Articles | Volume 36, issue 5
https://doi.org/10.5194/angeo-36-1275-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/angeo-36-1275-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new method to identify flux ropes in space plasmas
Shiyong Huang
CORRESPONDING AUTHOR
School of Electronic Information, Wuhan University, Wuhan, China
Invited contribution by Shiyong Huang, recipient of the EGU Planetary and Solar System Sciences Division Outstanding Early Career Scientists Award 2016.
Pufan Zhao
School of Electronic Information, Wuhan University, Wuhan, China
Jiansen He
School of Earth and Space Sciences, Peking University, Beijing,
China
Zhigang Yuan
School of Electronic Information, Wuhan University, Wuhan, China
Meng Zhou
Institute of Space Science and Technology, Nanchang University,
Nanchang, China
Huishan Fu
School of Space and Environment, Beihang University, Beijing, China
Xiaohua Deng
Institute of Space Science and Technology, Nanchang University,
Nanchang, China
Ye Pang
Institute of Space Science and Technology, Nanchang University,
Nanchang, China
Dedong Wang
School of Electronic Information, Wuhan University, Wuhan, China
Xiongdong Yu
School of Electronic Information, Wuhan University, Wuhan, China
Haimeng Li
School of Space and Environment, Beihang University, Beijing, China
Roy Torbert
University of New Hampshire, Durham, New Hampshire, USA
James Burch
Southwest Research Institute, San Antonio TX, USA
Related authors
Song Fu, Shiyong Huang, Meng Zhou, Binbin Ni, and Xiaohua Deng
Ann. Geophys., 36, 373–379, https://doi.org/10.5194/angeo-36-373-2018, https://doi.org/10.5194/angeo-36-373-2018, 2018
Short summary
Short summary
It has been shown that guide fields substantially modify the structure of reconnection layers. In this paper, we studied the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field.
M. Zhou, T. Li, X. Deng, S. Huang, and H. Li
Ann. Geophys., 33, 1469–1478, https://doi.org/10.5194/angeo-33-1469-2015, https://doi.org/10.5194/angeo-33-1469-2015, 2015
Short summary
Short summary
Electron energization is an outstanding issue in magnetic reconnection, which is a hot topic in plasma physics and astrophysics. Four different structures have been proposed for electron energization during reconnection. We find that there is no specific sequence of electron energization through the four structures; there is no specific order of electron acceleration efficiency among the four structures, and electron energization occurs in a wide region around X-line.
Zhanrong Yang, Haimeng Li, Zhigang Yuan, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 673–685, https://doi.org/10.5194/angeo-40-673-2022, https://doi.org/10.5194/angeo-40-673-2022, 2022
Short summary
Short summary
From the statistical analysis of potential plasmaspheric plume, we find that there is almost no correlation between plume width and the level of geomagnetic storm intensity. However, for plumes in the recovery phase after improved sifting, there is a negative correlation between the plume width and absolute value of minimum Dst during the storm. We suggest that the plasmaspheric particles may escape quickly during intense storms, causing plume to be relatively narrow during the recovery phase.
Haimeng Li, Tongxing Fu, Rongxin Tang, Zhigang Yuan, Zhanrong Yang, Zhihai Ouyang, and Xiaohua Deng
Ann. Geophys., 40, 167–177, https://doi.org/10.5194/angeo-40-167-2022, https://doi.org/10.5194/angeo-40-167-2022, 2022
Short summary
Short summary
The plasmaspheric plume is an important region of detached plasma elements and provides an effective coupling channel of energy/mass between the inner magnetospheric plasmasphere and outer magnetosphere. In this study, using Van Allen Probe data, we present a statistical result of plasmaspheric plumes in the inner magnetosphere, which implies that the plumes tend to occur during the recovery phase of geomagnetic storms, and the occurrence rate is larger during stronger geomagnetic activity.
