Articles | Volume 34, issue 1
https://doi.org/10.5194/angeo-34-41-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-34-41-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High-speed stereoscopy of aurora
R. Kataoka
CORRESPONDING AUTHOR
National Institute of Polar Research, Tokyo, Japan
Department of Polar Science, SOKENDAI, Tachikawa, Japan
Y. Fukuda
Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
H. A. Uchida
Department of Polar Science, SOKENDAI, Tachikawa, Japan
H. Yamada
Institute for Space Earth Environmental Research, Nagoya University, Nagoya, Japan
Y. Miyoshi
Institute for Space Earth Environmental Research, Nagoya University, Nagoya, Japan
Y. Ebihara
Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
H. Dahlgren
School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
School of Physics and Astronomy, University of Southampton, Southampton, UK
D. Hampton
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA
Related authors
Shin'ya Nakano, Ryuho Kataoka, Masahito Nosé, and Jesper W. Gjerloev
Ann. Geophys., 41, 529–539, https://doi.org/10.5194/angeo-41-529-2023, https://doi.org/10.5194/angeo-41-529-2023, 2023
Short summary
Short summary
Substorms are a phenomenon in the magnetosphere–ionosphere system, which are characterised by brightening of an auroral arc and enhancement of electric currents in the polar ionosphere. Since substorms are difficult to predict, this study treats a substorm occurrence as a stochastic phenomenon and represents the substorm occurrence rate with a machine learning model. We then analyse the response of substorm activity to solar wind conditions by feeding synthetic solar wind data into the model.
Shin'ya Nakano and Ryuho Kataoka
Ann. Geophys., 40, 11–22, https://doi.org/10.5194/angeo-40-11-2022, https://doi.org/10.5194/angeo-40-11-2022, 2022
Short summary
Short summary
The relationships between auroral activity and the solar-wind conditions are modeled with a machine-learning technique. The impact of various solar-wind parameters on the auroral activity is then evaluated by putting artificial inputs into the trained machine-learning model. One of the notable findings is that the solar-wind density effect on the auroral activity is emphasized under high solar-wind speed and weak solar-wind magnetic field.
Hiroko Miyahara, Ryuho Kataoka, Takehiko Mikami, Masumi Zaiki, Junpei Hirano, Minoru Yoshimura, Yasuyuki Aono, and Kiyomi Iwahashi
Ann. Geophys., 36, 633–640, https://doi.org/10.5194/angeo-36-633-2018, https://doi.org/10.5194/angeo-36-633-2018, 2018
Short summary
Short summary
Old diaries kept in Japan tell us a surprising fact. The 27-day solar rotational period in thunder and lightning activities had been persistent for the past 300 years. The intensity is found to be more prominent as solar activity increases. The physical mechanism of the Sun–Climate connection is yet uncertain, an important link surely exists between the solar activity and terrestrial climate even at a meteorological timescale.
Hiroko Miyahara, Yasuyuki Aono, and Ryuho Kataoka
Ann. Geophys., 35, 1195–1200, https://doi.org/10.5194/angeo-35-1195-2017, https://doi.org/10.5194/angeo-35-1195-2017, 2017
Short summary
Short summary
Solar activity and climate show correlations over a wide range of timescales. It is important to understand the behavior of the 27-day solar rotational period in lightning activities because it provides an opportunity to understand how the sun influences weather and climate. We analyzed lightning data extracted from diaries written in Kyoto, Japan from the mid-17th to the mid-18th century. Lightning shows the signal of the 27-day period; however, it disappeared during the Maunder Minimum.
Hiroko Miyahara, Chika Higuchi, Toshio Terasawa, Ryuho Kataoka, Mitsuteru Sato, and Yukihiro Takahashi
Ann. Geophys., 35, 583–588, https://doi.org/10.5194/angeo-35-583-2017, https://doi.org/10.5194/angeo-35-583-2017, 2017
Short summary
Short summary
Detailed analyses of the 27-day solar rotational period in cloud and lightning activities may help in untangling the process of solar influence on weather and climate. We analyzed the lightning data in Japan for AD 1989–2015 and found that the 27-day solar rotational period is seen in wide-area lightning activity. The signal was stronger at the maxima of solar decadal cycles. It was also found that the signal of the 27-day period migrates from the southwest to the northeast in Japan.
