode chorus
waves in the dayside uniform zone under steady solar wind and quiet
geomagnetic conditions, J. Geophys. Res., 117, A07212,
https://doi.org/10.1029/2012JA017708, 2012. a
Kennel, C. F. and Engelmann, F.: Velocity space diffusion from weak plasma
turbulence in a magnetic field, Phys. Fluids, 9, https://doi.org/10.1063/1.1761629,
1966. a
Kennel, C. F. and Petschek, H. E.: Limit on stably trapped particle fluxes,
J. Geophys. Res., 71, 1–28, https://doi.org/10.1029/JZ071i001p00001, 1966. a
Kersten, K., Cattell, C. A., Breneman, A., Goetz, K., Kellogg, P. J., Wygant,
J. R., Wilson III, L. B., Blake, J. B., Looper, M. D., and Roth, I.:
Observation of relativistic electron microbursts in conjunction with intense
radiation belt whistler-mode waves, Geophys. Res. Lett., 38, L08107,
https://doi.org/10.1029/2011GL046810, 2011. a
Kessel, R., Fox, N., and Weiss, M.: The radiation belt storm probes (RBSP)
and space weather, Space Sci. Rev., 179, 531–543,
https://doi.org/10.1007/s11214-012-9953-6, 2013. a
Kim, H., Hwang, J., Seough, J., and Yoon, P.: Electron temperature anisotropy
regulation by whistler instability, J. Geophys. Res.-Space, 122, 4410–4419, https://doi.org/10.1002/2016JA023558, 2017. a
Kletzing, C., Kurth, W., Acuna, M., MacDowall, R., Torbert, R., Averkamp, T.,
Bodet, D., Bounds, S., Chutter, M., Connerney, J., Crawford, D., Dolan, J.
S., Dvorsky, R., Hospodarsky, G. B., Howard, J., Jordanova, V., Johnson, R.
A., Kirchner, D. L., Mokrzycki, B., Needell, G., Odom, J., Mark, D., Pfaff,
R., Phillips, J. R., Piker, C. W., Remington, S. L., Rowland, D., Santolik,
O., Schnurr, R., Sheppard, D., Smith, C. W., Thorne, R. M., and Tyler, J.:
The electric and
magnetic field instrument suite and integrated science (EMFISIS) on RBSP,
in: The Van Allen Probes Mission, Springer,
127–181, https://doi.org/10.1007/s11214-013-9993-6, 2013. a, b
Kozelov, B. V., Demekhov, A. G., Titova, E. E., Trakhtengerts, V. Y.,
Santolik, O., Macusova, E., Gurnett, D. A., and Pickett, J. S.: Variations in the
chorus source location deduced from fluctuations of the ambient magnetic
field: Comparison of Cluster data and the backward wave oscillator model,
J. Geophys. Res., 113, A06216, https://doi.org/10.1029/2007JA012886, 2008. a
Kurita, S., Misawa, H., Cully, C. M., Contel, O. L., and Angelopoulos, V.:
Source location of falling tone chorus, Geophys. Res. Lett., 39, L22102,
https://doi.org/10.1029/2012GL053929, 2012. a, b, c, d
LeDocq, M. J., Gurnett, D. A., and Hospodarsky, G. B.: Chorus source
locations from VLF Poynting flux measurements with the Polar spacecraft, Geophys.
Res. Lett., 25, 4063–4066, https://doi.org/10.1029/1998GL900071, 1998. a
Li, W., Shprits, Y. Y., and Thorne, R. M.: Dynamic evolution of energetic
outer zone electrons due to wave-particle interactions during storms, J. Geophys.
Res., 112, A10220, https://doi.org/10.1029/2007JA012368, 2007. a
Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Cully, C. M., Ni, B.,
LeContel, O., Roux, A., Auster, U., and Magnes, W.: Global distribution of
whistler-mode chorus waves observed on the THEMIS spacecraft, Geophys. Res.