Haimeng Li, Wen Li, Qianli Ma, Yukitoshi Nishimura, Zhigang Yuan, Alex J. Boyd, Xiaochen Shen, Rongxin Tang, and Xiaohua Deng
Ann. Geophys., 39, 461–470, https://doi.org/10.5194/angeo-39-461-2021, https://doi.org/10.5194/angeo-39-461-2021, 2021
Short summary
Short summary
We report an event where hiss wave intensity decreased, associated with the enhanced convection and a substorm. We suggest that the enhanced magnetospheric electric field causes the outward and sunward motion of energetic electrons. This leads to the decrease of energetic electron fluxes on the duskside, which provide free energy for hiss amplification. The study reveals the important role of magnetospheric electric field in the variation of the energetic electron flux and hiss wave intensity.
Chen Zeng, Suping Duan, Chi Wang, Lei Dai, Stephen Fuselier, James Burch, Roy Torbert, Barbara Giles, and Christopher Russell
Ann. Geophys., 38, 123–135, https://doi.org/10.5194/angeo-38-123-2020, https://doi.org/10.5194/angeo-38-123-2020, 2020
Short summary
Short summary
Oxygen ions are an important element in the mass and energy transport in the magnetospheric dynamic process during intense substorms (AE > 500 nT). We did this work to better understand the O+ at the dusk flank magnetopause varying with solar wind conditions and AE index during intense substorms. The results show the O+ abundance at the duskside magnetopause has a corresponding relation to that in the duskside near-Earth plasma sheet.
Binbin Tang, Wenya Li, Chi Wang, Lei Dai, Yuri Khotyaintsev, Per-Arne Lindqvist, Robert Ergun, Olivier Le Contel, Craig Pollock, Christopher Russell, and James Burch
Ann. Geophys., 36, 879–889, https://doi.org/10.5194/angeo-36-879-2018, https://doi.org/10.5194/angeo-36-879-2018, 2018
Short summary
Short summary
The Kelvin–Helmholtz waves are believed to be an effective way to transport solar wind mass and energy into Earth's magnetosphere. In this study, we show that the ion-scale flux rope generated at the trailing edge of Kelvin–Helmholtz waves by multiple X-line reconnection could be directly related to this transfer process. The lower hybrid drift waves detected at the edges of the flux rope can also contribute to this process and then affect the revolution of the flux rope.
Song Fu, Shiyong Huang, Meng Zhou, Binbin Ni, and Xiaohua Deng
Ann. Geophys., 36, 373–379, https://doi.org/10.5194/angeo-36-373-2018, https://doi.org/10.5194/angeo-36-373-2018, 2018
Short summary
Short summary
It has been shown that guide fields substantially modify the structure of reconnection layers. In this paper, we studied the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field.
David Fischer, Werner Magnes, Christian Hagen, Ivan Dors, Mark W. Chutter, Jerry Needell, Roy B. Torbert, Olivier Le Contel, Robert J. Strangeway, Gernot Kubin, Aris Valavanoglou, Ferdinand Plaschke, Rumi Nakamura, Laurent Mirioni, Christopher T. Russell, Hannes K. Leinweber, Kenneth R. Bromund, Guan Le, Lawrence Kepko, Brian J. Anderson, James A. Slavin, and Wolfgang Baumjohann
Geosci. Instrum. Method. Data Syst., 5, 521–530, https://doi.org/10.5194/gi-5-521-2016, https://doi.org/10.5194/gi-5-521-2016, 2016
Short summary
Short summary
This paper describes frequency and timing calibration, modeling and data processing and calibration for MMS magnetometers, resulting in a merged search choil and fluxgate data product.