R. Kataoka, Y. Nakagawa, and T. Sato
Ann. Geophys., 33, 75–78, https://doi.org/10.5194/angeo-33-75-2015, https://doi.org/10.5194/angeo-33-75-2015, 2015
Short summary
Short summary
Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 µSv/hr at a conventional flight altitude of 12 km during the largest solar proton event that did not cause a ground-level enhancement. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere.
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
Ann. Geophys., 32, 831–839, https://doi.org/10.5194/angeo-32-831-2014, https://doi.org/10.5194/angeo-32-831-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Shin'ya Nakano, Ryuho Kataoka, Masahito Nosé, and Jesper W. Gjerloev
Ann. Geophys., 41, 529–539, https://doi.org/10.5194/angeo-41-529-2023, https://doi.org/10.5194/angeo-41-529-2023, 2023
Short summary
Short summary
Substorms are a phenomenon in the magnetosphere–ionosphere system, which are characterised by brightening of an auroral arc and enhancement of electric currents in the polar ionosphere. Since substorms are difficult to predict, this study treats a substorm occurrence as a stochastic phenomenon and represents the substorm occurrence rate with a machine learning model. We then analyse the response of substorm activity to solar wind conditions by feeding synthetic solar wind data into the model.
Shin'ya Nakano and Ryuho Kataoka
Ann. Geophys., 40, 11–22, https://doi.org/10.5194/angeo-40-11-2022, https://doi.org/10.5194/angeo-40-11-2022, 2022
Short summary
Short summary
The relationships between auroral activity and the solar-wind conditions are modeled with a machine-learning technique. The impact of various solar-wind parameters on the auroral activity is then evaluated by putting artificial inputs into the trained machine-learning model. One of the notable findings is that the solar-wind density effect on the auroral activity is emphasized under high solar-wind speed and weak solar-wind magnetic field.
Pekka T. Verronen, Antti Kero, Noora Partamies, Monika E. Szeląg, Shin-Ichiro Oyama, Yoshizumi Miyoshi, and Esa Turunen
Ann. Geophys., 39, 883–897, https://doi.org/10.5194/angeo-39-883-2021, https://doi.org/10.5194/angeo-39-883-2021, 2021
Short summary
Short summary
This paper is the first to simulate and analyse the pulsating aurorae impact on middle atmosphere on monthly/seasonal timescales. We find that pulsating aurorae have the potential to make a considerable contribution to the total energetic particle forcing and increase the impact on upper stratospheric odd nitrogen and ozone in the polar regions. Thus, it should be considered in atmospheric and climate simulations.
Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, and Cyril Simon Wedlund
Ann. Geophys., 39, 811–831, https://doi.org/10.5194/angeo-39-811-2021, https://doi.org/10.5194/angeo-39-811-2021, 2021
Short summary
Short summary
On 15 October 2020, BepiColombo used Venus as a gravity assist to change its orbit to reach Mercury in late 2021. During this passage of Venus, the spacecraft entered into Venus's magnetotail at a distance of 70 Venus radii from the planet. We have studied the magnetic field and plasma data and find that Venus's magnetotail is highly active. This is caused by strong activity in the solar wind, where just before the flyby a coronal mass ejection interacted with the magnetophere of Venus.
Hiroko Miyahara, Ryuho Kataoka, Takehiko Mikami, Masumi Zaiki, Junpei Hirano, Minoru Yoshimura, Yasuyuki Aono, and Kiyomi Iwahashi
Ann. Geophys., 36, 633–640, https://doi.org/10.5194/angeo-36-633-2018, https://doi.org/10.5194/angeo-36-633-2018, 2018
Short summary
Short summary
Old diaries kept in Japan tell us a surprising fact. The 27-day solar rotational period in thunder and lightning activities had been persistent for the past 300 years. The intensity is found to be more prominent as solar activity increases. The physical mechanism of the Sun–Climate connection is yet uncertain, an important link surely exists between the solar activity and terrestrial climate even at a meteorological timescale.
Hiroko Miyahara, Yasuyuki Aono, and Ryuho Kataoka
Ann. Geophys., 35, 1195–1200, https://doi.org/10.5194/angeo-35-1195-2017, https://doi.org/10.5194/angeo-35-1195-2017, 2017
Short summary
Short summary
Solar activity and climate show correlations over a wide range of timescales. It is important to understand the behavior of the 27-day solar rotational period in lightning activities because it provides an opportunity to understand how the sun influences weather and climate. We analyzed lightning data extracted from diaries written in Kyoto, Japan from the mid-17th to the mid-18th century. Lightning shows the signal of the 27-day period; however, it disappeared during the Maunder Minimum.
