Articles | Volume 32, issue 2
https://doi.org/10.5194/angeo-32-181-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/angeo-32-181-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Rolls of the internal gravity waves in the Earth's atmosphere
O. Onishchenko
Institute of Physics of the Earth, 10 B. Gruzinskaya, 123995 Moscow, Russian Federation
Space Research Institute, 84/32, Profsoyuznaya str., 117997 Moscow, Russian Federation
O. Pokhotelov
Institute of Physics of the Earth, 10 B. Gruzinskaya, 123995 Moscow, Russian Federation
W. Horton
Institute for Fusion Studies, University of Texas at Austin, Austin, Texas, USA
A. Smolyakov
University of Saskatchewan, Saskatchewan, S7N 5E2, Canada
T. Kaladze
I. Vekua Institute of Applied Mathematics, Tbilisi State University, Tbilisi, Georgia
Physics Department, Government College University, Lahore 54000, Pakistan
V. Fedun
Space Systems Laboratory, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, S1 3JD, UK
Related authors
O. Onishchenko, O. Pokhotelov, W. Horton, and V. Fedun
Ann. Geophys., 33, 1343–1347, https://doi.org/10.5194/angeo-33-1343-2015, https://doi.org/10.5194/angeo-33-1343-2015, 2015
O. Onishchenko, O. Pokhotelov, and V. Fedun
Ann. Geophys., 31, 459–462, https://doi.org/10.5194/angeo-31-459-2013, https://doi.org/10.5194/angeo-31-459-2013, 2013
Laila Zafar Kahlon, Hassan Amir Shah, Tamaz David Kaladze, Qura Tul Ain, and Syed Assad Bukhari
Nonlin. Processes Geophys., 31, 1–6, https://doi.org/10.5194/npg-31-1-2024, https://doi.org/10.5194/npg-31-1-2024, 2024
Short summary
Short summary
It is shown that sheared Rossby–Khantadze waves can propagate due to inhomogeneities, taking into account the Earth's angular velocity and the magnetic field. Along with the Hall conductivity, these waves can couple in the ionospheric E region.The novelty of the present work is the consideration of magnetic field inhomogeneity, which was not considered before and reduced our considered system of equations to a 1D modified KdV equation.
Anatoliy Lozbin, Viktor Fedun, and Olga Kryakunova
Ann. Geophys., 40, 55–65, https://doi.org/10.5194/angeo-40-55-2022, https://doi.org/10.5194/angeo-40-55-2022, 2022
Short summary
Short summary
Detection of Ionosphere Anomalies (DIA) for detection, identification, and analysis of ionosphere anomalies from satellite spectrograms and time series row data from instruments onboard the DEMETER satellite was designed. Using this software, the analyses of ionosphere parameter variations caused by various factors are provided. The scientific data processing and visualization technologies used in the development of DIA can be used in the creation of software for other scientific space missions.
Yuriy Rapoport, Vladimir Grimalsky, Viktor Fedun, Oleksiy Agapitov, John Bonnell, Asen Grytsai, Gennadi Milinevsky, Alex Liashchuk, Alexander Rozhnoi, Maria Solovieva, and Andrey Gulin
Ann. Geophys., 38, 207–230, https://doi.org/10.5194/angeo-38-207-2020, https://doi.org/10.5194/angeo-38-207-2020, 2020
Short summary
Short summary
The paper analytically and numerically treats the new theoretical basis for ground-based and satellite monitoring of the most powerful processes in the lower atmosphere and Earth (hurricanes, earthquakes, etc.), solar-wind magnetosphere (magnetic storms) and ionosphere (lightning discharges, thunderstorms, etc.). This can be provided by the determination of phases and amplitudes of radio waves in the Earth and ionosphere. In perspective, damage from the natural disasters can be decreased.