Ying Xiong, Zhigang Yuan, and Jingfang Wang
Ann. Geophys., 34, 249–257, https://doi.org/10.5194/angeo-34-249-2016, https://doi.org/10.5194/angeo-34-249-2016, 2016
Short summary
Short summary
With observations of the Cluster spacecraft, we report in situ evidence of energetic ions scattered into the loss cone during the inbound pass from the plasma sheet into the plasmasphere. Our results suggest that energetic ions scattering into the loss cone in the central plasma sheet and the outer boundary of the plasmaspheric plume are attributed to the field line curvature scattering mechanism and EMIC wave scattering mechanism, respectively.
M. Volwerk, I. Richter, B. Tsurutani, C. Götz, K. Altwegg, T. Broiles, J. Burch, C. Carr, E. Cupido, M. Delva, M. Dósa, N. J. T. Edberg, A. Eriksson, P. Henri, C. Koenders, J.-P. Lebreton, K. E. Mandt, H. Nilsson, A. Opitz, M. Rubin, K. Schwingenschuh, G. Stenberg Wieser, K. Szegö, C. Vallat, X. Vallieres, and K.-H. Glassmeier
Ann. Geophys., 34, 1–15, https://doi.org/10.5194/angeo-34-1-2016, https://doi.org/10.5194/angeo-34-1-2016, 2016
Short summary
Short summary
The solar wind magnetic field drapes around the active nucleus of comet 67P/CG, creating a magnetosphere. The solar wind density increases and with that the pressure, which compresses the magnetosphere, increasing the magnetic field strength near Rosetta. The higher solar wind density also creates more ionization through collisions with the gas from the comet. The new ions are picked-up by the magnetic field and generate mirror-mode waves, creating low-field high-density "bottles" near 67P/CG.
M. Zhou, T. Li, X. Deng, S. Huang, and H. Li
Ann. Geophys., 33, 1469–1478, https://doi.org/10.5194/angeo-33-1469-2015, https://doi.org/10.5194/angeo-33-1469-2015, 2015
Short summary
Short summary
Electron energization is an outstanding issue in magnetic reconnection, which is a hot topic in plasma physics and astrophysics. Four different structures have been proposed for electron energization during reconnection. We find that there is no specific sequence of electron energization through the four structures; there is no specific order of electron acceleration efficiency among the four structures, and electron energization occurs in a wide region around X-line.
Z. H. Yao, J. Liu, C. J. Owen, C. Forsyth, I. J. Rae, Z. Y. Pu, H. S. Fu, X.-Z. Zhou, Q. Q. Shi, A. M. Du, R. L. Guo, and X. N. Chu
Ann. Geophys., 33, 1301–1309, https://doi.org/10.5194/angeo-33-1301-2015, https://doi.org/10.5194/angeo-33-1301-2015, 2015
Short summary
Short summary
We use THEMIS large data set of dipolarization front events to build a 2-D pressure distribution in XZ plane, and thus derive the current system around the dipolarization front. Our results show that a banana current loop is formed around the dipolarization front. This current is also suggested to be the reason for the magnetic dip observed ahead of the dipolarization front. In addition, the current density is too small to contribute a substorm current wedge.
I. Richter, C. Koenders, H.-U. Auster, D. Frühauff, C. Götz, P. Heinisch, C. Perschke, U. Motschmann, B. Stoll, K. Altwegg, J. Burch, C. Carr, E. Cupido, A. Eriksson, P. Henri, R. Goldstein, J.-P. Lebreton, P. Mokashi, Z. Nemeth, H. Nilsson, M. Rubin, K. Szegö, B. T. Tsurutani, C. Vallat, M. Volwerk, and K.-H. Glassmeier
Ann. Geophys., 33, 1031–1036, https://doi.org/10.5194/angeo-33-1031-2015, https://doi.org/10.5194/angeo-33-1031-2015, 2015
Short summary
Short summary
We present a first report on magnetic field measurements made in the coma of comet 67P/C-G in its low-activity state. The plasma environment is dominated by quasi-coherent, large-amplitude, compressional magnetic field oscillations around 40mHz, differing from the observations at strongly active comets where waves at the cometary ion gyro-frequencies are the main feature. We propose a cross-field current instability associated with the newborn cometary ions as a possible source mechanism.