Lett., 36, L09104, https://doi.org/10.1029/2009GL037595, 2009. a, b, c, d
Li, W., Santolik, O., Bortnik, J., Thorne, R., Kletzing, C., Kurth, W., and
Hospodarsky, G.: New chorus wave properties near the equator from Van Allen
Probes wave observations, Geophys. Res. Lett., 43, 4725–4735,
https://doi.org/10.1002/2016GL068780, 2016. a, b, c, d
Lorentzen, K. R., Blake, J. B., Inan, U. S., and Bortnik, J.: Observations of
relativistic electron microbursts in association with VLF chorus,
J. Geophys. Res., 106, 6017–6027, https://doi.org/10.1029/2000JA003018, 2001. a
Mauk, B., Fox, N. J., Kanekal, S., Kessel, R., Sibeck, D., and Ukhorskiy, A.:
Science objectives and rationale for the radiation belt storm probes mission,
Space Sci. Rev., 179, 3–27, https://doi.org/10.1007/s11214-012-9908-y, 2013. a
Meredith, N. P., Horne, R. B., Thorne, R. M., and Anderson, R. R.: Favored
regions for chorus-driven electron acceleration to relativistic energies in
the Earth's outer radiation belt, Geophys. Res. Lett., 30, 1871,
https://doi.org/10.1029/2003GL017698, 2003. a
Meredith, N. P., Horne, R. B., Li, W., Thorne, R. M., and Sicard-Piet, A.:
Global model of low-frequency chorus ( ) from
multiple satellite observations, Geophys. Res. Lett., 41, 280–286,
https://doi.org/10.1002/2013GL059050, 2014. a, b
Mourenas, D., Artemyev, A. V., Agapitov, O. V., Krasnoselskikh, V., and
Mozer, F. S.: Very oblique whistler generation by low-energy electron streams,
J. Geophys. Res.-Space, 120, 3665–3683, https://doi.org/10.1002/2015JA021135,
2015. a
Ni, B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J.: Resonant scattering
of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse
auroral precipitation, Geophys. Res. Lett., 35, L11106,
https://doi.org/10.1029/2008GL034032, 2008. a
Ni, B., Thorne, R. M., Meredith, N. P., Horne, R. B., and Shprits, Y. Y.:
Resonant scattering of plasma sheet electrons leading to diffuse auroral
precipitation: 2. Evaluation for whistler mode chorus waves, J. Geophys.
Res., 116, A04219, https://doi.org/10.1029/2010JA016233, 2011. a
Ni, B., Thorne, R. M., Zhang, X., Bortnik, J., Pu, Z., Xie, L., Hu, Z.-j.,
Han, D., Shi, R., Zhou, C., and Gu, X.: Origins of the Earth's diffuse
auroral
precipitation, Space Sci. Rev., 200, 205–259,
https://doi.org/10.1007/s11214-016-0234-7, 2016. a
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R.,
Angelopoulos, V., Mende, S. B., Bonnell, J. W., Contel, O. L., Cully, C., Ergun, R., and
Auster, U.: Identifying the driver of pulsating aurora, Science, 330, 81–84,
https://doi.org/10.1126/science.1193186, 2010. a
Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Ni, B., Lyons, L. R.,
Angelopoulos, V., Ebihara, Y., Bonnell, J. W., Le Contel, O., and Auster, U.:
Structures of dayside whistler-mode waves deduced from conjugate diffuse
aurora, J. Geophys. Res., 118, 664–673, https://doi.org/10.1029/2012JA018242, 2013. a
Nunn, D.: A self-consistent theory of triggered VLF emissions, Planet.
Space Sci., 22, 349–378, https://doi.org/10.1016/0032-0633(74)90070-1, 1974. a
Nunn, D. and Omura, Y.: A computational and theoretical analysis of falling
frequency VLF emissions, J. Geophys. Res., 117, A08228,
https://doi.org/10.1029/2012JA017557, 2012. a
Olson, W. and Pfitzer, K. A.: A dynamic model of the magnetospheric magnetic
and electric fields for July 29, 1977, J. Geophys. Res.-Space, 87, 5943–5948, https://doi.org/10.1029/JA087iA08p05943, 1982. a
Omura, Y., Katoh, Y., and Summers, D.: Theory and simulation of the
generation of whistler-mode chorus, J. Geophys. Res., 113, A04223,
https://doi.org/10.1029/2007JA012622, 2008. a, b, c
Omura, Y., Hikishima, M., Katoh, Y., Summers, D., and Yagitani, S.: Nonlinear
mechanisms of lower-band and upper-band VLF chorus emissions in the
magnetosphere, J. Geophys. Res., 114, A07217, https://doi.org/10.1029/2009JA014206,
2009. a, b
Ossakow, S. L., Ott, E., and Haber, I.: Nonlinear evolution of whistler
instabilities, Phys. Fluids, 15, 2314–2326, https://doi.org/10.1063/1.1693875, 1972. a, b
Parrot, M., Santolík, O., Cornilleau-Wehrlin, N., Maksimovic, M., and
Harvey, C. C.: Source location of chorus emissions observed by Cluster, Ann.