Hiroko Miyahara, Chika Higuchi, Toshio Terasawa, Ryuho Kataoka, Mitsuteru Sato, and Yukihiro Takahashi
Ann. Geophys., 35, 583–588, https://doi.org/10.5194/angeo-35-583-2017, https://doi.org/10.5194/angeo-35-583-2017, 2017
Short summary
Short summary
Detailed analyses of the 27-day solar rotational period in cloud and lightning activities may help in untangling the process of solar influence on weather and climate. We analyzed the lightning data in Japan for AD 1989–2015 and found that the 27-day solar rotational period is seen in wide-area lightning activity. The signal was stronger at the maxima of solar decadal cycles. It was also found that the signal of the 27-day period migrates from the southwest to the northeast in Japan.
Dhvanit Mehta, Andrew J. Gerrard, Yusuke Ebihara, Allan T. Weatherwax, and Louis J. Lanzerotti
Atmos. Chem. Phys., 17, 911–919, https://doi.org/10.5194/acp-17-911-2017, https://doi.org/10.5194/acp-17-911-2017, 2017
Short summary
Short summary
This paper presents an investigation into the sources of atmospheric gravity waves observed at 90 km above Amundsen-Scott South Pole Station, Antarctica. By combining gravity wave characteristics obtained from imager data and a numerical model for 3-D wave propagation through the atmosphere, we find that the development of baroclinic instabilities via displacement of the polar vortex is a significant and unique source of vertically propagating, short-period (< 1 h) gravity waves in the region.
N. Y. Ganushkina, M. W. Liemohn, S. Dubyagin, I. A. Daglis, I. Dandouras, D. L. De Zeeuw, Y. Ebihara, R. Ilie, R. Katus, M. Kubyshkina, S. E. Milan, S. Ohtani, N. Ostgaard, J. P. Reistad, P. Tenfjord, F. Toffoletto, S. Zaharia, and O. Amariutei
Ann. Geophys., 33, 1369–1402, https://doi.org/10.5194/angeo-33-1369-2015, https://doi.org/10.5194/angeo-33-1369-2015, 2015
Short summary
Short summary
A number of current systems exist in the Earth's magnetosphere. It is very difficult to identify local measurements as belonging to a specific current system. Therefore, there are different definitions of supposedly the same current, leading to unnecessary controversy. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques.
R. Kataoka, Y. Nakagawa, and T. Sato
Ann. Geophys., 33, 75–78, https://doi.org/10.5194/angeo-33-75-2015, https://doi.org/10.5194/angeo-33-75-2015, 2015
Short summary
Short summary
Using a new air-shower simulation driven by the proton flux data obtained from GOES satellites, we show the possibility of significant enhancement of the effective dose rate of up to 4.5 µSv/hr at a conventional flight altitude of 12 km during the largest solar proton event that did not cause a ground-level enhancement. As a result, a new GOES-driven model is proposed to give an estimate of the contribution from the isotropic component of the radiation dose in the stratosphere.
H. Fujiwara, S. Nozawa, Y. Ogawa, R. Kataoka, Y. Miyoshi, H. Jin, and H. Shinagawa
Ann. Geophys., 32, 831–839, https://doi.org/10.5194/angeo-32-831-2014, https://doi.org/10.5194/angeo-32-831-2014, 2014
M. Yamauchi, Y. Ebihara, H. Nilsson, and I. Dandouras
Ann. Geophys., 32, 83–90, https://doi.org/10.5194/angeo-32-83-2014, https://doi.org/10.5194/angeo-32-83-2014, 2014
R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Takahei, T. Nakai, H. Miyahara, and K. Shiokawa
Ann. Geophys., 31, 1543–1548, https://doi.org/10.5194/angeo-31-1543-2013, https://doi.org/10.5194/angeo-31-1543-2013, 2013
Short summary
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the emission altitude of rapidly varying fine-scale structures. The new method unveiled that very different types of aurora appear in the same direction at different altitudes.
Stereoscopy of aurora was performed at the record fast sampling rate of 100 fps to measure the...