Related subject area
Subject: Magnetosphere & space plasma physics | Keywords: Magnetic reconnection
Finding reconnection lines and flux rope axes via local coordinates in global ion-kinetic magnetospheric simulations
Markku Alho, Giulia Cozzani, Ivan Zaitsev, Fasil Tesema Kebede, Urs Ganse, Markus Battarbee, Maarja Bussov, Maxime Dubart, Sanni Hoilijoki, Leo Kotipalo, Konstantinos Papadakis, Yann Pfau-Kempf, Jonas Suni, Vertti Tarvus, Abiyot Workayehu, Hongyang Zhou, and Minna Palmroth
Ann. Geophys., 42, 145–161, https://doi.org/10.5194/angeo-42-145-2024, https://doi.org/10.5194/angeo-42-145-2024, 2024
Short summary
Short summary
Magnetic reconnection is one of the main processes for energy conversion and plasma transport in space plasma physics, associated with plasma entry into the magnetosphere of Earth and Earth’s substorm cycle. Global modelling of these plasma processes enables us to understand the magnetospheric system in detail. However, finding sites of active reconnection from large simulation datasets can be challenging, and this paper develops tools to find magnetic topologies related to reconnection.
Cited articles
Borg, A. L., Taylor, M. G. G. T., and Eastwood, J. P.: Observations of
magnetic flux ropes during magnetic reconnection in the Earth's magnetotail,
Ann. Geophys., 30, 761–773, https://doi.org/10.5194/angeo-30-761-2012, 2012.
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L.: Magnetospheric
Multiscale overview and science objectives, Space Sci. Rev., 199, 5,
https://doi.org/10.1007/s11214-015-0164-9, 2015.
Chen, L.-J., Bhattacharjee, A., Puhl-Quinn, P. A., Yang, H., Bessho, N.,
Imada, S., Mühlbachler, S., Daly, P. W., Lefebvre, B., Khotyaintsev, Y.,
Vaivads, A., Fazakerley, A., and Georgescu, E.: Observation of
energetic electrons within magnetic islands, Nature Phys., 4, 19–23,
https://doi.org/10.1038/nphys777, 2007.
Daughton, W., Scudder, J., and Karimabadi, H.: Fully kinetic
simulations of undriven magnetic reconnection with open boundary conditions,
Phys. Plasmas, 13, 072101, https://doi.org/10.1063/1.2218817, 2006.
Deng, X. H., Matsumoto, H., Kojima, H., Mukai, T., Anderson, R. R.,
Baumjohann, W., and Nakamura, R.: Geotail encounter with reconnection
diffusion region in the Earth's magnetotail: Evidence of multiple X lines
collisionless reconnection?, J. Geophys. Res., 109, A05206,
https://doi.org/10.1029/2003JA010031, 2004.
Drake, J. F., Swisdak, M., Che, H., and Shay, M. A.: Electron acceleration
from contracting magnetic islands during reconnection, Nature, 443,
553–556, 2006.
Elphic, R. C. and Russell, C. T.: Magnetic Flux Ropes in the Venus
Ionosphere: Observations and Models, J. Geophys. Res., 88, 58–72,
https://doi.org/10.1029/JA088iA01p00058, 1983.
Escoubet, C. P., Schmidt, R., and Goldstein, M. L.: Cluster–Science and
mission overview, Space Sci. Rev., 79, 11–32, 1997.
Fu, H. S., Cao, J. B., Khotyaintsev, Yu. V., Sitnov, M. I., Runov, A.,
Fu, S. Y., Hamrin, M., André, M., Retinò, A., Ma, Y. D., Lu, H. Y., Wei, X.
H., and
Huang, S. Y.: Dipolarization
fronts as a consequence of transient reconnection: In situ evidence,
Geophys. Res. Lett., 40, 6023–6027, https://doi.org/10.1002/2013GL058620, 2013.
Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., Olshevsky, V., André, M.,
Cao, J. B., Huang, S. Y., Retinò, A., and Lapenta, G.: How to find
magnetic nulls and reconstruct field topology with MMS data?, J. Geophys.
Res.-Space Phys., 120, 3758–3782, https://doi.org/10.1002/2015JA021082, 2015.
Fu, H. S., Cao, J. B., Vaivads, A., Khotyaintsev, Y. V., Andre, M.,
Dunlop, M., Liu, W. L., Lu, H. Y., Huang, S. Y., Ma, Y. D., and Eriksson, E.: Identifying magnetic
reconnection events using the FOTE method, J. Geophys. Res.-Space Phys.,
121, 1263–1272, https://doi.org/10.1002/2015JA021701, 2016.
Fu, H. S., Vaivads, A., Khotyaintsev, Y. V., André, M., Cao, J. B.,
Olshevsky, V., Eastwood, J. P., and Retinò, A.: Intermittent energy
dissipation by turbulent reconnection, Geophys. Res. Lett., 44, 37–43,
https://doi.org/10.1002/2016GL071787, 2017.
Hidalgo, M. A., Cid, C., Vinas, A. F., and Sequeiros, J.: A non-force-free
approach to the topology of magnetic clouds in the solar wind, J. Geophys.
Res., 106, 1002, https://doi.org/10.1029/2001JA900100, 2002.
Hotelling, H.: New Light on the Correlation Coefficient and its Transforms,
J. Roy. Stat. Soc. B, 15, 193–232, 1953.
Hu, Q. and Sonnerup, B. U. O.: Reconstruction of magnetic flux ropes in the
solar wind, Geophys. Res. Lett., 28, 467–470, 2001.
Hu, Q. and Sonnerup, B. U. O.: Reconstruction of magnetic clouds in the solar
wind: Orientations and configurations, J. Geophys. Res., 107, 1142,
https://doi.org/10.1029/2001JA000293, 2002.
Huang, S. Y., Vaivads, A., Khotyaintsev, Y. V., Zhou, M., Fu, H. S.,
Retinò, A., Deng, X. H., André, M., Cully, C. M., He, J. S., Sahraoui, F., Yuan, Z.
G., and Pang, Y.: Electron
acceleration in the reconnection diffusion region: Cluster observations,
Geophys. Res. Lett., 39, L11103, https://doi.org/10.1029/2012GL051946, 2012.
Huang, S. Y., Pang, Y., Yuan, Z., Deng, X., He, J., Zhou, M., Fu, H., Fu, S., Li, H., Wang, D., and Li, H.: Observation of
directional change of core field inside flux ropes within one reconnection
diffusion region in the Earth's magnetotail, Chin. Sci. Bull., 59,
4797–4803,
https://doi.org/10.1007/s11434-014-0583-0, 2014a.
Huang, S. Y., Zhou, M., Yuan, Z. G., Deng, X. H., Sahraoui, F., Pang, Y., and
Fu, S.: Kinetic simulations of electric field structure within
magnetic island during magnetic reconnection and their applications to the
satellite observations, J. Geophys. Res.-Space Phys.,
119, 7402–7412, https://doi.org/10.1002/2014JA020054, 2014b.
Huang, S. Y., Zhou, M., Yuan, Z. G., Fu, H. S., He, J. S.,
Sahraoui, F., Aunai, N., Deng, X. H., Fu, S., Pang, Y., and Wang, D. D.: Kinetic
simulations of secondary reconnection in the reconnection jet, J. Geophys.
Res.-Space Phys., 120, 6188–6198, https://doi.org/10.1002/2014JA020969, 2015.