Alexander Rozhnoi, Maria Solovieva, Viktor Fedun, Peter Gallagher, Joseph McCauley, Mohammed Y. Boudjada, Sergiy Shelyag, and Hans U. Eichelberger
Ann. Geophys., 37, 843–850, https://doi.org/10.5194/angeo-37-843-2019, https://doi.org/10.5194/angeo-37-843-2019, 2019
Maxim Reshetnyak and Oleg Pokhotelov
Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2018-37, https://doi.org/10.5194/npg-2018-37, 2018
Publication in NPG not foreseen
Short summary
Short summary
The interaction of waves can lead to inverse cascades, when energy is transferred from small scales to large ones. In dynamo theory, this corresponds to the alpha-effect, where turbulence generates large-scale magnetic field, in two-dimensional hydrodynamic turbulence transfer of kinetic energy from small scales to large ones is observed. We suggest simple analytical model that explains existence of inverse cascades of kinetic energy in rapidly rotating turbulence.
Yuriy G. Rapoport, Oleg K. Cheremnykh, Volodymyr V. Koshovy, Mykola O. Melnik, Oleh L. Ivantyshyn, Roman T. Nogach, Yuriy A. Selivanov, Vladimir V. Grimalsky, Valentyn P. Mezentsev, Larysa M. Karataeva, Vasyl. M. Ivchenko, Gennadi P. Milinevsky, Viktor N. Fedun, and Eugen N. Tkachenko
Ann. Geophys., 35, 53–70, https://doi.org/10.5194/angeo-35-53-2017, https://doi.org/10.5194/angeo-35-53-2017, 2017
Short summary
Short summary
Before many catastrophic phenomena such as earthquakes, sound is generated at a very low frequency. It is already established that it can disturb the upper layer of the atmosphere – the ionosphere. Control of disasters' precursors is important. Using the unique, powerful sound generator, whose loudness is comparable to an ascending jet, we have constructed the theory and conducted a series of experiments trying to model acoustic action of disasters on the ionosphere.
O. Onishchenko, O. Pokhotelov, W. Horton, and V. Fedun
Ann. Geophys., 33, 1343–1347, https://doi.org/10.5194/angeo-33-1343-2015, https://doi.org/10.5194/angeo-33-1343-2015, 2015
A. Rozhnoi, M. Solovieva, V. Fedun, M. Hayakawa, K. Schwingenschuh, and B. Levin
Ann. Geophys., 32, 1455–1462, https://doi.org/10.5194/angeo-32-1455-2014, https://doi.org/10.5194/angeo-32-1455-2014, 2014
A. Rozhnoi, M. Solovieva, B. Levin, M. Hayakawa, and V. Fedun
Nat. Hazards Earth Syst. Sci., 14, 2671–2679, https://doi.org/10.5194/nhess-14-2671-2014, https://doi.org/10.5194/nhess-14-2671-2014, 2014
Yu. Rapoport, Yu. Selivanov, V. Ivchenko, V. Grimalsky, E. Tkachenko, A. Rozhnoi, and V. Fedun
Ann. Geophys., 32, 449–463, https://doi.org/10.5194/angeo-32-449-2014, https://doi.org/10.5194/angeo-32-449-2014, 2014
A. Kryshtal, S. Gerasimenko, A. Voitsekhovska, and V. Fedun
Ann. Geophys., 31, 2193–2200, https://doi.org/10.5194/angeo-31-2193-2013, https://doi.org/10.5194/angeo-31-2193-2013, 2013
S. N. Walker, V. Kadirkamanathan, and O. A. Pokhotelov
Ann. Geophys., 31, 1597–1603, https://doi.org/10.5194/angeo-31-1597-2013, https://doi.org/10.5194/angeo-31-1597-2013, 2013
S. Zharkov, S. Shelyag, V. Fedun, R. Erdélyi, and M. J. Thompson
Ann. Geophys., 31, 1357–1364, https://doi.org/10.5194/angeo-31-1357-2013, https://doi.org/10.5194/angeo-31-1357-2013, 2013
O. Onishchenko, O. Pokhotelov, and V. Fedun
Ann. Geophys., 31, 459–462, https://doi.org/10.5194/angeo-31-459-2013, https://doi.org/10.5194/angeo-31-459-2013, 2013