Geophys., 21, 473–480, https://doi.org/10.5194/angeo-21-473-2003, 2003. a
Saito, S., Miyoshi, Y., and Seki, K.: Relativistic electron microbursts
associated with whistler chorus rising tone elements: GEMSIS-RBW
simulations, J. Geophys. Res., 117, A10206, https://doi.org/10.1029/2012JA018020,
2012. a
Santolík, O. and Gurnett, D. A.: Transverse dimensions of chorus in the
source region, Geophys. Res. Lett., 30, 1031, https://doi.org/10.1029/2002GL016178,
2003. a, b
Santolík, O., Gurnett, D. A., and Pickett, J. S.: Multipoint
investigation of the source region of storm-time chorus, Ann. Geophys., 22,
2555–2563, https://doi.org/10.5194/angeo-22-2555-2004, 2004a. a, b
Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M., and
Cornilleau-Wehrlin, N.: A microscopic and nanoscopic view of storm-time
chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801,
https://doi.org/10.1029/2003GL018757, 2004b. a, b, c
Santolík, O., Gurnett, D., Pickett, J., Parrot, M., and
Cornilleau-Wehrlin, N.: Central position of the source region of storm-time
chorus, Planet. Space Sci., 53, 299–305,
https://doi.org/10.1016/j.pss.2004.09.056, 2005. a
Santolík, O., Gurnett, D. A., Pickett, J. S., Chum, J., and
Cornilleau-Wehrlin, N.: Oblique propagation of whistler mode waves in the
chorus source region, J. Geophys. Res., 114, A00F03,
https://doi.org/10.1029/2009JA014586, 2009. a
Soto-Chavez, A. R., Wang, G., Bhattacharjee, A., Fu, G. Y., and Smith, H. M.:
A model for falling-tone chorus, Geophys. Res. Lett., 41, 1838–1845,
https://doi.org/10.1002/2014GL059320, 2014. a
Spasojevic, M. and Inan, U. S.: Drivers of chorus in the outer dayside
magnetosphere, J. Geophys. Res., 115, A00F09, https://doi.org/10.1029/2009JA014452,
2010. a
Sudan, R. N. and Ott, E.: Theory of triggered VLF emissions, J. Geophys.
Res., 76, 4463–4476, https://doi.org/10.1029/JA076i019p04463, 1971. a
Summers, D., Thorne, R. M., and Xiao, F.: Relativistic theory of
wave-particle resonant diffusion with application to electron acceleration
in the magnetosphere, J. Geophys. Res., 103, 20487–20500,
https://doi.org/10.1029/98JA01740, 1998. a
Tao, X.: A numerical study of chorus generation and the related variation of
wave intensity using the DAWN code, J. Geophys. Res.-Space, 119,
3362–3372, https://doi.org/10.1002/2014JA019820, 2014. a, b
Tao, X., Chan, A. A., Albert, J. M., and Miller, J. A.: Stochastic modeling
of multidimensional diffusion in the radiation belts, J. Geophys. Res., 113,
A07212, https://doi.org/10.1029/2007JA012985, 2008. a
Tao, X., Thorne, R. M., Li, W., Ni, B., Meredith, N. P., and Horne, R. B.:
Evolution of electron pitch-angle distributions following injection from the
plasma sheet, J. Geophys. Res., 116, A04229, https://doi.org/10.1029/2010JA016245,
2011. a
Tao, X., Bortnik, J., Thorne, R. M., Albert, J., and Li, W.: Effects of
amplitude modulation on nonlinear interactions between electrons and chorus
waves, Geophys. Res. Lett., 39, L06102, https://doi.org/10.1029/2012GL051202, 2012. a
Tao, X., Bortnik, J., Albert, J. M., Thorne, R. M., and Li, W.: The
importance of amplitude modulation in nonlinear interactions between electrons and large
amplitude whistler waves, J. Atmos. Sol.-Terr. Phys., 99, 67–72,
https://doi.org/10.1016/j.jastp.2012.05.012, 2013. a
Tao, X., Bortnik, J., Albert, J. M., Thorne, R. M., and Li, W.: Effects of
discreteness of chorus waves on quasilinear diffusion-based modeling of
energetic electron dynamics, J. Geophys. Res.-Space, 119, 8848–8857,
https://doi.org/10.1002/2014JA020022, 2014a. a
Tao, X., Lu, Q., Wang, S., and Dai, L.: Effects of magnetic field
configuration
on the day-night asymmetry of chorus occurrence rate: A numerical study,
Geophys. Res. Lett., 41, 6577–6582, https://doi.org/10.1002/2014GL061493,
2014b. a
Tao, X., Chen, L., Liu, X., Lu, Q., and Wang, S.: Quasilinear analysis of
saturation properties of broadband whistler mode waves, Geophys. Res.