Huang, S. Y., Retino, A., Phan, T. D., Daughton, W., Vaivads, A.,
Karimabadi, H., Zhou, M., Sahraoui, F., Li, G. L., Yuan, Z. G., Deng, X. H.,
Fu, H. S., Fu, S., Pang, Y., and Wang, D. D.: In situ
observations of flux rope at the separatrix region of magnetic
reconnection, J. Geophys. Res.-Space Phys., 121, 205–213,
https://doi.org/10.1002/2015JA021468, 2016a.
Huang, S. Y., Sahraoui, F., Retino, A., Le Contel, O., Yuan, Z. G., Chasapis,
A.,
Aunai, N., Breuillard, H., Deng, X. H., Zhou, M., Fu, H. S., Pang, Y., Wang, D. D.,
Torbert, R. B., Goodrich, K. A., Ergun, R. E., Khotyaintsev, Y. V., Lindqvist, P.-A.,
Russell, C. T., Strangeway, R. J., Magnes, W., Bromund, K., Leinweber, H., Plaschke, F.,
Anderson, B. J., Pollock, C. J., Giles, B. L., Moore, T. E., and Burch, J. L.: MMS observations
of ion-scale magnetic island in the magnetosheath turbulent plasma, Geophys.
Res. Lett., 43, 7850–7858, https://doi.org/10.1002/2016GL070033, 2016b.
Hughes, W. J., Sibeck, D. G.: On the 3-dimensional structure of plasmoids,
Geophys. Res. Lett., 14, 636–639, 2013.
Jackman, C. M., Slavin, J. A., Kivelson, M. G., Southwood, D. J., Achilleos,
N.,
Thomsen, M. F., DiBraccio, G. A., Eastwood, J. P., Freeman, M. P., Dougherty, M.
K.,
and Vogt, M. F.: Saturn's dynamic magnetotail: A comprehensive magnetic
field and plasma survey of plasmoids and traveling compression regions and
their role in global magnetospheric dynamics, J. Geophys. Res.-Space
Phys., 119, 5465–5494, https://doi.org/10.1002/2013JA019388, 2014.
Karimabadi, H., Sipes, T. B., Wang, Y., Lavraud, B., and Roberts, A.: A new
multivariate time series data analysis technique: Automated detection of flux
transfer events using Cluster data, J. Geophys. Res., 114, A06216,
https://doi.org/10.1029/2009JA014202, 2009.
Kawano, H. and Russell, C. T.: Survey of flux transfer events observed
with the ISEE 1 spacecraft: Rotational polarity and the source region, J.
Geophys. Res., 101, 27299–27308, 1996.
Lee, L. C., Fu, Z. F., and Akasofu, S.-I.: A simulation study of forced
reconnection processes and magnetospheric storms and substorms, J. Geophys.
Res., 90, 10896–10910, 1985.
Lepping, R. P., Jones, J. A., and Burlaga, L. F.: Magnetic field structure of
interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11957–11965,
1990.
Nakamura, M. and Scholer, M.: Structure of the magnetopause reconnection
layer and of flux transfer events: Ion kinetic effects, J. Geophys. Res.,
105, 23179–23191, https://doi.org/10.1029/2000JA900101, 2000.
Richardson, I. G., Cowley, S. W. H., Hones, E. W., and Bame, S. J.:
Plasmoid-associated energetic ion bursts in the deep geomagnetic tail:
Properties of plasmoids and the postplasmoid plasma sheet, J. Geophys. Res.,
2, 9997–10013, https://doi.org/10.1029/JA092iA09p09997, 1987.
Rong, Z. J., Wan, W. X., Shen, C., Zhang, T. L., Lui, A. T. Y., Wang, Y.,
Dunlop, M. W., Zhang, Y. C., and Zong, Q.-G.: Method for inferring the axis
orientation of cylindrical magnetic flux rope based on single-point
measurement, J. Geophys. Res.-Space Phys., 118, 271–283,
https://doi.org/10.1029/2012JA018079, 2013.
Slavin, J. A., Lepping, R. P., Gjerloev, J., Fairfield, D. H., Hesse, M.,
Owen, C. J., Moldwin, M. B., Nagai, T., Ieda, A., and Mukai, T.: Geotail
observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res.,
108, 1015–1032, 2003.
Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q.-G., Zhang, H., Xiao,
C. J., Liu, Z. X., and Balogh, A.: Dimensional analysis of observed
structures using multipoint magnetic field measurements: Application to
Cluster, Geophys. Res. Lett., 32, L12105, https://doi.org/10.1029/2005GL022454, 2005.
Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q.-G., Liu, Z.-X.,
Lucek, E. A., and Balogh, A.: Motion of observed structures calculated from
multi-point magnetic field measurements: Application to Cluster, Geophys.
Res. Lett., 33, L08109, https://doi.org/10.1029/2005GL025073, 2006.
Smith, A. W., Jackman, C. M., and Thomsen, M. F.: Magnetic reconnection in
Saturn's magnetotail: A comprehensive magnetic field survey, J. Geophys.
Res.-Space Phys., 121, 2984–3005, https://doi.org/10.1002/2015JA022005, 2016.
Sonnerup, B. U. O., Hasegawa, H., and Paschmann, G.: Anatomy of a flux
transfer event seen by Cluster, Geophys. Res. Lett., 31, L11803,
https://doi.org/10.1029/2004GL020134, 2004.
Vogt, M. F., Kivelson, M. G., Khurana, K. K., Joy, S. P., and Walker, R. J.:
Reconnection and flows in the Jovian magnetotail as inferred from
magnetometer observations, J. Geophys. Res., 115, A06219,
https://doi.org/10.1029/2009JA015098, 2010.
Wang, R., Lu, Q., Du, A., and Wang, S.: In Situ Observations of a Secondary
Magnetic Island in an Ion Diffusion Region and Associated Energetic
Electrons, Phys. Rev. Lett., 104, 175003, 2010.
Wang, R., Lu, Q., Nakamura, R., Huang, C., Du, A., Guo, F., Teh, W., Wu, M.,
Lu, S., and Wang, S.: Coalescence of magnetic flux ropes in the ion diffusion
region of magnetic reconnection, Nature Phys., 12, 263–267,
https://doi.org/10.1038/nphys3578, 2016.
Zhang, H., Kivelson, M. G., Khurana, K. K., McFadden, J., Walker, R. J.,
Angelopoulos, V., Weygand, J. M., Phan, T., Larson, D., Glassmeier, K. H.,
and
Auster, H. U.: Evidence that crater
flux transfer events are initial stages of typical flux transfer events, J.
Geophys. Res., 115, A08229, https://doi.org/10.1029/2009JA015013,
2010.
Zhou, X.-Z., Zong, Q.-G., Pu, Z. Y., Fritz, T. A., Dunlop, M. W., Shi, Q. Q.,
Wang, J., and Wei, Y.: Multiple Triangulation Analysis: another approach to
determine the orientation of magnetic flux ropes, Ann. Geophys., 24,
1759–1765, https://doi.org/10.5194/angeo-24-1759-2006, 2006a.
Zhou, X.-Z., Zong, Q.-G., Wang, J., Pu, Z. Y., Zhang, X. G., Shi, Q. Q., and
Cao, J. B.: Multiple triangulation analysis: application to determine the
velocity of 2-D structures, Ann. Geophys., 24, 3173–3177,
https://doi.org/10.5194/angeo-24-3173-2006, 2006b.
Zong, Q.-G., Fritz, T. A., Pu, Z. Y., Fu, S. Y., Baker, D. N., Zhang, H.,
Lui, A. T., Vogiatzis, I., Glassmeier, K.-H., Korth, A., Daly, P. W., Balogh,
A., and Reme, H.: Cluster observations of earthward flowing magnetic island
in the tail, Geophys. Res. Lett., 31, L18803, https://doi.org/10.1029/2004GL020692,
2004.