Lett., 44, 8122–8129, https://doi.org/10.1002/2017GL074881, 2017a. a, b
Tao, X., Zonca, F., and Chen, L.: Identify the nonlinear wave-particle
interaction regime in rising tone chorus generation, Geophys. Res. Lett., 44,
3441–3446, https://doi.org/10.1002/2017GL072624, 2017b. a, b
Tao, X., Zonca, F., and Chen, L.: Investigations of the electron phase space
dynamics in triggered whistler wave emissions using low noise δf
method, P. S. IAEA, 59, 094001, https://doi.org/10.1088/1361-6587/aa759a, 2017c.
a
Taubenschuss, U., Khotyaintsev, Y. V., Santolík, O., Vaivads, A., Cully,
C. M., Contel, O. L., and Angelopoulos, V.: Wave normal angles of whistler
mode chorus rising and falling tones, J. Geophys. Res.-Space, 119,
9567–9578, https://doi.org/10.1002/2014JA020575, 2014. a
Teng, S., Tao, X., Xie, Y., Zonca, F., Chen, L., Fang, W., and Wang, S.:
Analysis of the Duration of Rising Tone Chorus Elements, Geophys. Res.
Lett., 44, 12074–12082, https://doi.org/10.1002/2017GL075824, 2017. a
Thorne, R. M., Ni, B., Tao, X., Horne, R. B., and Meredith, N. P.: Scattering
by chorus waves as the dominant cause of diffuse auroral precipitation,
Nature, 467, 943–946, https://doi.org/10.1038/nature09467, 2010. a, b
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N.,
Spence, H. E., Reeves, G. D., Henderson, M. G., Kletzing, C. A., Kurth,
W. S., Hospodarsky, G. B., Blake, J. B., Fennell, J. F., Claudepierre, S. G.,
and Kanekal, S. G.: Rapid local acceleration of relativistic radiation-belt
electrons by magnetospheric chorus, Nature, 504, 411–414,
https://doi.org/10.1038/nature12889, 2013. a
Tsurutani, B. T., Lakhina, G. S., and Verkhoglyadova, O. P.: Energetic
electron (>10 keV) microburst precipitation, ∼ 5–15 s X-ray pulsations,
chorus, and wave-particle interactions: A review, J. Geophys.
Res.-Space, 118, 2296–2312, https://doi.org/10.1002/jgra.50264, 2013. a
Tsyganenko, N. and Sitnov, M.: Modeling the dynamics of the inner
magnetosphere during strong geomagnetic storms, J. Geophys. Res, 110, A03208,
https://doi.org/10.1029/2004JA010798, 2005. a
Viñas, A. F., Moya, P. S., Navarro, R. E., Valdivia, J. A., Araneda,
J. A., and Muñoz, V.: Electromagnetic fluctuations of the whistler-cyclotron and
firehose instabilities in a Maxwellian and Tsallis-kappa-like plasma,
J. Geophys. Res.-Space, 120, 3307–3317,
https://doi.org/10.1002/2014JA020554, 2015. a
Vomvoridis, J. L., Crystal, T. L., and Denavit, J.: Theory and computer
simulations of magnetospheric very low frequency emissions, J. Geophys. Res.,
87, 1473–1489, https://doi.org/10.1029/JA087iA03p01473, 1982. a, b, c
Wygant, J., Bonnell, J., Goetz, K., Ergun, R., Mozer, F., Bale, S., Ludlam,
M., Turin, P., Harvey, P., Hochmann, R., Harps, K., Dalton, G., McCauley, J.,
Rachelson, W., and Gordon, D.: The Electric Field and Waves
Instruments on the Radiation Belt Storm Probes Mission, Space Sci.
Rev., 179, 183–220, https://doi.org/10.1007/s11214-013-0013-7, 2013. a
Yoon, P. H.: Large-amplitude whistler waves and electron acceleration,
Geophys. Res. Lett., 38, L12105, https://doi.org/10.1029/2011GL047893, 2011. a
Short summary
This paper performs a statistical study of the spatial distribution and source region size along a filed line of both rising tone and falling tone whistler waves based on the Van Allen Probes data. The results suggest that both types of chorus waves are generated near the equatorial plane, roughly consistent with previous theoretical estimates. The work should be useful to further understand the generation mechanism of chorus waves.
This paper performs a statistical study of the spatial distribution and source region size along...